• Aucun résultat trouvé

LOW CARBON AND SILICON STEEL QUADRUPOLE MAGNETS

N/A
N/A
Protected

Academic year: 2021

Partager "LOW CARBON AND SILICON STEEL QUADRUPOLE MAGNETS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223716

https://hal.archives-ouvertes.fr/jpa-00223716

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LOW CARBON AND SILICON STEEL QUADRUPOLE MAGNETS

H. Fukuma, N. Kumagai, Y. Takeuchi, K. Endo, M. Komatsubara

To cite this version:

H. Fukuma, N. Kumagai, Y. Takeuchi, K. Endo, M. Komatsubara. LOW CARBON AND SILICON

STEEL QUADRUPOLE MAGNETS. Journal de Physique Colloques, 1984, 45 (C1), pp.C1-301-C1-

304. �10.1051/jphyscol:1984160�. �jpa-00223716�

(2)

JOURNAL DE PHYSIQUE

Colloque C1, suppl6ment a u n o I, Tome 45, janvier 1984 page C l - 3 0 1

LOW CARBON AND S I L I C O N S T E E L QUADRUPOLE MAGNETS

H. Fukuma, N. Kumagai, Y. Takeuchi, K. Endo and M. ~ o m a t s u b a r a * National Laboratory for High Energy Physics, Oho-machi, Ts'sukuba-gun, Ibaraki-ken, 305, Japan

* ~ a w a s a k i SteeZ Corporation, Kawasaki-cho, Chiba-shi, 260, Japan

Resum6

-

L ' a c i e r bas carbone d6velopp6 pour l e s c i r c u i t s magnetiques e s t com- p a r 6

a

l ' a c i e r au s i l i c i u m du p o i n t de vue des performances d ' u n a i m a n t qua- d r u p o l e

.

A b s t r a c t

-

The l o w carbon s t e e l developped f o r t h e magnet c o r e m a t e r i a l i s compared w i t h t h e s i l i c o n s t e e l i n r e g a r d t o t h e performance o f t h e quadrupole magnet.

A l a r g e a c c e l e r a t o r needs a l a r g e amount o f i r o n w i t h good magnetic and mechanical p r o p e r t i e s f o r t h e c o n s t r u c t i o n o f t h e magnets. A l l magnets must have t h e u n i f o r m f i e l d p r o p e r t i e s t o c o n f i n e t h e charged p a r t i c l e s , such as p r o t o n and e l e c t r o n , s t a b l e i n t h e a i r gaps o f t h e magnets a1 i g n e d a l o n g an o r b i t . Several hundreds o f magnets a r e made o f s e v e r a l thousand t o n s o f i r o n . As t h e magnet has a l a r g e w e i g h t on t h e a c c e l e r a t o r c o s t , i t i s i m p o r t a n t t o reduce t h e magnet c o s t i n b o t h s i d e s o f f a b r i c a t i o n and m a t e r i a l . U s u a l l y i r o n f o r t h e magnet has been s e l e c t e d m a i n l y f r o m t h e q u a l i t y i t s e l f . The s i l i c o n s t e e l and t h e decarbonized s t e e l a r e t h e c a n d i d a t e s , b u t t h e y a r e r a t h e r expensive. R e c e n t l y t h e cheaper l o w carbon s t e e l i s used f r e q u e n t l y t o economize t h e expenses. However, t h e l o w carbon s t e e l which i s a v a i l a b l e c o m m e r c i a l l y i s made f o r t h e s t r u c t u r a l i r o n which does n o t r e q u i r e t h e magnetic p r o p e r t i e s b u t r e q u i r e s t h e workabi 1 i t y . I t s magnetic p r o p e r t i e s o b t a i n e d by t h e E p s t e i n method on a s m a l l s c a l e correspond t o t h e l o w grade s i l i c o n s t e e l and l a c k i n t h e u n i f o r m i t y .

As f o r t h e s i l i c o n s t e e l , one can choose t h e magnetic p r o p e r t i e s which a r e d i f f e r e n t depending on t h e s i l i c o n c o n t e n t and t h e i r f l u c t u a t i o n can be made s m a l l by s e l e c t i n g t h e s t e e l w i t h t h e s p e c i f i e d q u a l i t y . T h i s s e l e c t i o n i s p o s s i b l e because t h e s i l i c o n s t e e l i s w i d e l y used t o t h e e l e c t r i c a l machines and produced i n l a r g e q u a n t i t i e s . Therefore, t h e aims o f t h i s work a r e summarized as f o l l o w s ,

-

q u a l i t y improvement o f t h e l o w carbon s t e e l by t h e s l i g h t m o d i f i c a t i o n o f t h e p r o d u c t i o n process,

-

p o s s i b i l i t y o f t h e l a r g e s c a l e p r o d u c t i o n o f t h e l o w carbon s t e e l w i t h t h e u n i f o r m qua1 i t y , and

-

s u f f i c i e n t mechanical s t r e n g t h r e q u i r e d t o t h e stamping process.

A f t e r many t r i a l s on t h e chemical c o n t e n t s o f elements and i m p u r i t i e s and on t h e h e a t t r e a t m e n t , t h e low carbon s t e e l h a v i n g t h e s i m i l a r magnetic p r o p e r t i e s t o t h e m i d d l e c l a s s s i l i c o n s t e e l was obtained.

I

-

LOW CARBON STEEL

From t h e a c c e l e r a t o r view p o i n t s , we impose t h e s p e c i f i c a t i o n s on t h e magnet c o r e m a t e r i a l such as hardness ( o r mechanical s t r e n g t h ) , p e r m e a b i l i t i e s ( v ) a t t h e s p e c i f i e d f l u x d e n s i t i e s , c o e r c i v e f o r c e ( H c ) , u n i f o r m i t i e s o f t h e p e r m e a b i l i t y and c o e r c i v e f o r c e , e t c . These s p e c i f i c a t i o n s a r e r e q u i r e d f r o m b o t h t h e f a b r i c a t i o n process and t h e t o l e r a n c e o f t h e magnet performance. T h e i r r e l a t i o n s a r e

-

hardness - w o r k a b i l i t y under t h e punching d i e , mechanical s t r e n g t h

-

p e r m e a b i l i t y

-

i r o n s a t u r a t i o n , magnet dimensions

-

c o e r c i v e f o r c e - remanent f i e l d s t r e n g t h

-

u n i f o r m i t y - s h u f f l i n g o f l a m i n a t i o n s .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984160

(3)

CI-302 JOURNAL DE PHYSIQUE

Another p r o p e r t y t o be c o n s i d e r e d i s t h e magnetic a f t e r e f f e c t o f t h e s t e e l . I f t h e a f t e r e f f e c t c o n t i n u e s f o r a l o n g t i m e , i t i s r e q u i r e d t o w a i t o r a d j u s t t h e e x c i t a t i o n c u r r e n t t o e s t a b l i s h t h e magnetic f i e l d c o r r e s p o n d i n g t o t h e energy o f t h e p a r t i c l e s c i r c u l a t i n g i n t h e a c c e l e r a t o r . T h i s phenomenon i s m e t a l l u r g i c a l l y e x p l a i n e d as t h e m i g r a t i o n o f t h e n i t r o g e n atoms i n t h e s t e e l and can be suppressed by removing t h e n i t r o g e n i m p u r i t y o r by adding a n o t h e r elements such as aluminum t o suppress t h e m i g r a t i o n .

The t y p i c a l magnetic and mechanical p r o p e r t i e s o f t h e l o w carbon s t e e l compared w i t h t h e s i l i c o n s t e e l a r e g i v e n i n T a b l e 1.

The m a g n e t i c p r o p e r t i e s depend g r e a t l y on t h e l a m i n a t i o n t h i c k n e s s . The b e s t c h o i c e i s around 0.5 mm. I n i t i a l l y t h e t h i c k n e s s was aimed more t h a n 1 mm. However, t h e b e t t e r p r o p e r t i e s were o b t a i n e d f o r t h e t h i n n e r one. The 0.5 mm t h i c k l o w carbon s t e e l was t e s t e d f u r t h e r i n r e g a r d t o t h e r e p r o d u c i b i l i t y a t t h e mass p r o d u c t i o n stage. These t r i a l s gave t h e s a t i s f a c t o r y r e s u l t s as shown i n Table 2.

Table 1 Mgnet?c and mchamcal propertier af steels

- -

Th>cknerr Uc a t 1.5 1 dm) 8". Table 2 Repraduelbility runs at the mrr production stage

Inn1 (Oel .

8 = 1 T 8 = 1.5T

Law carbon rteel LOW carbon HC a t 1.5 T u(eou1

E l 1.2 0.78 steel

H2 1.2 0.89 I *

::

(Oe) 8 ; 1 T B = 1 . 8 T Hv

HZ 1.0 1.0 3756 1297 i l l

HZ 0.5 1 . 0 r 2.0 4060 1695 110

c 4233 .r 1121 R B 0.96 1.03

-

x 1.05 1.00 6397 1681 % % 6656 4793 1794 1865 * x 1929 1925 102 107 + * 105 113

Silicon rteel

high grade 0.5 0.38 7500 1030 x ZOO

middle grade 0.5 0.85 5377 1492 x 145 Average 1.04 4479 1826

low grade 0.5 2.4 2510 1330 108

A t t h e mass p r o d u c t i o n stage, b e t t e r r e s u l t s were o b t a i n e d t h a n a t t h e l a b o r a t o r y stage. The h i g h p e r m e a b i l i t y a t t h e h i g h magnetic f i e l d i s s u i t a b l e f o r t h e c o r e m a t e r i a l o f t h e quadrupole magnets f o r t h e c o l l i d i n g a c c e l e r a t o r , because t h e o p e r a t i o n a t h i g h e r f i e l d g r a d i e n t w i l l be f r e q u e n t l y r e q u i r e d t o a t t a i n h i g h e r l u m i n o s i t y .

I 1

-

PERFORMANCE 06 QUADRUPOLE MAGNETS

The quadrupole magnet w i t h t h e dimensions of F i g . 1 was made o f t h e l o w carbon s t e e l w i t h t h e p r o p e r t i e s o f T a b l e 2. Parameters o f t h e magnet a r e g i v e n i n T a b l e 3. The

shape o f t h e magnet was designed t o use t h e m i d d l e grade s i l i c o n s t e e l (S23 grade of t h e Japanese I n d u s t r i a l Standards) f o r t h e TRISTAN a c c u m u l a t i o n r i n g / I / . Two quadrupole magnets made o f t h e d i f f e r e n t s t e e l s were i n v e s t t g a t e d t o compare t h e i r performances.

The B-H c u r v e s o f b o t h s t e e l s a r e shown i n F i g . 2. Almost t h e same c h a r a c t e r i s t i c s w i 11 promise t h e sirni 1 a r performances.

(4)

G(x)/G(o)

1 6 - I = 8 0 0 A

I .O I - - 1 4 -

1 2 -

10-

.-.

5 x k m )

0 6 -

0 tow carbon steel silicon steel

s~l~con steel (S23 grade1 0 9 9

lowcarbonsteel(i0wgrade) F i g . 3 R a d i a l d i s t r i b u t i o n s o f t h e

1 f i e l d g r a d i e n t , t h e s e x t u p o l a r

o

-.". . . . * . . -

* " " " " ' ' ' "

";04

asymmetry was c o r r e c t e d .

10 lo' H h / m ) lo3

F i g . 2 B-H curves.

F i e l d p r o p e r t i e s The two dimensional d i s - t r i b u t i o n s o f t h e f i e l d g r a d i e n t s were measured w i t h t h e f l i p t w i n c o i l s a t t h e magnet c e n t e r

( F i g . 3 ) . B o t h curves h o l d up t o 1200 A w i t h o u t any f i e l d d e t e r i o r a t i o n . As expected from t h e B-H curves, t h e magnet s a t u r a t i o n i s l a r g e r f o r

t h e s i l i c o n s t e e l t h a n t h e l o w carbon s t e e l above

(+I* 1

(+)400fi

2000 A/m. F i g . 4 shows t h e d i f f e r e n c e o f t h e e x c i t a t i o n curves o f b o t h magnets. An a b s c i s s a g i v e s t h e e x c i t a t i o n c u r r e n t and an o r d i n a t e t h e f i e l d g r a d i e n t n o r m a l i z e d a t 400 A. A small improvement i s seen above 1100 A (17 T/m).

H y s t e r e s i s One o f t h e i m p o r t a n t problems t o t h e c o l l i d i n g t y p e o f a c c e l e r a t o r i s t h e hys- t e r e s i s o f t h e s t e e l . I n t h e a c c e l e r a t o r oper- a t i o n , t h e f i n e a d j u s t m e n t i s f r e q u e n t l y r e - q u i r e d and t h e h y s t e r e t i c o p e r a t i o n t r a c i n g a m i n o r l o o p i s u s u a l l y encountered. By t h i s

o p e r a t i o n t h e i n i t i a l c o n d i t i o n i s n o t r e p r o - 0 low carbon steel d u c i b l e a f t e r r e t u r n i n g t o t h e i n i t i a l c u r r e n t .

0,90t

silicon steel

F i q . 5 c 8 show t h e r e s u l t s o f t h e d e v i a t i o n s o f - t h e f i e l d g r a d i e n t s when t h e magnet e x p e r i - enced t h r e e s u c c e s s i v e m i n o r l o o p s . The ex- t e n t o f t h e m i n o r l o o p s i s g i v e n b y t h e change o f t h e e x c i t a t i o n c u r r e n t i n p e r c e n t a t t h e a b s c i s s a . The i n i t i a l c u r r e n t was 938 A (14.6

T/m) f o r a l l cases. Both upward and downward 0.85- changes o f t h e c u r r e n t were a p p l i e d . Three

s u c c e s s i v e measurements under t h e same m i n o r l o o p s were made a f t e r t h e i n i t i a l i z i n g opera- t i o n o f t h e magnet, which means t h r e e l a r g e l o o p e x c i t a t i o n s f r o m 0 t o 1330 A (20 T/m) t o

e l i m i n a t e t h e memory o f t h e s t e e l of t h e p r - 0 8 0 0 a 1 8 1

-

rn I

eceding run. The change o f t h e f i e l d g r a d i e n t 1000 2 0 0 0

a f t e r t r a c i n g a m i n o r l o o p i s g i v e n i n t h e Excitation current ( A ) o r d i n a t e i n p e r c e n t . Each d e v i a t i o n a f t e r t h e

s u c c e s s i v e m i n o r l o o p o p e r a t i o n s d i f f e r s , b u t

approaches t o t h e f i n a l value. The h y s t e r e t i c F i g . 4 E x c i t a t i o n curves.

(5)

C1-304 JOURNAL DE PHYSIQUE

- 8 -4 \ 0

I -

I.

I O (W

F i g . 5 H y s t e r e t i c e f f e c t t r a c i n g 3 s u c c e s s i v e m i n o r l o o p s .

I. = 9 3 8 A

0 low carbon steel

1.01 A silicon steel

I - I 0 I 0 (%I

F i g . 6 H y s t e r e t i c e f f e c t .

I. = 9 3 8 A

0.5 0 low carbon steel

I

A silicon steel

I - I 0 I 0 (%I F i g . 7 H y s t e r e t i c e f f e c t .

I,

-

9 3 8 A

2.0 0 low carbon steel

A silicon steel

F i g . 8 H y s t e r e t i c e f f e c t .

e f f e c t o f t h e l o w carbon s t e e l i s about 1.5 t i m e s l a r g e r t h a n t h a t o f t h e s i l i c o n s t e e l . T h i s i s a l s o expected f r o m t h e c l o s e c o r r e l a t i o n between t h e c o e r c i v e f o r c e and t h e h y s t e r e t i c l o s s .

Authors acknowledge t h e d i s c u s s i o n s o f P r o f e s s o r s T. Nishikawa and Y. Kimura on t h e s t e e l p r o p e r t i e s . They a r e a l s o g r a t e f u l t o Messrs. Y . I t o and T. S e k i t a o f Kawasaki S t e e l Corp. f o r t h e i r a c t i v e i n t e r e s t t o t h e new s t e e l .

Reference

1) K. Endo, H. kukuma, A. Kabe, Ta. Kubo, To. Kubo, N. Kumagai and Y. Takeuchi, KEK I n t e r n a l 82-10 (1982).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to