• Aucun résultat trouvé

NUCLEUS-NUCLEUS POTENTIAL ; THEORETICAL ASPECTS IN THE 20-100 MeV/u RANGE

N/A
N/A
Protected

Academic year: 2021

Partager "NUCLEUS-NUCLEUS POTENTIAL ; THEORETICAL ASPECTS IN THE 20-100 MeV/u RANGE"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: jpa-00225781

https://hal.archives-ouvertes.fr/jpa-00225781

Submitted on 1 Jan 1986

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ASPECTS IN THE 20-100 MeV/u RANGE

A. Faessler, R. Linden, N. Ohtsuka, F. Malik

To cite this version:

A. Faessler, R. Linden, N. Ohtsuka, F. Malik. NUCLEUS-NUCLEUS POTENTIAL ; THEORET-

ICAL ASPECTS IN THE 20-100 MeV/u RANGE. Journal de Physique Colloques, 1986, 47 (C4),

pp.C4-111-C4-123. �10.1051/jphyscol:1986415�. �jpa-00225781�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, supplement au n o 8, Tome 47, aoiit 1986

NUCLEUS-NUCLEUS POTENTIAL ; THEORETICAL ASPECTS IN THE 20-100 MeV/u RANGE( 1 )

A. FAESSLER, R. LINDEN, N. OHTSUKA and F.B. MALIK +

Institut fiir Theoretische Physik der Universitat Tubingen, 0 - 7 4 0 0 Tubingen, F.R.G.

Abstract

-

The method developed by us previously f o r c a l c u l a t i n ~ the real a ~ d

-

imaginary part of the optical potential from the nucleon-nucleon (NN) inter- action i s extended and refined in several ways: ( i ) We request now ;elfcon- sistency so t h a t the same force (Reid s o f t core) determines the ground s t a t e properties of the two interacting nuclei including binding energies and mass d i s t r i b u t i o n s and also the optical potential. ( i i ) A Weizsacker l i k e surface term (0,)2 i s added, which cannot be determined in i n f i n i t e unclear matter.

( i i i ) We use f o r the density of the two i n t e r a c t i n g nuclei two limiting assumptions: In the sudden approximation the two d e n s i t i e s are added f o r each distance R of t h e two nuclei. In the a d i a b a t i c approach we do not allow t h a t the density gets l a r g e r than the saturation density. That means t h a t the total density adjusts optimally f o r each distance. The real and the imaginary p a r t of the energy per nucleon in two nuclear matters flowing throuqh each other i s shown a s a function of the density f o r d i f f e r e n t average r e l a t i v e k i n e t i c en- e r g i e s . The real an im inary parts o the sudden an adiabatic potentials

6 4

a r e given f o r ~ Z C + ~ C , fg0+160, 0°ca+4 Ca and 208pbt2 8 ~ b f o r differen bom- barding energies. E l a s t i c and i n e l a s t i c cross sections a r e given f o r JCt12C i n a coupled channel approach f o r ELab=300 and 1016 MeV.

I

-

INTRODUCTION

For describing the s c a t t e r i n g and the reactions between two nuclei the optical model i s always the s t a r t i n g point. Thus the heavy ion (HI) optical potential i s an essential quantity f o r HI nuclear physics. Therefore we have i n the past develooed a method how t o derive the real and imaginary part of t h e optical potential between h.ro nuclei from a r e a l i s t i c nucleon-nucleon (NN) interaction [I-81.

For the real part of the optical model already before our work a simple and trans- parent derivation had been achieved in the folding model [9]. How well such a folding model can reproduce the 12c+12c s c a t t e r i n g data with a phenomenolopical l y f i t t e d imaginary part has been shown f o r example by von Oertzen and coworkers [10,111.

In our approach [I-81 the s t a r t i n g point i s the c o l l i s i o n of two i n f i n i t e nuclear matters which flow through each other. F i r s t we solve the Bethe-Goldstone equation.

Since the sum of the Fermi spheres of the two interacting nuclear matters i s non- spherical the Bruckner reaction matrix gets complex. This reaction matrix allows t o calculate a complex energy density. With the help of a generalized local density approximation we are able t o calculate the real and imaginary part of the optical potential between two nuclei.

upport ported by the GSI-Darmstadt and the Deutsahe Forschungsgemeinschaft. F.R.C.

+permanent address : Dept. of Physics. University of Southern Illinois a t carbondale. IL 92902 Carbondale.

U.S.A.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986415

(3)

In the present contribution we extend and r e f i n e our previous approach [I-81 i n four ways: ( i ) We c a l c u l a t e the ground s t a t e properties of nuclei across the whole mass t a b l e with the same Y N force a s the optical p o t e n t i a l . Thus t h e same NN force determikes the mass d i s t r i b u t i o n of each nucleus and the interaction between the HI'S.

( i i ) We add t o the enerSy density a WeizsZcker l i k e surface term ( ~ p ) ' . Only with t h i s term we a r e able t o describe the nuclear mass d i s t r i b u t i o n s and the radii i n arreement with the data. ( i i i ) To c a l c u l a t e the density d i s t r i b u t i o n of the two in- teracting HI'S we use two limiting approaches: In the sudden approximation we add the two d e n s i t i e s and i n t h e adiabatic approach we allow t h a t the d e n s i t i e s a r e appro- ximately optimized s t a t i c a l l y f o r each distance R. ( i v ) We distinguish f o r the elas- t i c and i n e l a s t i c s c a t t e r i n g of two HI'S between the nuclear radius RN (obtained by f i t t i n g t h e real part of our optical potential by a Saxon-Woods p o t e n t i a l ) and the Coulomb radius ~ ~. z . A ' / ~ - 1 fm. W i t h B l a i r ' s scaling rule

BC RC = BN R N

t h i s y i e l d s also d i f f e r e n t deformations f o r t h e t r a n s i t i o n s .

The optical potential obtained i n t h i s way describes q u i t e well the experimental data 110-121 f o r t h e 12C

+

e l a s t i c and i n e l a s t i c s c a t t e r i n g .

In chapter 2 we give a very s h o r t survey of the theoretical description, while the r e s u l t s a r e presented in Chapter 3. Chapter 4 summarizes the main conclusions.

I1

-

THEORETICAL DESCRIPTION

The s t a r t i n g point f o r the calculation of the real and imaginary p a r t of the potential between two heavy ions i s t h e c o l l i s i o n of two i n f i n i t e nuclear matters.

They a r e flowing through each other. The i n t e r a c t i o n between the d i f f e r e n t nucleons i s taken i n t o account using the Bethe-Goldstone equation.

The reaction matrix < k i , k ; lG(W=ekl + E ~ kFl ~ ,kF2,kr) ;

I

kl,k2> depends on the momenta k l , k 2 of the two i n i t i a l nucleons and on t h e momenta of the two nucleons k i , k; in t h e intermediate s t a t e s . In addition i t depends on the s t a r t i n g energy W = € k l + €k2 and on the Fermi momenta k F l , k ~ 2 of t h e two Fermi spheres. The two Fermi momenta a r e connected with the local densities i n p r o j e c t i l e and t a r g e t .

The solution of t h e Bethe-Goldstone equation ( 2 ) i s complex since the energy denomi- nator

can have a pole due t o the non-sphericity of t h e two Fermi spheres. The Pauli opera- t o r f o r the two Fermi spheres allows intermediate energies c k i

+

~ k i which have the same values a s the s t a r t i n g energy W = ckl

+

E k 2 . I t i s obvious t h a t f o r only one i n f i n i t e nuclear matter corresponding t o a spherical Fermi sphere the intermediate

(4)

energy o f t h e two nucleons i s always l a r g e r than t h e s t a r t i n g energy W and thus one f i n d s t h e r e o n l y r e a l r e a c t i o n s m a t r i c e s G .

The t o t a l energy d e n s i t y f o r t h e c o l l i s i o n o f t h e two i n f i n i t e n u c l e a r matters nNM(;) = T ( ~ F ~ ( ; ) , k ~ ~ ( f ) . kr) + n(kF1(:). kF2(f). kr) ( 5 ) i s c a l c u l a t e d as t h e sum o f t h e t o t a l k i n e t i c energy d e n s i t y and t h e Hartree-Fock p o t e n t i a l energy.

4 + 2 3

T = I (k-k,) d k + + 4 ) / ( 2 m)

(2n) F

<k,, k2/~(kFl(i). k F 2 i i ) , kr, WIkl. kp>

The k i n e t i c energy d e n s i t y T(;) and t h e p o t e n t i a l energy d e n s i t y n(;) a r e c a l c u l a t e d by i n t e g r a t i n g over t h e content o f t h e two u n i t e d Fermi spheres and by summing over protons and neutrons w i t h s p i n up and s p i n down ( t h i s i s t h e f a c t o r 4). These energy d e n s i t i e s depend i n o r b i t a l space on

?

due t o t h e f a c t t h a t t h e Fermi momenta depend on l o c a l d e n s i t i e s p(;) as i n d i c a t e d i n eq.(3). The o p t i c a l model p o t e n t i a l can then be d e f i n e d as t h e energy o f two heavy i o n s obtained by i n t e g r a t i n g the energy density

(F)

o f eq.(5) over t h e two heavy i o n s a t d i s t a n c e R andsubtracting t h e correspon-

NM

d i n g value a t i n f i n i t y .

This expression depends n o t o n l y on t h e d i s t a n c e between t h e two heavy i o n s i n o r b i - t a l space b u t a l s o on t h e r e l a t i v e k i n e t i c energy represented by t h e average r e l a t i v e momentum p e r nucleon kr.

Ile have here added t o t h e nuclear m a t t e r energy d e n s i t y nNM(?. R) a surface c o r r - e c t i o n which i s s i m i l a r t o t h e Weizsacker s u r f a c e term [14] ( b u t has a s l i g h t l y d i f f - e r e n t d e n s i t y dependence). The parameter a = 8.30 fm has been a d j u s t e d t o reproduce 3 t h e experimental r o o t mean square r a d i i o f t h e n u c l e i (see below).

I t can be shown [ 4 ] t h a t expression ( 7 ) can be obtained approximately u s i n g t h e Feshbach expression [ I 3 1 f o r t h e H I o p t i c a l p o t e n t i a l .

V I @ )

u(R) = (+oIvrI@o) + ( @ o I v p Q E

-

QHQ + in QP p (8)

Here, t h e round brackets i n d i c a t e i n t e g r a t i o n over a1 1 v a r i a b l e s a p a r t o f t h e r e l a - t i v e d i s t a n c e R between t h e two heavy i o n s . @, i s t h e i n t r i n s i c w a v e f u n c t i o n o f t h e two heavy i o n s a t d i s t a n c e R w i t h o u t i n c l u s i o n o f t h e r e l a t i v e wavefunction. P pro- j e c t s on t h e two ground s t a t e s w h i l e Q includes a l l t h e o t h e r s t a t e s . Vr i s t h e r e - s i d u a l i n t e r a c t i o n between t h e nucleons i n heavy i o n one and i n heavy i o n two. I n using eq. (8) one must be aware t h a t i t i s n o t an exact expression since t h e space Q should n o t c o n t a i n break-up i n t o t h r e e fragments.

(5)

The numerical c a l c u l a t i o n proceeds now i n t h e way t h a t we choose a r e a l i s t i c nucleon-nucleon i n t e r a c t i o n ( R e i d - s o f t - c o r e - p o t e n t i a l ) and s o l v e f o r t h i s i n t e r a c t i o n V the Bethe-Goldstone eq.(2). The P a u l i o p e r a t o r i s d e f i n e d i n t h e angle averaged approximation. The complex r e a c t i o n m a t r i x

i s c a l c u l a t e d f o r t h e d e n s i t i e s p = 0.25 pO, 0.5 pO, 0.75 po, 1.00 p0...,2.5 p o and f o r t h e K = p / ( P +p ) Galues (pp,pT d e n s i t i e s i n the p r o j e c t i l e and t h e t a r g e t , res-

P P T

p e c t i v e l y ) K = 0, 1/8, 1/4, 3/8, 1/2 and t h e average r e l a t i v e momenta kr 0.5, 1.0, 1.5, 2.0, 2.5, 3 fm-l. For t h e s t a r t i n g energy we choose an averaged value

W

[2,3,4].

I n a d d i t i o n we t a b u l a t e t h e k i n e t i c energy d e n s i t y T and t h e p o t e n t i a l energy den- s i t i e s n ( 6 ) f o r d i f f e r e n t values o f p and kr. The average r e l a t i v e momentum kr i s determined by t h e bombarding energy o f t h e heavy i o n beam. The t o t a l d e n s i t y p i s taken i n each volume element u s i n g f o r b o t h heavy i o n s mass d e n s i t i e s determined from e l e c t r o n s c a t t e r i n g by s c a l i n g t h e charge d i s t r i b u t i o n A/Z. This d e n s i t y a l l o w s t o c a l c u l a t e t h e l o c a l k i n e t i c energy d e n s i t y 1151. With t h e h e l p o f p and T one can determine K . With t h e h e l p o f p and K one i n t e r p o l a t e s f o r a given r e l a t i v e average momentum kr t h e p o t e n t i a l energy d e n s i t y n(?). T and n determine t h e t o t a l energy d e n s i t y q(F). This energy d e n s i t y i s then i n t e g r a t e d f o r a given d i s t a n c e R between t h e two heavy ions t o o b t a i n t h e t o t a l energy E(kr,R) which determines according t o (7) t h e complex o p t i c a l p o t e n t i a l .

I n t h i s way one o b t a i n s t h e volume p a r t o f t h e H I o p t i c a l p o t e n t i a l b u t one can n o t i n c l u d e t h e surface v i b r a t i o n a l e x c i t a t i o n s . They can be handled i n two d i f f e r e n t ways: e i t h e r they a r e e x p l i c i t l y i n c l u d e d [ 4 ] i n t h e f i n i t e nucleus u s i n g t h e Fesh- bach expression ( 8 ) o r they a r e i n c l u d e d by e x p l i c i t l y t a k i n g t h e i n e l a s t i c s c a t t e r - i n g i n t o these s t a t e s i n t o account by the coupled channel approach.

I n t h e

+

s c a t t e r i n g i t t u r n e d o u t t o be enough t o i n c l u d e i n t h e coupled channel treatment the 2+(4.44 MeV) and 3-(9.64 MeV) s t a t e s . From B l a i r ' s s c a l i n g r u l e ( 1 ) and t h e reduced EX t r a n s i t i o n p r o b a b i l i t i e s we f i n d f o r t h e Coulomb and n u c l e a r deformation parameters :

~ ~

+

) (=

-

20.586 ~ ~ ( 2 ' ; 1016 MeV) =

-

0.418

BC(3-.) = 0.942 BN(3-; 1016 MeV) = 0.672

The n u c l e a r deformation parameters B~ vary s l i g h t l y w i t h t h e bombarding energy ( f o r example: EL = 1016 MeV), since o u r r e a l p a r t o f t h e 12c

+

o p t i c a l p o t e n t i a l de- pends on t h e energy.

I 1 1

-

RESULTS

From the energy d e n s i t y nNM i n n u c l e a r m a t t e r ( 5 ) one can e a s i l y c a l c u l a t e t h e energy p e r nucleon as a f u n c t i o n o f t h e d e n s i t y p f o r d i f f e r e n t average r e l a t i v e momenta o f a nucleon i n nuclear m a t t e r 1 and an average nucleon i n n u c l e a r m a t t e r 2.

The r e a l p a r t f o r d i f f e r e n t average r e l a t i v e momnta kr [ f m - l ] i s g i v e n i n F i g u r e 1.

For kr d i f f e r e n t f r o m zero one o b t a i n s a l s o an imaginary p a r t which i s shown i n FiGure 2

(6)

Fig. 1:

Real part of the energy per nucleon i n nuclear ma. t e r as a function of t h e density p in units of the satu- ration density p0 = 0.17 ~ I I I - ~ . The proton density i s equal t o the neu- tron density. The interaction i s the Reid-soft-core potential the energy per nucleon E / A i s obtained by dividing the energy density ( 5 ) by the density p . The d i f f e r e n t curves a r e f o r d i f f e r e n t average r e l a t i v e momenta hkr of a nucleon i n nuclear matter 1 r e l a t i v e t o a nucleon i n nuclear matter 2.

Fig. 2: Imaginary part of t h e t o t a l energy per nucleon as a function of t h e d e n s i t y p i n u n i t s o f t h e saturation density p O = O . 17 f ~ n - ~ . tlkris the ave- rage momentum of nucleon in nuclear matter 1 r e l a t i v e to a nucleon in nuclear matter 2.

The t o t a l energy density ( 5 ) i s calculated in nuclear matter and therefore does not contain any surface corrections. We therefore a r e adding ( 7 ) a Weizsacker surface correction term (vp12. The parameter a i s now adjusted by f i t t i n g in d i f f e r e n t nuclei the root mean square radius. We parametrize the nuclear mass d i s t r i b u t i o n by expres- sions used t o describe the charged d i s t r i b u t i o n in electron s c a t t e r i n g . [I71

p ( r ) = pO{1+ W

(-t

) 2 l / ( l + e x p [ ( r V - ~ & ) / a ~ l ) (10) R~~

(7)

To a l l o w a l s o f o r asymmetric n u c l e a r m a t t e r we add t o t h e energy d e n s i t y ( 5 ) a term

w i t h : cr = 8.30 fm 3 C = 90 MeV

We c a l c u l a t e now f o r d i f f e r e n t n u c l e i t h e t o t a l energy by i n t e g r a t i n g t h e eneroy d e n s i t y (11) w i t h t h e d e n s i t y (10) over the whole nucleus. The parameters a a n d C a r e then a d j u s t e d t o reproduce as good as p o s s i b l e the r o o t mean 'square r a d i i and t h e b i n d i n g energies of 12c, 160, 4 0 ~ a and *08pb. The r a d i u s parameter RWS i s v a r i e d t o minimize t h e energy f o r each nucleus. The r o o t mean square r a d i u s o b t a i n e d i n t h i s way agrees extremely w e l l w i t h t h e measured value (see Fig.3). TO perform t h i s c a l -

c u l a t i o n we assumed i n l ' ~ , 160 and 4 0 ~ a t h a t t h e p r o t o n and t h e neutron d e n s i t y a r e p r o p o r t i o n a l t o each o t h e r and a r e normalized t o Z and A - Z. Only f o r *08pb we scale t h e r a d i a l coordinate f o r the neutrons i n such a way t h a t r o o t mean square r a d i u s i s by 0.2 fm l a r g e r t h a n t h e r o o t mean square r a d i u s f o r t h e protons.

F i g . 3: Experimental b i n d i n g energy p e r nucleon and r o o t mean square r a - d i u s f o r 12c, 160,40~a and '08pb compared w i t h our t h e o r e t i c a l r e s u l t obtained by i n t e g r a t i n g energy den- s i t y (11) over t h e whole nucleus and m i n i m i z i n g t h i s energy as a f u n c t i o n o f t h e r a d i u s parameter RWSin eq. (10).

, O - - - - o ~ o

,--,--- - 6 - - - - - - _ _ _ _ ,

A Theory

0 Experiment

,

10 Lo 100 2M) MASS NUMBER A

To c a l c u l a t e the o p t i c a l p o t e n t i a l between two n u c l e i according t o eq. ( 7 ) we must know t h e d e n s i t y o f t h e two n u c l e i which are a p a r t by t h e d i s t a n c e R. We use here f o r the p r e s c r i p t i o n t o o b t a i n t h e d e n s i t y of the two i n t e r a c t i n g n u c l e i two I i m i t i n g recipes:

i n the sudden approach we j u s t add t h e d e n s i t y o f t h e f i r s t and t h e second nucleus.

I n t h e a d i a b a t i c approach we assume t h a t t h e two n u c l e i have a t each d i s t a n c e R

enough time t o r e a d j u s t t h e i r d e n s i t y d i s t r i b u t i o n . Thus we should c a l c u l a t e the den- s i t y d i s t r i b u t i o n o f t h e two i n t e r a c t i n g n u c l e i i n a s t a t i c two c e n t r e Hartree-Fock

(8)

approximation. To obtain t h i s adiabatic density d i s t r i b u t i o n of the t t I 1 s we use the followinq recipe: we assume t h a t the saturation density i s given by the maximum den- s i t y of the independent mass d i s t r i b u t i o n s of the two nuclei. As long a s the additive density of the two nuclei i s not l a r g e r than t h i s saturation density we j u s t add t h e two d e n s i t i e s . I f the additive density surpasses the saturation density we take as the limiting value the saturation density and s c a l e the s p a t i a l variables so t h a t the integral over the t o t a l density y i e l d s the sum of the mass numbers. I f one would take t h i s recipe l i t e r a l l y one would end up with a density which i s not smooth and has d i f f i c u l t i e s a t the distance R = 0. A smooth adiabatic t o t a l density i s obtained by the following prescription:

+ R

p p ( r + --; a I? ) f o r Z < -R/2

2 P P

+ R.

apRp) + ~ - ~ ( r

- 7 ,

aTRT);BI f o r -R/2 < Z c R/2 f o r Z > R/2

( 1 2 )

The scaling variables ap(R) f o r t h e p r o j e c t i l e and aT (R) f o r t h e t a r g e t a r e unity f o r distances l a r g e r than Ro f o r which the sum of the two densities p p

+

p T i s l e s s than the saturation density defined by the maximum of the s e p a r a t e d e n s i t i e s . A t sepa- ration R = 0 t h e Saxon-Woods radius parameter f o r the p r o j e c t i l e Rp and the Saxon- Woods radius parameter f o r the t a r g e t RT should be identical

Ye know therefore the r a t i o of the scaling parameters of the p r o j e c t i l e and the t a r - oet f o r distance R=O and f o r t h e c r i t i c a l distance Ro above which no scaling i s nec- essary.

I f we do a l i n e a r interpolation f o r the r a t i o 5 of the scaling parameters f o r the p r o j e c t i l e and t h e t a r g e t between the two values given in eq. (14) we obtain f o r t h i s r a t i o as a function of R:

c(R) = (1

-

i(0))R/RO + ~ ( 0 ) f o r 0 s R ,< RO

f o r R > RO (15) c(R) = 1

The absolute values of t h e scaling parameters a p ( R ) and aT(R) i s obtained from the normal ization.

(9)

Figure 4 and Figure 5 show the sudden and adiabatic mass d i s t r i b u t i o n f o r 12c +12c a t a distance R = 4 fm.

Fig. 4:

Sudden density d i s t r i b u t i o n of two 12c nuclei a t a distance R = 4 fm.

The l i n e s of equal density in the lower part a r e one tenth of the maximum density apart from each other.

Fig. 5:

Adiabatic density of 12c

+

a t a

Z [ f m l

distance of R = 4 fm. The lower p a r t

-4 0 4

shows equal density l i n e s which a r e 1 1 1 ) , 1 1 1

one tenth of the maximum density Adiabnt~c

-

apart of each other. The adiabatic -

density i s defined in eqs.(lZ) t o

(16). R12

(10)

We have s t u d i e d t h e sudden and the a d i a b a t i c o p t i c a l p o t e n t i a l f o r d i f f e r e n t k i n e t i c energies and d i f f e r e n t p a i r s o f n u c l e i 12c

+

"c, 160

+

160, 4 0 ~ a

+

4 0 ~ a and

2 0 8 ~ b

+

2 0 8 ~ b . To save space we show here o n l y t h e r e a l and the imaginary p a r t o f t h e o p t i c a l p o t e n t i a l f o r 12c

+

12c a t a l a b o r a t o r y energy EL = 300 MeV i n F i g u r e 6 and 7.

DISTANCE R l f m l

Fig. 6: o 2 4 6 8

Real p a r t o f the o p t i c a l p o t e n t i a l o f 12c on "C w i t h a l a b o r a t o r y

energy E L = 300 MeV i n t h e sudden - 2 0

-

-

and a d i a b a t i c l i m i t i n g case.

-

-

sudden -

- - - - ad~abatic

F i g . 7:

Imaginary p a r t o f t h e o p t i c a l p o t e n t i a l o f 12c on 12c w i t h a l a b o r a t o r y energy EL = 300 MeV f o r t h e sudden and adiaba- t i c approach.

- 8 0

I,, ,I- I “ I I I

/

/

yv

-100

DlSTANCE R f f m )

0 2 4 6 8

-

sudden

-

---- a d ~ a b a t ~ c

-20

I

- I

/ I

-

t

,,;

I

,'

\

- // -

- /

I 4 I I

I

-

I I I /

- -

I I I I

[ \ ,

(11)

Figures 8, 9 and 10 show e l a s t i c and i n e l a s t i c cross-sections f o r the 12c on

Y C

a t 1016 MeV and 360 MeV.

Fig. 8:

El a s t i c s c a t t e r i n g cross, section of on 12c a t EL = 1016 MeV The data a r e taken from ref- erence 12. The s o l i d l i n e i s the e l a s t i c cross section calculated in a coupled channel approach [16] including the ~'(4.44 MeV) and 3-(9.64 MeV) s t a t e s . A t small angles both recipes y i e l d the same cross-section.

I I I

c t? xjl=

0 -

\ -

v -

- -

ld:

-

-

sudden

- ---- ad~abat~c

I I

5 10 15

1:

20

Fig. 9:

I n e l a s t i c excitation of the ~'(4.44 bkV) s t a t e i n the s c a t t e r i n g of 12c on12c with a laboratory energy of EL = 1016 Mev.

The data a r e taken from reference [12].

The difference between the sudden (solid l i n e ) and the adiabatic (dashed l i n e ) approach i s small.

(12)

"C + "C , 360 MeV

-

sudden

t -

adiabatic

j

Fig. 10: E l a s i j c sca ering cross-section i n units of the Rutherford cross-section f o r C on " C a t a laboratory energy of EL = 360 MeV. Within the angle range given the sudden ( s o l i d l i n e ) and the adiabatic (dashed l i n e ) approach y i e l d s p r a c t i c a l l y the same cross-section. The agreement a t these lower

energies i s not a s good as a t the higher energies.

Judging the agreement between theory and experiment in Figures 8, 9 and 10 one has t o take i n t o account t h a t the cross-sections have been calculated parameter f r e e s t a r t i n g from a real i s t i c nucleon-nucleon i n t e r a c t i o n . Even the root mean square radius i s reproduced i n agreement with the experimental data with the same NN inter- action using expression (10) and varying the radius parameter RWS t o minimize the t o t a l energy which one obtains from the energy density (11) by integrating over the nucleus. The only ingredient taken from experiment i s the w parameter and the diffuse- ness a of equation (10) and the t r a n s i t i o n p r o b a b i l i t i e s i n t o the 2' and 3- s t a t e s i n 12c. One should not mix the type of calculation presented here with a calculation of the cross-section where one uses f o r t h e real p a r t a folding potential and one f i t s the imaginary p a r t t o the data. [10,11]. I t i s obvious t h a t i f one f i t s a large nu, ber of parameters f o r the imaginary p a r t d i r e c t l y t o the cross-sections f o r each bombarding energy separately one has t o obtain a much b e t t e r agreement. In the pre- s e n t calculation no parameter i s adjusted t o the cross-section data. In t h i s sense the present approach y i e l d s a parameter f r e e theoretical cross-section with t h e essential irnput of the r e a l i s t i c N N interaction.

(13)

I V

-

CONCLUSIONS

We s t a r t e d from a r e a l i s t i c nucleon nucleon i n t e r a c t i o n (Rei d - s o f t - c o r e - p o t e n t i a l ) and c a l c u l a t e d t h e r e a c t i o n m a t r i x f o r t h e c o l l i s i o n o f two i n f i n i t e nuclear matters f o r d i f f e r e n t r e l a t i v e average momenta kr and w i t h d i f f e r e n t d e n s i t i e s p T and p p f o r t h e t a r g e t and t h e p r o j e c t i l e y r e s p e c t i v e l y . Using a aeneral i z e d l o c a l d e n s i t y a p p r e x i m a t i o n we were a b l e t o c a l c u l a t e t h e volume c o n t r i b u t i o n t o the r e a l and imaginary p a r t o f t h e heavy i o n p o t e n t i a l . Compared t o former c a l c u l a t i o n s [ l - 8 1 we requested now t h a t t h e same r e a l i s t i c NN i n t e r a c t i o n (Reid-soft-core) should a l s o reproduce the ground s t a t e p r o p e r t i e s o f t h e n u c l e i i n v o l v e d and n o t o n l y t h e r e a l and t h e imagin- a r y p a r t o f the o p t i c a l model. I n a d d i t i o n we added a Weizs'dcker l i k e s u r f a c e term which cannot be c a l c u l a t e d i n n u c l e a r matter. The s t r e n g t h parameter i s a d j u s t e d t o reproduce as w e l l as p o s s i b l e the r o o t mean square r a d i i o f several n u c l e i across the p e r i o d i c t a b l e . F o r the d e n s i t y o f the two i n t e r a c t i n g n u c l e i we used two l i m i t i n g assumption: i n t h e sudden approximation t h e two d e n s i t i e s a r e added f o r each d i s - tance R o f t h e two n u c l e i . I n t h e a d i a b a t i c approach we do n o t a l l o w t h a t t h e density gets l a r g e r than t h e s a t u r a t i o n d e n s i t y d e f i n e d by t h e h i g h e s t d e n s i t y o f t h e two i n - d i v i d u a l n u c l e i . Although the sudden and a d i a b a t i c o p t i c a l model p o t e n t i a l s a r e q u i t e d i f f e r e n t f o r small distances R between t h e two n u c l e i t h e c r o s s - s e c t i o n s a r e r o u g h l y the same s i n c e t h e imaginary p a r t prevents t h a t t h e n u c l e i see t h e d i f f e r e n c e of t h e p o t e n t i a l s a t s h o r t distances.

The agreement i s v e r y good f o r h i g h energies (1016 MeV f o r on "C s c a t t e r i n g ) . A t s m a l l e r energies t h e t h e o r e t i c a l cross-section overestimates t h e experimental values a t l a r g e r angles. This i s probably due t o t h e f a c t t h a t t h e imaginary p a r t o f the o p t i c a l model p o t e n t i a l i s underestimated due t o t h e f a c t t h a t t r a n s f e r r e a c t i o m a r e n o t e x p l i c i t l y included.

REFERENCES

[I] T. Izumoto, S. Krewald, A. Faessler, Nucl-Phys.= (1980) 319 121 T. Izumoto, S. Krewald, A. Faessler, Nucl . P h y s . K (1981) 471

A. Faessler, T. Izumoto, S. Krewald, R. S a r t o r , Nucl . P h y s . e (1981) 509 S.B. Khadkikar, L. Rikus, A. Faessler, R. Sartor, N u c 1 . P h y s . E (1981) 495 A. Faessler, W.H. D i c k h o f f , M. T r e f z , Yucl .Phys.= (1984) 271c

M, T r e f z , A. Faessler, W.H. D i c k h o f f , Nucl .Phys

.A443

(1985) 499

M. I s m a i l , A. Faessler, M. Trefz, W.H. D i c k h o f f , J.Phys. G

2

(1985) 763 M. I s m a i l , M. Rashdan, A. Faessler, M. Trefz, H.M.M. Mansour, t o be published G.R. S a t c h l e r , W.G. Love, Phys.Rep.

55c

(1979) 183

W. von Oertzen, i n " F r o n t i e r s i n Nuclear Dynamics" (1985) 241; eds. R.A. Bro- g l i a , C.H. Dasso; Plenum P u b l i s h i n g Corporation.

(14)

Ell] H.G. Bohlen, X,S, Chen, J.G. Cramer, P. Frolerich, B. Gebauer, H. Lettau, M. Miczaika, W . von Oertzen, R . Ulrich, T. Wilpert, Z.Phys.= (1985) 341 [12J M. Buenerd a t a l . , Phys.Rev.CP6

-

(1982) 1299 and N u c 1 . P h y s . Z (1984) 313 1131 H. Feshbach, Am.Phys.5 (1958) 357;

-

19 (1962) 287

1141 I. Reichstein, F.B, Ma1 i k , preprint 1986

[15] R. Sartor, A. Faessler, Nucl .Phys.= (1982) 263

El61 M. Rhoades-Brown, M.H. MacFarlane, S.C. Pieper, Phys ,Rev.C21(1980) 2417 and 2436 [I71 C.W. De Jager, H. de Vries, and C. de Vries, At.Nucl.Data Tables

14

(1974) 479

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to