• Aucun résultat trouvé

Equilibria of a Class of Transport Equations Arising in Congestion Control

N/A
N/A
Protected

Academic year: 2021

Partager "Equilibria of a Class of Transport Equations Arising in Congestion Control"

Copied!
23
0
0

Texte intégral

(1)

HAL Id: inria-00070357

https://hal.inria.fr/inria-00070357

Submitted on 19 May 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Equilibria of a Class of Transport Equations Arising in Congestion Control

François Baccelli, Ki Baek Kim, David R. Mcdonald

To cite this version:

François Baccelli, Ki Baek Kim, David R. Mcdonald. Equilibria of a Class of Transport Equations Arising in Congestion Control. [Research Report] RR-5653, INRIA. 2005, pp.19. �inria-00070357�

(2)

ISRN INRIA/RR--5653--FR+ENG

a p p o r t

d e r e c h e r c h e

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Equilibria of a Class of Transport Equations Arising in Congestion Control

Francois Baccelli — Ki Baek Kim — David R. McDonald

N° 5653

Août 2005

(3)
(4)

' ( )(*+," )&-"

./103246587:9;<0=4>4@?>A:AB7

CED 7+;-0F?>G

D

7BH CJI 06KL7BMONQPER4

I

582S0=ABM

TVUXWY[Z&\V]!^`_ a6bdcfegWY[ZcihjkY[Y&lXmXnohpqm@egc

rtsujwvxZeyT+zi{E\

zypq|X|3jksxe+}XZ!sxZh~UXZsuh~UXZm=€tƒ‚@q„ _ …Vjq†‡e‰ˆqŠkŠ@!_ ‹Œ-|FpƒŽkZc

‘’“1”w•X–q“@— TVUXnoc˜|Fpƒ|8Zs-cxegl‡}XnoZc[p™hšopqcuc-jƒ›ieusgpqmXcx|8jqsxe˜Zœ6lFpwegnojqmXc˜pqsuncunmXŽž›ŸsujkY

cxegj>h~UFpqcfegnh<Y[j>}XZšoc‰nmžhjqmXŽkZcfegnjkm hjkm@eusujkšB %TVUXnoc¡hš¢pqcxc¡hjqm6egpqnom‡c‰e¤£¥jhpqcuZc!jq›Jšojkcxc

|8jknm@eJ|Xsuj>hZcucEY[j>}XZšc¦egUXZysgpwegZ§¨nomX}‡Z|3ZmX}XZm@e©rLjknocxcujkmh1pqcxZy£+U‡ZsuZyegUXZ+|Fpƒh~ªqZe¥šojkcxc

sgpƒeuZ‰noc«nomX}‡Z|3ZmX}XZm@e+jq›egUXZiegUXsxjklXŽkUX|‡l‡eVjq›euUXZ‰¬Fj£­pqmX}‘euUXZ¡sgpwegZ§¨}XZ|3Zm‡}XZm@e+h1pƒcuZ

£+UXZsxZ[egU‡Z[|3jknom@e|XsxjdhZcuc&jq›©šjkcucxZc&UXpqc&pƒm®nom@euZmXcxne¤b £+UXnh~U®nocp$›Ÿl‡mXheunojkmjq›¥euUXZ

nomXcfe~pqm@e~pƒmXZjkl‡c‰sgpwegZq ‰TVUXnocihš¢pƒcuc‰jƒ›JZœ6lFpƒeunojkmXc‰hj¯kZsuc%°3jqegU±euUXZ&hpqcuZ&jq›J|8ZsucxnocxeuZm@e

pqmX}²jq›©mXjkmd§¨|8ZsucuncxeuZm@e&¬Fj£+c Q³´ZµŽkn¶¯kZ[p±}XnosxZhe&|Xsxjdjƒ›Vjq›©euUXZ[›:pqhe&euUFpƒeegUXZsuZµnc

p˜l‡mXnoœ6lXZ%}XZmXcun¶e¤bcujkš¶¯>nomXŽ<euUXZ!pqcucxjdhn¢pƒeuZ}$}Xn·8ZsxZm@egnopqš¸Zœ6lFpƒegnjkm$pqmX}£«Z|Xsxj¯dn}XZ!p

hšojqcuZ}›ŸjksxY¹Zºd|XsxZcxcunojqmQ›Ÿjks©euUXnocV}XZmXcun¶e¤bpqmX}›ŸjksVn¶egcVYZ1pqm¯ƒpqšol‡Zq 

»Q¼@½¸¾x¿<À ”wÁ’q—àšoj£hjqm6eusujkšBčhjkm‡ŽkZcfegnojqm!p¯qjkno}XpqmXhZƒÄƒTy\©rLÄÆÅiTVT+rL腉Çf^±È&čcfegj>h~UFpqcɧ

egnoh®|Xsuj>hZcucĘrLjknocxcujkm)|3jknom@e |XsxjdhZcxcÄ-cxeujdh~UXpqcxeunohÊnom@euZmXcxne¤bkÄ-cfe~pƒeunojkmXpqsxb­}XZm‡cune¤bqÄ

h~UFpqmXŽkZ!jq›YZ1pqcxlXsuZƒ 

Ë,ÌÆÍÏÎJиÑÒÔÓÐ,ÕÎJÖØ×ÆÙwڍÛuÚ-ÍÜÙ-ÝwÕÞÒBßEà1á&ßBÌÆÛyâLãÜäxÕ~ßÔÛfãæåoçŸèéçŸâëêSìwíïîð=ÙwÚ1åoßBÑåoð3ÙwÚ-ñXÛfÒBÖØÑÒÔòVÕÞÙwäfÛ

ð3ógÕãæ׃Õ~ßBÍÜÑÙ¡ÑÖXñFÕä¨ÓÛÉßLèLÛÉߟиÑÒÔӍÎfîÜôà1áyßÔÌÆÛJð=×ÆÒÔÑèõç8ð3×ÆÒBÑ݃ÛuÕÞÙ!èLÛÉߟиÑÒÔÓ+ÑÞÖFðFöÆäÉÛxãæãÜÛfكäÉÛôqÕÞÙwډà1á

ßÔÌÆÛ«í¸ÕÞكÕڍÍÏÕÞىèì1ð3éí÷Ò¨ÕÞÙßâø1ùùúû

üuý Ò¨ÕÞكäÉÑÍÏÎxûþ,ÕäxäÉÛxãæãÜÍÿÛxÙwÎxûÖØÒ

ôÆçŸèéçŸâå¢ð3èìkôfÝwÕÒ:ßÔÛfò©ÛfÙßtÚ@îç ÙÆÖØÑÒÔò©ÕÞßBÍ×ÆÛô@ð3äfÑãÜÛ¥èLÑÒÔòVÕÞãÜÛ

ì×ÆÝxÒBÍÜÛf×wÒBÛôøùôÒÔ×ÆÛtÚ@î ãÜò

ý

åÞùEñXÕÒBÍÏÎäÉÛuڍÛÉöùô

ý

ÒÔÕÙwäÉÛû

ü Ó1Ó1àqÿڍÍoûÛxÙwÎxûÖØÒ

ô~çŸèéçŸâå¢ð3èì@ôfÝwÕÒ:ßÔÛfò©ÛfÙß=Ú@îçٍÖØÑÒÔòVÕ~ßBÍ×ÆÛôð3äÉÑãæÛèLÑÒÔò©ÕãæÛì1×ÆÝfÒÔÍÜÛf×ÆÒÔÛô

ø1ùô1ÒÔ×ÆÛJÚ@î ãÜò

ý

åùJñFÕÒBÍÏÎäÉÛuڍÛÉöùô

ý

ÒÔÕÙwäÉÛû

ü ÚÆò©ÚwÎ:÷ÿ×ÆÑÞßBßÔÕgÐ,ÕÆûäfÕ

ôLÛxÝwÕÞÒBßBò©ÛfÙß>ÑÖÕ~ßBÌwÛfòVÕ~ßÔÍÜäxÎ6ÕÞÙwÚtìߨÕ~ßÔÍÜÎ:ßBÍÏäfÎxô ÙÆÍÜóÛxÒÔÎBÍߟáLÑÞÖwêLß:ßÔÕgÐ,ÕÆô

ùùSÍæÙw÷¥ð8ڍиÕÒÔډâdóÛfÙ1×ÆÛôƒêLß:ߨÕgиÕwô©úuèèù©êÙߨÕÞÒÔÍæÑ+í¸ÕÞكÕÚÆÕwû

(5)

[%"* $ !" " V*+ *+ -"*

* )&(*+,"

’ — jklXcegl‡}Xnojkm‡c©}FpqmXc¥hZeypƒsxegnhšZilXm‡Z¡hšopqcucxZ¡}œ6lFpƒeunojkmXc¥}XZ‰egsupqmXcx|8jksfe

œ>l‡n8pƒ|X|FpqsupqnocxcuZm@eE}Fpqm‡c«}XZc«Yj>}XWšZctcxeujdh~UXpqcxeunoœ6lXZc«}XZ+Yh1pqm‡nocuYZcJ}XZyhjqm6euskšZV}XZ

hjkmXŽqZcxeunojkm¸ S\¥ZeuegZ«hšopqcucxZ¥hjql‡¯>suZ¥}‡ZldºYjd}XWšoZcL}‡Z¥|XsxjdhZcucxlXcS|3jkmXheglXZšocL}XZ¥|3ZsfegZc¦

šoZh1pqcijžšoZc‰|3ZsfegZci›ŸjksuYZm@eilXmž|XsxjdhZcucxlXc%}XZ&rjkncucujqm,ĸZe¡hZšolXnLjžhZ&|XsxjdhZcxculXc

|8jkm‡hegl‡Zšp-lXmXZ%nm@egZm‡cune%œ6lXn,ZcfeylXmXZ¡›ŸjkmXhegnjkm}Xl} °‡ne+nom‡cxe~pƒm6egpqm %}Xl¬Fjƒe1 J{tšošZ

hjkl‡¯>sxZ%pqlXcxcun3šoZ‰hpqc¥}‡Zc¥¬Fjƒegc¥|3Zsxcuncxe~pƒm6euc©hjqY[YZihZšlXn8}‡Zc¥m‡jkmd§¤|3Zsxcuncxe~pƒm6euc JrLjklXs

hZexegZ©hš¢pqcxcuZƒÄkmXjklXc}XjkmXmXjqmXcSlXmXZ¥|XsuZl‡¯kZV}XnsuZhegZ«}XZ©š!ælXm‡nohn¶e"J}XZct}XZmXcxnecScxjkšol‡eunojkm‡c

}XZ©š#œ6lFpwegnojqm<}Xn·$sxZm@egnZššoZE} hsun¯ƒpqm@etš!%e~pƒecxegpƒegnjkmXmFpqnsuZƒÄkpqnmXcun>œ6læl‡mXZ+Zºd|XsuZcucxnojkm

Zºd|Xšonhn¶egZ¡|3jklXsVhZeueuZ}‡ZmXcxne"!Zei|3jklXsVcup˜¯ƒpqšZlXsVYjbkZmXmXZq 

& À “Æ’ ¾ –(' ’[— \¥jkm@egsqšoZ‰}‡Z‰¬FjqeÄ)¯>n¶egZYZm@eV}‡Z¡hjkm‡ŽkZcfegnojqm,ÄdTy\©rLÄFÅiTVT+rLÄX…‰Çf^QÈ&Ä

|Xsuj>hZcucul‡c‰cxeujdh~UXpqcxeunoœ6lXZqÄ3|XsxjdhZcucxlXc‰|3jkmXheglXZš}XZ&rLjknocxcujkm¸Ä8nm6euZmXcxnecfegj>h~UFpqcfegnoœ6lXZƒÄ

}XZmXcxnecfe~pƒeunojkm‡mFpqnosxZqÄdh~UFpqmXŽkZY[Zm@ei}‡ZYZcxlXsuZƒ 

(6)

1 2 ˜" 43E"

TVUXZ<pqnY jq›SeuUXZ&|XsxZcxZm@e%|Fpq|3Zsinoc+egj[Žkn¯qZ<p[hjkY|XsuZUXZmXcxn¯qZ<YµpwegUXZYµpƒeunohpqš¸egsxZ1pƒef§

Y[Zm6e!jƒ›Vphšopqcuc!jq›«}Xn·8ZsxZm@egnopqšSZœ>lXpƒegnjkmXc%egUFpwe!h~UFpqsgpƒhegZsun65Z-egUXZ˜cfegZ1pƒ}‡b™cxegpƒegZ˜jq›

cujkYZ<egsupqmXcu|3jksfe|Xpqsxeun¢pqš}Xn·8ZsxZm@egnopqšSZœ6lFpwegnojqmXc87BrJÈ¡{tc9!pqcucxjdhn¢pƒeuZ} £+neuUeuUXZ˜}‡b@§

mFpqYnohc[jq›!Ty\©r ¬XjÆ£+c  ³®ZžZcxegpq°XšoncuUp´ŽkZmXZsunhžZœ6lFpƒeunojkm egUFpƒe‘hjkm@e~pƒnomXc[Y[jkcfe

›ŸZ1pƒeulXsuZcihjkmXcun}XZsxZ}QnomegUXZ!šon¶egZsgpƒeulXsuZƒ¦E|3ZsxcuncxegZm@e¡pqm‡}±mXjkm$|3ZsucxnocfegZm@ey¬Fj£+cÄ3sgpƒeuZ

}XZ|3ZmX}‡Zm@e+pqmX}[sgpƒeuZ‰nmX}XZ|3Zm‡}XZm@e©šjkcucxZcÄXpqcE£¥Zšoš3pqc«euUXZ‰hpqcuZy£+neuUµcušj£cxegpqsxe©pqmX}

egnoYZjql‡egc 

TVU‡Z›Ÿjkššoj£+nom‡Ž&jksx}XnomFpƒsxb‘}‡n·8ZsuZm@egn¢pƒš,Zœ6lFpƒeunojkm:7B]!ȉ{,9¥£¥pqcyhjkmXcxno}XZsuZ}Qnm:;„=<

df(z)

dz = β(4zf(2z)zf(z)), z 0, 7f‹>9

£+negU

β >0 TVUXnoct]!ȉ{´suZ|XsuZcuZm6eucEeuUXZ©egU‡sujklXŽqUX|Xl‡eJ}XZmXcun¶e¤b<jq›8p¡Ty\©r®hjkmXmXZheunojkm nomcxe~pwegnocfegnh1pqšFZœ>l‡nošon°XsunlXY£+U‡Zmpsxjkl‡euZsE}Xsujk|‡c¥neucJ|Fpqh~ªqZegc©£+n¶egUhjkmXcfe~pqm@eV|‡sujk°FpƧ

°Xnošne¤b

β tTVUXZ!sgpƒeuZ!pƒeV£+UXnoh~U$neuc©|Fpqh~ªƒZeuc¡pqsxZ%}Xsujk|‡|8Z}$nc

β eunoYZc¥euUXZ%egUXsxjklXŽkUX|‡l‡e cuj£¥Z-hpqšoš'7f‹>9ysgpƒeuZ§¤}‡Z|3ZmX}XZm@e1 @?«bQegUXZ-hjkmXŽkZcxeunojkm hjkm@egsujqšSY[Zh~UFpqmXncuY jq›ETy\©r

;܈<8egUXncVnocVpƒšocuj<euUXZ%sgpwegZ%pƒeV£+U‡noh~UegUXZ¡euUXsujqlXŽkUX|Xlde+noc©hl‡e+nomUFpƒš›É STVUXZ%›ŸlXm‡hegnjkm

f

suZ|‡suZcxZm@egcyegUXZ!}XZmXcun¶e¤bjq›LegsupqmXcuYnocxcunjkmsgpƒeuZc+nomcfe~pƒeunocxeunohpqš¸Zœ>l‡nošon°XsunlXY$ 

TVU‡Z¥nom@eulXneunojkm%ncpƒcL›Ÿjkššoj£+c TVUXZ«|Xsujq|8jksfegnjkm!jq›‡euUXZEeuUXsujqlXŽkUX|Xldegcnm&pƒmnm6euZsf¯qpƒš

[z, z+dz]noc¥pq|X|Xsxj1º‡nYµpwegZš¶b

f(x)dx tTVUXZcuZ%culd·¸ZsVp&šojqcuc©pwe+p&sgpwegZ

βz pqm‡}‘UXZm‡hZ egUXZ©supƒegZ¥pƒeS£+UXnh~U-YµpƒcucSšZ1p1¯kZcegUXZ¥nom@egZsx¯ƒpqš

[z, z+dz]noc βzf(z)dz pq|X|‡suj1ºdnoY[pƒegZšbk 

^±pqcuc‰Zm@egZsuc‰euUXnocynom@egZsx¯ƒpqšL°8Zh1pql‡cuZ<jq›SšojkcxcuZc‰pqYjkmXŽ[euUXsujqlXŽkUX|Xldegc‰nmQeuUXZ&nm6euZsf¯qpƒš

[2z,2(z+dz)]pƒesgpƒeuZ β2zf(2z)·2dz pq|X|‡suj1ºdnoY[pƒegZšbk ^±pqcxctpqšcuj¡Zm6euZsxctpqmX}-šZ1p1¯kZc egUXZ‘nm@egZsf¯ƒpqš«°3ZhpqlXcxZjq›VegUXZµšonom‡Z1pqsnomXhsuZpqcuZ‘nm®egU‡ZµegsupqmXcuYnocxcunjkm®supƒegZc-pqmX}®euUXZ

sgpƒeuZijq›h~UXpqmXŽkZijq›egUXZiYµpƒcuc¥nm

[z, z+dz] nc¥pƒ|X|Xsuj1ºdnoY[pƒeuZšb

df(z)

dz dz J{tœ6lFpƒegnjkmA7ɋ>9 noc©egU‡ZhjksusxZcx|8jkm‡}XnomXŽ˜°Fpƒš¢pqmXhZ%Zœ6lFpƒeunojkm¸ 

TVU‡ZcuZ+Zœ>lXpƒegnjkmXcJpqšcuj¡hjkY[Z¥lX|˜nom&euUXZVZœ6lXnšono°‡sunol‡Y }Xnocfegsun°Xl‡eunojkmjq›=egUXZ©£«ZnŽkU@egc

jq›«p|3jk|Xl‡š¢pƒeunojkmžjƒ›«hZššoc%cunmXhZ<euUXZ-£¥ZnoŽkU@eucŽqsuj£ÃšnomXZpqsuš¶b$lXm@egnošY[n¶egjkcxnocihl‡euc!euUXZ

£¥ZnoŽkU@eynomUFpƒš›'7:cuZZB;¶‹<C9 

TVU‡Z›Ÿjkššoj£+nom‡Ž‘cujkšl‡egnjkm jq›D7f‹>9i£¥pqcjk°‡egpqnomXZ}™°6b™nmXcu|3Zhegnjkm™nomE;æ„<JpqmX}lXcunmXŽ

^QZššonom[egsgpƒmXcx›ŸjksxY[cVnmF;܁<B¦

f(z) = 2φp βX

n≥0

ane(β24n)z2

(7)

£+negU

φ= Q

k≥1(12−2k+1)1pqmX}%£+neuU

a0 = 1pƒmX} an= (1)n Yn k=1

4 (4k1)

 

TVU‡Z©pqcxcuj>hn¢pwegZ}egsupqmXcunZm@eZœ6lFpƒeunojkmnocegUXZE›ŸjkšošjÆ£+nmXŽVmXjkm>§¤šoj>h1pƒškegsgpƒmXcu|3jksxerJÈ¡{V¦

α

∂tf(t, z) +

∂zf(t, z) =β(4zf(t,2z)zf(t, z)), z, t0.

TVUXnocrJÈ¡{ UFpqc‘°3ZZmŽkZm‡Zsgpƒšon 5Z} nm cuZ¯kZsgpqš%}XnsuZhegnjkmXc  Ǥm|FpqsfegnohlXš¢pƒs;‚=<iUFpqc

hjkmXcxno}XZsuZ}[egU‡nocJZœ6lFpƒeunojkm˜£+neuU

4zf(t,2z)zf(t, z) sxZ|XšopqhZ}µ°@b

2b(2z)f(t,2z) b(z)f(t, z) £+U‡ZsuZ b(z) noc[p´ŽkZmXZsupqšV›ŸlXmXheunojkm¸ TVUXZžZºdncxegZmXhZQjq›!pcujkšl‡egnjkmëpƒc

£¥ZšošEpqceuUXZµZÞºd|8jkm‡Zm@egnopqšJsgpƒeuZ[jq›©hjkm@¯kZsuŽkZmXhZjƒ›©egUXZ[cujkšl‡egnjkm egj$egUXZµpqcucxjdhn¢pƒeuZ}

Zœ6lXnošno°XsxnolXY ]%È¡{ pƒsuZcuUXj£+m,  z+Z›ŸZsxZmXhZc˜egjsuZš¢pƒeuZ}Ê£¥jqsuª²jkmïcul‡h~UëZœ6lFpwegnojqmXc

7Ÿ£+UXnh~U±pqsxZ%jq› egZmQsxZ›ŸZsusuZ}$eujpqcV›ŸsgpqŽkYZm@egpƒegnjkmZœ6lFpƒeunojkm‡c9©pqsxZŽqn¯kZm, 

ǤmegU‡ZsupƒegZÞ§¤nmX}XZ|3Zm‡}XZm@eyh1pqcxZ!jq›;æ><BÄXegUXZ]%È¡{ënc

df(z)

dz = β(2f(2z)f(z)), z 0, 7Ԉ 9

£+negU

β >0 pqmX}neuc¥cxjkšol‡eunojkm 7:jk°de~pqnmXZ}‘°@b‘^QZššonm[egsupqmXcf›ŸjksuYc¥nmZYYµp&ˆ ;܁><9Jnoc

f(z) = φβX

n≥0

ane−(β2n)z

£+negU

φ= Q

k≥1(12−k)−1 pqmX}£+neuU

an= (1)n Yn k=1

2 (2k1)

pqmX}

a0 = 1 

ǤmegUXZisgpƒeuZ§¨}XZ|3ZmX}‡Zm@e©hpqcuZƒÄdegU‡Z "$.&0&&%#.& $%FZœ6lFpƒeunojkm[nom@egsxjd}Xl‡hZ}[nom ; <8nc

df(z) dz =

Z 0

xf(x)dx δA(z)µzf(z) +βz(4f(2z)f(z))

£+UXZsxZ

δ 0Ä A nocip[|Xsxjk°Fpq°‡nošon¶e¤b‘}XZmXcun¶e¤b›ŸlXmXheunojkm¸Ä

µ 0 pƒmX} β > 0 +ÅiZsuZƒÄ3euUXZ hjkmXcfe~pqm@e

µ YZ1pƒculXsxZc©ZÞº‡jqŽkZmXjqlXcVšojkcxcuZc©£+UXnoh~UhpqlXcuZ¡euUXZ‰eusgpqmXcxY[ncucxnojkm[sgpƒeuZ‰egj-°3Z nomXcfe~pqm@e~pƒmXZjkl‡cušbµhl‡eVeuj@5ZsujXÄFšnoªqZiegnoYZjql‡egc©nm‘egUXZ%Ty\©r hjkm@egZÞº>eijqs¥egsupqmXcuYnocxcunjkm

hjkY|XšoZegnjkmXcJnom˜egUXZ‰ÅiTVT+r hjkm@euZº>e1 JTVUXZihjkmXcfe~pqm@e

δ YZ1pqcxlXsuZc«euUXZ‰supƒegZipƒeE£+UXnoh~U egsgpƒmXcuYnocxcunojqmsgpƒeuZcnomXcfe~pqm@egpqmXZjqlXcuš¶bnomXhsuZpqcuZ ›ŸsujqY Š‡Äi£+U‡ZsuZ™egU‡ZnmXhsxZ1pqcxZ™UFpqc

}XZmXcxne¤b

A  TVU‡nocµnc‘p®cxnoY|XšonFZ}ïsuZ|XsuZcuZm6egpƒegnjkmjq›¡euUXZžcxšoj£©§¤cfe~pqsfe‘YZh~UFpqm‡nocuY pƒ›egZs+p˜eunoYZjkl‡e+jqs+p˜eusgpqmXcxY[ncucxnojkmhjkY[|‡šoZeunojkmF7ŸcuZZ ; <C9 ETVUXZhpqcuZ!£+neuU

δ = 0 noc

(8)

egUFpƒe«£+UXZsxZ‰egU‡ZsuZ‰nocEmXj<cušj£ cxe~pƒsxe1  ; <8|Xsuj¯>no}‡Zc¥euUXZ‰}XZmXcun¶e¤bµcxjkšoldegnojqm[£+UXZm

δ = 0

pqmX}egUXZ!YZ1pqm¯ƒpqšlXZ¡›Ÿjks+pqšš

δ0 lXcunmXŽ[^QZššonm‘egsgpƒmXcx›ŸjksxY[c 

ǤmegUXZy|XsxZcuZm@eV|Fpq|3ZsÄ6£«Z‰hjkmXcxno}XZsEeuUXZiYjksxZyŽqZmXZsgpqš "$.&0&&%.& $%XZœ6lFpƒegnjkm

£+UXnoh~UQpqšošj£+c©Y[jqsuZ%ŽkZmXZsupqšsgpƒeuZ§¨}XZ|3ZmX}‡ZmXhZc

df(z)

dz = δT(f)A(z)µzγ−1f(z) +βzγ−1γf(ρz)f(z)), z 0, 7:„ 9

£+UXZsxZ

δ 0Ä T(f) =R

0 zγ−1f(z)dzÄ A ncyp[|Xsxjk°Fpq°Xnšon¶e¤b‘}XZmXcun¶e¤b$›Ÿl‡mXheunojkm£+neuU

R

0 A(z)dz = 1Ä µ 0Ä γ 1Ä β 0Ä ρ > 1ÄpqmX} µ+β >0 %TVU‡Z˜pqcucxjdhn¢pƒeuZ}

egsgpƒmXcu|3jksxeyrJÈ¡{ ncV}XZ XmXZ}QnomegUXZ!cupqY[Z¡£¥p1bk 

TVU‡sujklXŽqUXjkl‡e©euUXZ¡sxZcxe©jq›egUXnc©|Fpq|3ZsÄd£«Z¡šoj>jkª-›Ÿjks¥p&cujkšl‡egnjkm

f(z) jq›,7B„ 9t£+UXnoh~U noc<pž}‡ZmXcxne¤b´culXh~U egUFpwe

T(f) noc FmXneuZq ž³´Z‘Žkn¶¯kZp±}‡nosuZhe-|‡suj>jq›VegUFpwe&egU‡ZsuZnc<p lXmXnoœ6lXZi}XZm‡cune¤bcxjkš¯>nom‡Ž7B„ 9Epqm‡}µ£¥ZiŽkn¯qZ‰hšojkcxZ}µ›ŸjksxYZºd|XsxZcucxnojkm‡c©›ŸjksEeuUXnocE}XZmXcun¶e¤b

pqmX}neucVY[Zpqm¯qpƒšolXZƒ 

Ǥm@euZŽksupƒegnmXŽ 7B„ 9«›ŸsxjkY 5Zsuj˜egj˜nm FmXn¶e¤b‘Žkn¶¯kZc

f(0) = (µδ)T(f) 0 jks µ δ

7:cunmXhZ!egU‡ZsuZZºdncxegc‰pcxlX°XcxZœ6lXZm‡hZ

zk → ∞ cul‡h~U±egUFpwe

znlim→∞f(zn) = 0 cunmXhZ f noc

nom@egZŽksgpq°‡šoZ 9Þ 

TVU‡Zcx|8Zhn¢pƒš,h1pqcxZ£+n¶egU

δ=µ= 0ÄXmFpƒY[Zšb

df(z)

dz = βzγ−1γf(ρz)f(z)), z 0, 7 9

£+nošoš°3Zh1pqššoZ}egU‡Z&|3ZsucxnocfegZm@e‰Zœ6lFpƒeunojkm, +Ǩei}XZcxhsxno°3Zc%p|8ZsucuncxeuZm@e¡cxjklXsuhZ&nm±hjqmd§

ŽkZcfegnojqm˜p¯qjkno}XpqmXhZ©£+n¶egUXjql‡etcušj£©§¤cxegpqsxetpqmX}-£+UXZsxZ©egUXZVsupƒegZV}‡Z|3ZmX}XZmXhZynoc|Xsujk|3jksɧ

egnojqmFpqš8euj

zγ−1 tTVUXZ|3ZsxcuncxegZm@eiZœ6lFpƒegnjkmnomXhšolX}‡Zc7f‹>9©pƒmX}:7Ԉ 9©pqc+cx|8Zhn¢pƒšh1pqcxZc  Ǥm™egU‡Zm‡Zº>ecuZhegnjkm,Ä£¥Zcul‡Y[Y[pqsun65Z&euUXZ-e¤£¥j$Y[pqnomžsxZcxlXšeucjƒ›«euUXnoc%|Fpƒ|8Zs ˜…

}XZegpqnošZ} |Xsuj>jq›inoc˜Žkn¶¯kZm nomÊegU‡Z$›Ÿjkššoj£+nom‡Ž±e¤£¥j´cuZhegnjkmXc   nmFpqšoš¶bkÄt£«ZQcfeglX}‡bÊeuUXZ

pqcucxjdhn¢pƒeuZ}$rJÈ¡{V 

¹*+"L

Ze Γ(t) =R

0 xt−1e−xdx }XZm‡jqegZ{tlXšoZs cpqYY[p&›ŸlXmXheunojkm¸ tTVUXZ›Ÿjqšošoj£+nmXŽ&egU‡Z§

jksuZY¹culXYY[pqsun65Zc¥jklXs+suZculXš¶egc+jkmegUXZ!|3ZsxcunocfegZm6e‰]%È¡{ 7

(9)

¼>À ” ¼

γ 1 ρ >1 β >0 %$.* $ . .& &% @ %) %#B

f(z) = γ β

γ 1/γ

1 Γ (1/γ)

Y

k≥0

1 (1θ−k−1/γ)

X

n≥0

bneβγθnzγ, 7B 9

$.&.

θ =ργ b0 = 1 ! bn = (1)n Yn k=1

θ k1).

$. bn!0. %$. . &).& $% %$.@. "! &)

Y

k≥0

(1θ−kx) = X

n≥0

bnxn.

$. . ! ! $.*% .& &%

Z 0

zf(z)dz = β

γ

−1/γ Γ (2/γ)Q

k≥0(1θ−k−2/γ) Γ (1/γ)Q

k≥0(1θ−k−1/γ). 7:‚ 9

TVU‡Z›Ÿjkššoj£+nom‡Ž&egUXZjksuZY culXYY[pqsun65ZcVjqlXs+suZcxlXšeuc+jkm$euUXZmXjkmd§¨|8ZsucuncxeuZm@e‰]!ȉ{

7B„ 9Þ¦

¼>À ” ¼ .&%

γ 1 ρ > 1 µ δ 0 β 0 µ+β > 0 ! A &.

.& &%&4%!%

Z 0

A(z)e(µ+β)γ zγdz < . 7 9

$.& %$. $$. .& &%@ %() A%#! " %$. &%)

f(z) = 1

X

n≥0

β µ+β

n

bndn(z)e(β+µγ )θnzγ 7 # 9

%

dn(z) = X

m≥0

cm

δZ θ(n+m)γ z 0

Am(x)dx+ (µδ)

cm =

β µ+β

m mY

i=1

1 1θ−i

!

Am(x) = A(x)eµ+βγ θ−mxγ.

(10)

$. &%! $%

C B! . "B%# &..& &% 8

C = 1

γ2 Y

k0

1 β

µ+βθ−k−1/γ X

m≥0

cm

δ

Z 0

Am(x) Z

xγm

B1(u)du dx+ (µδ)D(1)

%

Bl(u) = e(µ+β)γ u u1−l/γ D(l) =

µ+β γ

−l/γ

Γ l

γ

.

$. . ! :

f(z)

Z 0

zf(z)dz = Q

k≥0

1θ−k−2/γβ+µβ Q

k≥0

1θ−k−1/γβ+µβ X

m≥0

cm

δ

Z 0

Am(x) Z

xγm

B2(u)du dx+ (µδ)D(2)

X

m≥0

cm

δ

Z 0

Am(x) Z

xγm

B1(u)du dx+ (µδ)D(1) .

…ic¡£¥Z-cxUFpqššcuZZ˜š¢pƒeuZsÄ3›Ÿjks¡°3jqegUžeuUXZ-|3ZsucxnocfegZm@epqm‡}žegUXZ-mXjqmd§¤|3ZsxcunocfegZm6e!hpqcuZƒÄ

egUXZ!cujqšol‡eunojkmjq›egUXZsgpƒeuZ§¨}XZ|3ZmX}‡Zm@e‰hpqcuZh1pƒmžpqheglFpqššbµ°8Z!°XlXnšeV›ŸsxjkYegUXpƒeyjq›euUXZ

sgpƒeuZ§¤nmX}XZ|8ZmX}XZm@e!hpqcuZ˜°@b™p‘YZsuZ-h~UXpqmXŽkZ˜jq›EYZ1pqcxlXsuZƒ <Ǩe!noc‰£+U@bž£«Z˜cxegpqsxe%£+n¶egU

egUXZ!š¢pweuegZs©h1pƒcuZ°8Zšoj£! 

* %"*

2 *V *+ *+-"`*

γ = 1

Ǥm$euUXZ!sgpƒeuZ§¤nmX}XZ|8ZmX}XZm@eyh1pƒcuZqÄ 7:„ 9¥nocVŽqn¯kZmQ°@b

df(z)

dz = δA(z)µf(z) +β(θf(θz)f(z)), z 0, 7:Œ 9

(11)

£+UXZsxZ

θ >1 7ŸcunmXhZ%£«Zšjdjkª˜›Ÿjks+p-}XZmXcun¶e¤bkÄ

T(f) =R

0 f(z)dz = 19Þ 

^$lXšeuno|Xš¶bdnmXŽ 7:Œ 9[°@b

exp(sz) pqmX} nom@egZŽksgpwegnom‡Ž²›ŸsujkY 5Zsuj egj

Žkn¯qZc‘egU‡Z

›ŸjkšošjÆ£+nmXŽ<ZÞº‡|‡suZcxcunjkm$›Ÿjqs©egUXZ pq|XšopqhZ¡eusgpqmXcf›ŸjksuY

f(s)b ¦ sf(s)b f(0) = δA(s)b µf(s) +b β

fbs θ

fb(s)

;

egUFpƒe+nc

fb(s) = f(0) +δA(s)b

µ+β+s + β

µ+β+sfbs θ

£+UXZsxZ

AbnocSeuUXZ pq|‡š¢pqhZ+eusgpqm‡cx›ŸjksxY jq›¸euUXZy}XZmXcxne¤b

A  ?«b˜n¶egZsupƒegnjkm-net›Ÿjqšošoj£+cSeuUFpƒe

f(s) =b XN

n=0

βn Qn

k=0+β+s/θk) ·

f(0) +δAb s θn

+ YN n=0

β µ+β+s/θk

fb s θN+1

.

µ = δ = 0!

Ǥm$euUXZ!|8ZsucuncxeuZm@eyh1pqcxZqÄ=šoZeuegnmXŽ

N euZmX}$egj˜nom XmXne¤bqć£¥Z!ŽkZe

f(s) =b Y

k≥0

β

β+s/θk ·fb(0)

= Y

k≥0

β β+s/θk

7f‹1Š 9

£+negU

f(0) =b R

0 f(z)dz = 1 

³´Z‘sxZY[pqsuªžeuUFpƒe

fbnoc!egUXZpq|‡š¢pqhZeusgpqmXcf›ŸjksuY jƒ›yp±culXY jq›VnmX}XZ|8ZmX}XZm@e-ŽqZ§

jkY[Zegsxnoh<supqmX}XjkY ¯ƒpqsunopq°XšoZc

Ek

£+n¶egU™|FpqsupqYZegZs

βθk  jqeuZ<egUFpƒe%euUXZ˜culXY`jq›«euUXZ Y[ZpqmXc P

k≥0θ−k/β < cujegUXncµsgpƒmX}XjkY ¯ƒpqsxn¢pq°XšZZºdnocfegc‘pƒmX}ëUFpƒc‘p®|3jkcun¶egn¶¯kZ }XZmXcxne¤bq 

³´Z%egU6lXcyUFp1¯kZp˜cujkšl‡egnjkm‘›Ÿjks 7Ԉ!9«£+negU

θ= 2 JTVUXZ]!ȉ{ënoc

df(z)

dz = β(θf(θz)f(z)), z 0. 7ɋk‹>9

(12)

TVU‡Zcxjkšol‡eunojkmhpqm$pqšocxj˜°8Z%›ŸjklXm‡}$°@beuUXZ^QZššonom[egsgpƒmXcx›ŸjksxY pqc+nom ;æ<B¦

f(z) = ψβX

n≥0

bne−(βθn)z 7f‹ˆ 9

£+negU

ψ = Y

k≥1

(1θ−k)

!−1

.

³´Z!h1pqm$h~UXZh~ªeuUXnocVnm@¯kZsxcunjkm°6bhpqšohlXš¢pwegnom‡Ž&egUXZ pq|XšopqhZ¡eusgpqm‡cx›ŸjksxYjq›'7f‹Æˆ!9¦

ψβX

n≥0

bn

Z 0

e−uze−(βθn)zdz = ψβX

n≥0

bn

u+βθn.

TVUXZ<suZcun}XlXZ<jq›teuUXZ<|3jkšoZ

βθn nc ψβbn

 %TVUXZ<sxZcun}XlXZ<jƒ›

fbŽkn¯qZm °@b/7f‹Š 9ypƒe‰euUXZ

|8jkšZ

βθn noc

βθn

n−1Y

k=0

βθk βθkβθn

Y

k≥n+1

βθk βθkβθn

= βθn

n−1Y

k=0

1 1θn−k

Y

k≥n+1

θk−n θk−n1

= β Yn k=1

θ 1θk

Y

k≥1

θk θk1

= β·bn·ψ.

TVU>l‡cy£«Z!cuZZ!egU‡Z pq|‡š¢pqhZ¡egsgpƒmXcx›ŸjksxY¹jq›

f nocVnmX}XZZ}/7ɋŠ 9Þ 

µ > δ 0!

ZeueunomXŽ

N → ∞ £«ZŽqZe

f(s) =b X

n≥0

βn Qn

k=0+β+s/θk)

f(0) +δAb s θn

7f‹„ 9

= X

n≥0

1 δ

µ+ δ µAb s

θn 1 β µ+β

β µ+β

n nY

k=0

µ+β µ+β+s/θk.

(13)

Ǥm 7BŒ 9-£¥ZQh1pqm }‡Z FmXZ±nomX}XZ|8ZmX}XZm6e‘sgpqmX}‡jkY ¯qpƒsun¢pƒ°XšoZc

V Ä Ek, k = 0,1, . . .Ä N pqmX} X £+UXZsuZ V UFpqc-}‡ZmXcxne¤b

AÄtegUXZ Ek

c˜pqsuZZÞºd|8jkm‡Zm@egnopqš«£+n¶egUÊ|FpqsupqYZegZs

+β)θkÄ N nocyŽkZjkYZeusunh£+n¶egU

P(N = n) =

1µ+ββ β µ+β

n

pqmX}

X e~pqªƒZc

egUXZ‰¯ƒpqšlXZc

0jks 1 £+negU|‡sujk°Fpƒ°XnošnegnZc

(1δ/µ) pqmX} δ/µ ?«bµnmXcu|3Zhegnjkm,Ä

fbnoc«euUXZ

Lpƒ|Xš¢pqhZ¡egsupqmXcx›ŸjqsuY

Eexp(sW) jq›LegUXZ!sgpƒmX}XjkY¯ƒpqsxn¢pq°‡šoZ

W = (1X) XN n=0

En + X V θN +

XN n=0

En

! .

³®ZUFp1¯kZegUXZsuZ›ŸjqsuZZcxegpq°XšnocuU‡Z}egUXZZºdnocfegZm‡hZ<pƒmX}Ql‡mXnoœ6lXZmXZcxc¡jq›tp˜}XZmXcun¶e¤bQcxjkšol>§

egnojqm‘egj 7BŒ 9Þ 

³´Zh1pqm$h1pqšhlXšopƒegZ¡euUXZnom@¯kZsucuZjq›egUXZ pq|XšopqhZ%egsupqmXcf›ŸjksuY¹Žqn¯kZm±pwe7ɋ„ 9Þ   nsucfe

suZY[pqsxª[egUXpƒeVegUXZ!}XZmXcun¶e¤bŽkn¯>nmXŽ<egUXZ%eusgpqmXcf›ŸjksuY

Yn k=0

µ+β µ+β+s/θk

h1pqm$°8Z¡£+sxnexegZmQpqc

gn(z) = Xn k=0

dk,nexp(+β)θkz) £+UXZsxZ

dk,n = (µ+β) bk n−kY

i=1

1 1θ−i

£+n¶egU

Y0 i=1

1

1θ−i = 1.

TVUXnocVUXjqšo}Xc+°3Zh1pƒlXcuZ!egUXZ¡eusgpqm‡cx›ŸjksxY¹jq›

Xn k=0

dk,nexp(+β)θkz) nc

Xn k=0

dk,n

1 +β)θk+s

(14)

£+UXZsxZ

dk,n

pqsuZ¡›Ÿjkl‡mX}Q°@bl‡cunom‡Ž

dk,n = (µ+β)θk

k−1Y

i=0

+β)θi +β)θi+β)θk

Yn

i=k+1

+β)θi +β)θi+β)θk

= (µ+β)θk

k−1Y

i=0

1 1θk−i

Yn

i=k+1

θi−k θi−k1

= (µ+β) Yk i=1

θ 1θi

n−kY

i=1

θi θi1

.

Ze

(·)}XZmXjqegZ+egU‡ZiYZ1pqcxlXsuZ

1 δµ

δ0(dx) +δµA(x)dx STVUXZy}XZmXcxne¤bjq›3egUXZ

¯qpƒsun¢pƒ°XšoZ

W pƒe yÄXhjqmX}Xneunojkm‡Z}jkm

N =nÄFnocVŽkn¶¯kZm$°@b

Z θny 0

gn

y x θn

(dx) =

Z θny 0

Xn k=0

dk,ne−(µ+β)θk(y−θnx )(dx)

= Xn k=0

dk,ne−(µ+β)θky Z θny

0

e(µ+β)x/θn−k(dx).

jqegZ%euUFpƒeVegU‡Zpƒ°8j¯kZ!nm6euZŽksupqš,ZÞº‡ncxeuci°@b‘euUXZpqcucxlXY[|degnojqm 7 9ćnÔ Zq ¶Ä

R

0 e(µ+β)zA(z)dz <   j£)culXYY[nmXŽ‘j¯kZs

n £«Z-UFp1¯kZ-egUXZ-}‡ZmXcxne¤b±›Ÿjqs

W

pƒe y¦ X

n≥0

1 β µ+β

β µ+β

nXn k=0

dk,ne−(µ+β)θky Z θny

0

e(µ+β)x/θn−k(dx)

= X

k≥0

+β)bk

1 β µ+β

β µ+β

k

e−(µ+β)θky

·X

n≥k

β µ+β

n−k n−kY

i=1

1 1θ−i

! Z θny 0

e(µ+β)x/θn−k(dx)

= X

k≥0

+β)bk

1 β µ+β

β µ+β

k

e−(µ+β)θky

·X

m≥0

β µ+β

m Ym i=1

1 1θ−i

! Z θk+my 0

e(µ+β)x/θm(dx).

(15)

* %"* *V *+ *+-"`*

γ > 1

µ = δ = 0!

ȉZ Fm‡Z

h egj°8Z!p˜}XZm‡cune¤b‘cujkšl‡egnjkmjq›'7f‹k‹>9«£+n¶egU

β sxZ|XšopqhZ}Q°@b

β/γ cuj h(z) = ψβ

γ X

n≥0

bne(βγθn)z. 7f‹ 9

Zº>eÄX›Ÿjks+pqšoš¸|8jkcxneun¯kZ%hjkmXcfe~pqm@egc

CÄ f(z) =C−1h(zγ) cgpƒeunoc FZc df(z)

dz = C−1dh(zγ) dz

= C−1γzγ−1β

γ (θh(θzγ)h(zγ))

= C−1βzγ−1γh((ρz)γ)h(zγ)) £+U‡ZsuZ ργ =θ

= βzγ−1γf(ρz)f(z)).

adj˜n›LjkmXZ%e~pƒªqZc

C cxlXh~UQeuUFpƒe R

0 f(z)dz = 1ćeuUXZm f noc©p˜}‡ZmXcxne¤b‘£+UXnh~UQcupƒegnc FZc 7 9Þ 

³´Z<hpqmžlXmX}‡Zsucfe~pqm‡}™euUXnocyegsupqmXcx›ŸjqsuY[pƒegnjkm±pƒc%pµh~UFpqm‡ŽkZ<jq›JYZ1pqcxlXsuZƒ  Ze

I °3Z

pžsgpqmX}‡jkY ¯ƒpqsxn¢pq°‡šoZ˜£+negUÊ}‡nocxeusun°Xl‡egnjkm

h Žkn¯qZmÊ°@b 7ɋ 9Þ ™³´Z‘mXjƒegZ‘egUXpƒe<›Ÿjks&pqm@b

°8jkl‡mX}XZ}›ŸlXmXhegnjkm

φÄ 1 CE

φ(I1/γ) γI1−1/γ

= 1 C

Z 0

φ(z1/γ) 1

γz1−1/γh(z)dz

= 1 C

Z 0

φ(w)h(wγ)dw

= Z

0

φ(w)f(w)dw

= E[φ(J)],

£+UXZsxZ

J nc+psupqmX}XjkY ¯ƒpqsunopq°XšoZi£+negU$p-}XZmXcun¶e¤bŽkn¯qZm°@b

f(z) 

(16)

³´Z!h1pqm$lXcxZ!euUXnoc+h~UFpƒmXŽkZ!jq›Y[ZpqculXsxZ%egj˜hjkY|Xl‡euZ%egUXZ%mXjqsuY[pqšon65nom‡Ž&hjqmXcxegpqm@e1¦

C = E 1

γI1−1/γ

= 1 γ

Z 0

1

z1−1/γh(z)dz

= ψβ γ2

X

n≥0

bn

Z 0

1 z1−1/γ exp

β γθnz

dz

= ψ γ

X

n≥0

bn

1 θn

γ βθn

1/γ−1Z 0

v1/γ−1exp(v)dv

= ψ γ

γ β

1/γ−1

Γ 1

γ X

n≥0

bn

1 θ1/γ

n

= ψ γ

β γ

1−1/γ

Γ 1

γ Y

k≥0

(1θ−k−1/γ).

ÅiZm‡hZ 7ԁ 9SnocEp!}XZm‡cune¤bcxjkšol‡eunojkm<euj 7 9 ?«bpcxnoYnošopqsSpqsxŽklXYZm@e1Ä@egpqª6nomXŽ

φ(I) =IÄ

£¥Z!ŽkZeyeuUFpƒeVeuUXZ!Y[Zpqm¯qpƒšolXZ%jq›

f noc Z

0

zf(z)dz = E[I2/γ−1]

= 1

Z

0

z2/γ−1h(z)dz

= ψβ 2

X

n≥0

bn

Z 0

z2/γ−1exp(β

γθnz)dz

= ψ

X

n≥0

bn 1 θn

γ βθn

2/γ−1Z 0

v2/γ1exp(v)dv

= ψ

γ

β

2/γ−1

Γ 2

γ X

n≥0

bn 1

θ2/γ n

= ψ

β

γ

12/γ

Γ 2

γ Y

k≥0

(1θ−k−2/γ).

Références

Documents relatifs

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France) Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334