• Aucun résultat trouvé

ÒØÖ Ê Ö Å Ø Ñ Ø ÕÙ ÊÅ ÈÖÓ Ò Ò Ä ØÙÖ ÆÓØ À ÖÑ Ø Ò Ú ØÓÖ ÙÒ Ð Ò Ö Ø Ö Ø Ð ÂÓ Áº ÙÖ Ó Ð ØÖ Øº Ì Ô Ô Ö Ö Ú Û Ø Ö Ð Þ Ø ÓÒ Ó Ð Ò ÓÒ³ Ö ÙÐ ØÓÖ Ñ Ô Ù Ò ÖÑ Ø

N/A
N/A
Protected

Academic year: 2022

Partager "ÒØÖ Ê Ö Å Ø Ñ Ø ÕÙ ÊÅ ÈÖÓ Ò Ò Ä ØÙÖ ÆÓØ À ÖÑ Ø Ò Ú ØÓÖ ÙÒ Ð Ò Ö Ø Ö Ø Ð ÂÓ Áº ÙÖ Ó Ð ØÖ Øº Ì Ô Ô Ö Ö Ú Û Ø Ö Ð Þ Ø ÓÒ Ó Ð Ò ÓÒ³ Ö ÙÐ ØÓÖ Ñ Ô Ù Ò ÖÑ Ø"

Copied!
28
0
0

Texte intégral

(1)

Hermitian vetor bundles and harateristi lasses

Jose I. BurgosGil

Abstrat. Thispaperreviews the realization ofBeilinson's regulator map

usinghermitian dierential geometry. This onstrution isa generalization

ofChern-Weiltheoryofharateristilassesofvetorbundles,tohigherK-

theory.

1. Introdution

Chern lasses of omplex vetor bundles an be onstruted using dierent

tehniques. Forinstane, in algebraitopology, one anuse theEuler lassof an

oriented sphere bundle to dene the top Chern lass and then dene the other

lassesindutively(see [25℄). Or,in dierentialgeometry, weanuseChern-Weil

theory, whih produes Chern lasses in de Rham ohomology by means of the

urvature of a onnetion (see for example [5℄, [34℄ or [16℄). Another aproah,

due to Grothendiek [17℄, starts with the rst Chern lass of a line bundle, and

then usesan expliitformula forthe ohomologyof aprojetivebundle to dene

higherChern lasses. Thisapproahis veryuseful inalgebraigeometry and an

be used to produe Chern lasses in the Chow ring, in etale ohomology or in

Deligne-Beilinsonohomology.

TheGrothendiekmethodhasbeengeneralizedbyGillet[11℄toproduehar-

ateristilassesfromhigherK-theorytoanyarbitraryohomologysatisfyinger-

tainaxioms. InthepartiularasewhentheharateristilassistheChernhar-

ater and the ohomology theory is real Deligne-Beilinson ohomology, the map

obtainedis Beilinson'sregulator map [2℄. This mapis ageneralizationof Borel's

regulatoranditisinvolvedinverydeeponjeturesin ArithmetiGeometry.

Beilinson'sregulatorisstillaverymysteriousmap,in partbeausehigherK-

theoryisarihandomplexworld. Thusitisusefultohaveasmanyapproahesto

Beilinson'sregulatoraspossible. Gilletand Soule[13℄havegiven adesriptionof

Beilinson'sregulatorforK

1

usingBott-Chernforms. Thisdesriptionanbeseen

asageneralizationofChern-Weiltheoryto K

1

. Inthepaper[8℄,S.Wangandthe

authorhaveextendedthisdesriptionofBeilinson'sregulatortohigherK-theory.

Theaimofthispaperistoreviewtheonstrutionofharateristilassesfor

higherK-theory. Thispaperismeanttobeintrodutory,andsothefousisplaed

PartiallysupportedbyGrantPB96-0234.

0000(opyright holder)

(2)

onthebasiideasofthetheory. Butreferenesaregivenwherethereaderannd

detailedproofsandgeneralstatements.

Themainobjetofstudywillbealgebraivetorbundlesoversmoothomplex

algebraivarieties. Theseobjetsanbestudiedfromthepointofviewofomplex

geometry or from algebrai geometry. Sine our objetive is to give a omplex

geometri onstrution of an objetdened in the algebrai geometry setting we

willshiftfromonepointofviewtotheotherin dierentsetions.

Theplanofthestudyisasfollows. Insetion2,Grothendiek'sonstrutionof

Chernlassesis presentedin thepartiularaseof sheafohomologywithinteger

oeÆients. Insetion3, wereallthe Chern-Weiltheoryof harateristilasses

of hermitian vetor bundles. Setion 2 is devoted to a simple version of Gillet's

onstrutionof harateristilasses forhigherK-theory. In setion5,wereview

real Deligneohomology. Bott-Chernforms arethe topi of setion6. Insetion

7, we introdue the omplex of exat ubes. By a result of R. MCarthy [24℄

therationalhomologyofthisomplexisisomorphitorationalK-theory. Finally,

setion 8is devoted to thedenition of harateristilassesfor higherK-theory

usingexatubesof hermitianvetorbundles. Forsimpliity, weonlydisussthe

aseofprojetivevarieties. Butnotethatanimportantingredientintheomparison

betweenthisonstrutionandGillet'sonstrution,istheextensionofthistheory

toquasi-projetivevarieties.

2. Chern lasses ofvetorbundles

Therearemanydierentonstrutionsof Chernlassesofvetorbundles(see

for example[25℄, [34℄ or[18℄). In this setion we will review averygeneral one

due to Grothendiek[17℄. Inthis onstrution,the properties of theohomology

theorythatareneededtodeneChernlassesaregivenasaxiomsforaohomology.

Theseaxiomsaresatisedbymanytheories,forinstane, Chowringsofalgebrai

varieties. MoreoverGrothendiek'sonstrutionisthebasisofGillet'sonstrution

ofChernlassesforhigheralgebraiK-theory[11℄.

Inthissetion,wewill speializetheonstrutionofChernlassesto thease

ofsheafohomologyofsmoothomplexvarietieswithintegeroeÆients. Wewill

use the lassial topology. To stress this point we will work with holomorphi

vetorbundles. Insetion4wewilldisusstheaxiomatiapproahinthealgebrai

geometryontext.

Letus introdue therstChernlass ofaholomorphiline bundle. This will

atasanormalizationfortheChernlasses. LetX beaomplexmanifold,andlet

O

X

bethesheafofholomorphifuntions onX. LetO

X

bethesheafofinvertible

holomorphifuntions. Thenthereisanisomorphism

8

<

:

Isomorphismlasses

ofholomorphi

linebundles 9

=

;

!H 1

(X;O

X ):

Theexponentialsequene

0 ! (2i)Z ! O

X exp

! O

X

! 0

givesusalongexatsequenein ohomology

H 1

(X;O

X

) ! H

1

(X;O

X )

Æ

! H 2

(X;Z(1)) ! H 2

(X;O

X );

(3)

Definition2.1. The rst Chern lass of a line bundle L, denoted

1 (L) 2

H 2

(X;Z(1)),istheimageofitslassinH 1

(X;O

X

)bytheonnetionmorphismÆ.

OnewehavedenedtherstChernlass,themaintooltodenehigherChern

lasseswillbetheDold-Thomisomorphism. LetE bearanknholomorphivetor

bundle over X. Let P(E) be the assoiated projetive bundle and letus denote

byp:P(E) !X theprojetion. Thenthevetorbundlep

E hasatautologial

subbundle,whose breat eah point istheline determinedbythat point. Letus

denotebyO

P(E)

( 1)thislinebundleandletO

P(E)

(1)betheduallinebundle. Let

bethe rst Chern lass of O

P(E)

(1). Let us denote by Z(p)the onstantsheaf

(2i) p

ZC.

Theorem 2.2(Dold-Thom isomorphism). Foreah pair of integers i; m,the

map

n 1

X

k =0 p

()[ k

: n 1

M

k =0 H

m 2k

(X;Z(i k)) !H m

(P(E);Z(i))

isan isomorphism.

Proof. When X is onepoint, the result is the lassial formula for the o-

homology of the projetive spae. The general ase follows from the fat that

the existene of the global lasses k

, implies the triviality of the Leray spetral

sequeneofthemorphismp:P(E) !X.

ThistheoremallowsustodeneChernlassesinthefollowingway.

Definition2.3. The Chern lasses of the vetor bundle E are the lasses

i

(E)2H 2i

(X;Z(i))determined bytheequation

p

(

n

(E))+p

(

n 1

(E))[++p

(

1

(E))[ n 1

+ n

=0:

(2.1)

ThetotalChernlassisthesum

(E)=1+

1

(E)++

n (E):

TheChernlassesareharaterizedbytherstChernlassandthebehaviour

underinverseimagesandexatsequenes. Thispropertyisveryuseful,forinstane,

whenomparingdierentdenitionsofChernlasses.

Theorem 2.4. Thereexistsauniquewaytoassign,toeahholomorphivetor

bundleE,atotalChernlass (E)satisfying the following properties:

1. Normalization: If L isaline bundle then(L)=1+

1

(L), where

1 (L)is

denedin 2.1.

2. Funtoriality: Forany morphism ofomplex varietiesf :X !Y wehave

(f

E)=f

(E).

3. Whitneysum formula: Forany exat sequeneof vetorbundles

0 !S !E !Q !0 (2.2)

wehave(E)=(S)[(Q).

Skethof proof. Letusstartbyprovingtheuniqueness. Assumethatthere

existsatheoryofChernlassessatisfyingonditions1,2and3. LetE beavetor

bundle over a smooth omplex manifold X. Let us write Q = p

E=O ( 1).

(4)

ThenQisarankn 1vetorbundleoverP(E). Thebasiideaistousetheexat

sequene

0 !O( 1) !p

E !Q !0:

First,using indutionand properties1and 3oneeasily provesthat

i

(E)=0for

i>n. Then, sinetherstChernlass ofO

P(E)

( 1) is , properties1,2and 3

implythat

p

(E)=(1 )(Q):

Sine

n

(Q) =0and (1 ) 1

=1++ 2

+ 3

+:::, the Chernlasses should

satisfytheformula(2.1). BytheDold-Thomisomorphismthisequationdetermines

theChernlasses.

To provetheexistene we needto showthat Chernlasses, asdened in 2.3

satisfy theonditions 1, 2and 3. The rst onditionfollowsfrom thedenition.

Theseond oneis easy. Forthethird oneweneedto usethe existeneand some

propertiesoftheGysinmorphism(see[17℄formoredetails).

3. Chern lassesof hermitian vetor bundles

In this setion we will explain the Chern-Weil onstrution of Chern lasses

using omplexdierentialgeometry. Thistheory isexplainedin manyplaes (see

forinstane[5℄,[34℄ or[16℄)andwereferthereadertothem fordetails.

LetB beasubringofR. WewillwriteB(p)=(2i) p

B. Thesymmetrigroup

on nelements, S

n

, ats on B[T

1

;:::;T

n

℄ by permuting the variables. Let IP(n)

bethe subsetof invariant polynomials. Then IP(n)=B[

1

;:::;

n

℄, where

i is

thedegreeisymmetrielementaryfuntion inn variables. An analogousresultis

trueifwereplaepolynomialsbyformalpowerseries. Wewilldenoteby

IP(n)the

set of invariantpowerseries in n variables and by IP(n)

k

the spae of invariant

homogeneouspolynomialsofdegreek.

Let be M

n

thevetor spae of nn omplex matries. Let ': M

n

! C

beamap suh that '(A) is ahomogeneouspolynomialof degreek in theentries

of A, with oeÆients in B. We say that ' is invariant if, for all A 2 M

n and

g2GL

n

(C)wehave

'(A)='(gAg 1

):

LetusdenotebyI

k (M

n

)thespaeofinvarianthomogeneouspolynomialsofdegree

k. There is an isomorphism I

k (M

n

) ! IP(n)

k

whih sends any ' to its value

in the diagonal matrixwith entries T

1

;:::;T

n

. Due to this isomorphismwe will

identifybothspaes.

Let X be a omplex manifold. Let E

denote the sheaf of omplex smooth

dierential forms,E p;q

the sheaf of (p;q)-forms, E

R

the subomplex of real forms

and E

R

(p)=(2i) p

E

R . LetE

(X), E p;q

(X),E

R

(X)and E

R

(p)(X)denote theor-

respondinggroupsofglobalsetions. LetE beaholomorphivetorbundleonX.

ThenwewilldenotebyE

(E)thesheafofE-valuedsmoothdierentialformsand

byE

(X;E)theorrespondingspaeofglobalsetions. E p;q

(X;E)willdenotethe

spaeofformsoftype(p;q)withvaluesin E.

AonnetiononEis aC-linearmap

0 1

(5)

satisfyingtheLeibnitz rule

D()=d+D;

(3.1)

forany2E 0

(X)and 2E 0

(X;E).

GivenanyonnetionD weanextendittoobtainoperators

D:E k

(X;E) !E k +1

(X;E)

by imposing the Leibnitz rule. But in general (E

(X;E);D) is not a omplex,

beausetheoperator

K=D 2

:E 0

(X;E) !E 2

(X;E)

maybenon zero. Infat the operatorK is E 0

(X)-linearandthus it anbe seen

as a setion K 2 E 2

(X;End(E)). This operator is alled the urvature of the

onnetion.

Dueto thedeomposition E 1

(X;E)=E 0;1

(X;E)E 1;0

(X;E)weandeom-

poseD=D 0;1

+D 1;0

,with

D 0;1

:E 0

(X;E) !E 0;1

(X;E)

D 1;0

:E 0

(X;E) !E 1;0

(X;E):

Sine E is holomorphi, there is a well dened -operator, whih in a loal

frameisgivenby

(f

1

;:::;f

n )=(f

1

;:::;f

n ):

Let us assume that E is provided with a hermitian metri h. Let us denote

byh ;i theorrespondinginner produt. Then thereis auniqueonnetion that

isompatible withboththeomplexstrutureandthehermitian metri. That is,

thereisauniqueonnetionD=D(h) satisfyingthefollowingonditions:

1. \Compatibilitywiththehermitianmetri": Forany;2E 0

(X;E)

dh ;i=hD;i+h;Di:

2. \Compatibilitywiththeomplexstruture": D 0;1

=.

Letuswrite K=K(h)=D 2

,theurvatureofthemetrih. Letf bealoal

frame,ifwedenotebyh(f)thematrixofthemetrihinthisframe,then(see[34℄

pag. 82).

K=(h 1

(f)h(f)):

(3.2)

Fromthisequationit islearthat K2E 1;1

(X;End(E)). Thus inaloal frameit

isgivenbyamatrixof(1;1)forms.

Let ' 2

IP(n) and let us denote by '

k

its omponent of degree k. The

invarianeof'

k

impliesthatwehaveawelldenedelement'e

k

(E;h)='

k

( K)2

E 2k

(X). To see this, one rst denes '

k

( K) in a loal frame, where K is a

matrixof(1;1)formsandthenoneusestheinvarianetogluetogethertheseloal

denitions(seeforinstane[34℄III.3). SineI= L

k 1 E

k

(X)isanilpotentideal,

wehavealsoawelldened form'(E;e h)= L

e '

k (E;h).

Theorem 3.1. Let E ! X be a holomorphi vetor bundle and let h be a

hermitianmetri. Then

(6)

2. The form' (E;e h) satises

e

'(E;h)2 M

p0 E

2p

R

(p)(X):

3. Thelassof' (E;e h)indeRhamohomology isindependentofthemetrih.

Sineanyholomorphivetorbundleadmitsahermitianmetritheabovethe-

oremallowsustousehermitianmetristodeneharateristilasses.

Definition 3.2. LetXbeaomplexmanifold. LetEbearanknholomorphi

vetorbundleandlet'2R[[ T

1

;:::;T

n

℄℄beaninvariantpowerseries. Letushoose

anyhermitianmetrihonE. Thentheohomologylass of'(E;e h),denoted

' dR

(E)2 M

p H

2p

dR

(X;R(p))

willbealled thedeRhamChernlassofEassoiatedtothepowerseries'. The

dierentialform' (E;e h) willbealled theChernform.

Remark 3.3. This distintion between Chern lasses and de Rham Chern

lasses is provisional. We will distinguish between them until we see that they

agree.

Examples3.4.

1. If'=

i

,thei-thelementarysymmetrifuntionthen dR

i

(E)=' dR

(E)is

thei-thdeRhamChernlassofE (seetheremarkabove).

2. If'=1+ P

i then

dR

(E)=' dR

(E) isalled thetotalde RhamChern

lass. Observethat thetotalChernformisgivenby

e

(E;h)=det(1 K):

3. IfB ontainstheeldQ, thentheChernharaterisdened bythepower

series

h(T

1

;:::;T

n )=

n

X

i=1 exp(T

i ):

ThenaturalinlusionZ(p) !E 0

R

(p)induesamorphism :H

(X;Z(p)) !

H

dR

(X;R(p)). InordertoseethatthetwodenitionsofChernlassesareompat-

iblewehavetoompare ((E))with dR

(E). Thekeytoomparebothdenitions

ofChernlassesisthetheorem2.4. Thusweonlyneedto showthatthedeRham

Chernlassesalsosatisfythepropertiesgivenin theorem2.4.

Theorem 3.5.

1. Let f : X ! Y be a morphism of omplex manifolds. Let (E;h) be a

hermitian vetorbundleon Y: Then

f

e

(E;h)=e(fE;f

h):

2. LetLbeaholomorphi linebundle. Then

dR

1

(L)= (

1 (L)):

3. Let

0 !S !E !Q !0

bean exatsequeneof holomorphi vetorbundles onX. Then

(7)

Proof. Theproofofproperties1and3arestandardandanbefoundinany

referenefor Chern-Weil theory. Forinstane, see [34℄. Sine property 2is more

speiof theomparison weare making,wewill provideaproof. Theideais to

represent

1

(L) asa

Ceh oyle and dR

1

(L) as adierential form. So we will

usetheomparisonbetween

CehanddeRham ohomologiesto omparethetwo

lasses.

Let us start representing

1

(L) using

Ceh ohomology. Let us assume that

U =fU

i

gis a good overof X (see for instane [6℄). This means that the open

sets U

i

and all their nite intersetions are ontratible. This impliesthat

Ceh

ohomologyfortheonstantsheafZ(1)agreeswithsheafohomology. Givenasheaf

ofabeliangroupsF,wewilldenotebyC

(U;F)theomplexof

Cehohainswith

respettotheopenoverU.

Letf(U

i

;s

i

)gbeatrivializationofthelinebundleL. Thuss

i

isanonvanishing

setionof (U

i

;L). Foreah pairi;j letuswrite U

i;j

=U

i

\U

j . Letg

ij

=s

j

=s

i

be thetransition funtions. So g

ij

belongs to (U

i;j

;O

) and fg

ij g 2C

1

(U;O

)

is a1-oyle that representsthelass ofL in H 1

(X;O

). Wehave toapply the

onnetionmorphismto this lass. Sinetheopen set U

i;j

is ontratible,wean

hooseadeterminationofthelogarithmlogg

ij overU

i;j

. OverU

ijk

=U

i

\U

j

\U

k

let us write t

ijk

= logg

jk

logg

ik

+logg

ij

. Then t

ijk

is onstant and it is an

integermultiple of2i. Theset ft

ijk gis a

Ceh 2-oylefor thesheafZ(1)that

represents

1 (L).

Nextwewanttorepresent dR

1

(L)asanexpliitdierentialform. SineLhas

rankone,theurvatureK2E 1;1

(X;End(L))=E 1;1

(X)is adierentialform. By

3.2thisform isgiven,ineahopenU

i ,by

K=(h(s

i )

1

h(s

i

))=log(h(s

i )):

Sine this form does notdepend on thesetion s

i

it is aglobal dierential form.

Thus therst deRham Chern lassis representedby theform e

1

(L;h) = K =

log(h(s

i )).

Toomparethetwolasseswewillfollowtheomparisonbetween

Cehandde

Rham ohomologiesgivenin [6℄. Themain toolisthe doubleomplexC

(U;E

).

It hasnaturalmorphismsfrom E

(X)and from C

(U;C) and is quasi-isomorphi

tobothomplexes. Let

d 0

:C p

(U;E q

) !C p+1

(U;E q

)

d 00

:C p

(U;E q

) !C p

(U;E q+1

)

denotethedierentials,whered 0

isthedierentialof

Cehohainsandd 0 0

is( 1) p

timesthedierentialofforms.

Thenft

ijk g=d

0

flogg

ij g,and

d 00

flogg

ij

g=f d(g

ij

=g

ij

)g=f s

i

=s

j d(s

j

=s

i )g:

therefore the

Ceh ohain fs

i

=s

j d(s

j

=s

i

)g also represents

1

(L). On the other

hand, K= d 00

flog(h(s

i

))g,and

d 0

f log(h(s

i

))g=f log(h(s

j )=h(s

i )) g=

f log(s

j s

j

=s

i s

i ) g=

f s

i

=s

j d(s

j

=s

i )g:

Therefore K representsalsothelass (L).

(8)

As aonsequeneofthis theorem weseethat ((E))= dR

(E). Inpartiu-

larthis implies that the Chern lass

i

orresponds to the elementary symmetri

funtion

i

. Thisjustiesthefollowingdenition.

Definition3.6. LetXbeaomplexmanifold. LetEbearanknholomorphi

vetorbundleandlet'2B[[T

1

;:::;T

n

℄℄ beaninvariantpowerseries. Let

'(T

1

;:::;T

n )=(

i

;:::;

n )

betheexpressionof'intermsofsymmetrielementaryfuntions. ThentheChern

lass of E assoiated tothe powerseries'is:

'(E)=(

1

(E);:::;

n (E))2

M

p H

2p

(X;B(p)):

Corollary 3.7. Let X be a omplex manifold and let E be a holomorphi

vetorbundleofrankn. Let'2B[[

1

;:::;

n

℄℄beaninvariantpowerseries. Then

' dR

(E)= ('(E)):

Inviewofthisresultwewilldropthesupersript dR

fromthenotation.

TheChern harater(see example3.4.3)isone of themostinterestingpower

seriesofharateristilasses. ThemainadvantageoftheChernharaterlassis

thatitbehavesverywellunderexatsequenesandtensorproduts. Fortheproof

ofthenextpropositionwereferalsoto [34℄.

Proposition3.8.

1. Let 0 ! S ! E ! Q ! 0 be an exat sequene of vetor bundles.

Then

h(E)=h(S)+h(Q):

2. LetE andF bevetor bunles. Then

h(EF)=h(E)^h(F):

Unlike theChern harater lass, theChern harater form does notneed to

behaveadditivelyforexatsequenes. Let

0 !(S;h 0

) !(E;h) !(Q;h 00

) !0

beanexatsequeneofhermitianvetorbundles. Letuswrite(S;h 0

)(Q;h 00

)for

theorthogonaldiretsum. Then

e

h((S;h 0

)(Q;h 00

))= e

h(S;h 0

)+ e

h(Q;h 00

):

Butingeneral

e

h(E;h)6=

e

h((S;h 0

)(Q;h 00

)):

Atrst glanethis mayseemunfortunate. But, in setion8, we willsee that, as

Shehtmannpointedout([30℄), thelakofadditivityat thelevelofformsanbe

(9)

4. Chern lassesfor higherK theory

Inthis setionwewillreview Gillet'sonstrutionofChern lassesforhigher

K-theory[11℄. Wewillfollowthesimpliedversiongivenin [31℄. Wewillassume

thatthereaderhassomefamiliaritywiththelanguageofsimpliialobjets(seefor

instane[23℄ or[14℄).

In this setion we will be in the algebrai geometry ontext. To stress this

fat,insteadof working withomplexnumbers,let usx agroundeld k. Let V

betheategoryofallsmoothquasi-projetiveshemes,equippedwiththeZarisky

topology. LetusdenotebyD(V)(resp. D +

(V))thederivedategoryofomplexes

ofabeliansheavesonV (resp. whih arebounded below). Let usassumethat we

haveaxedgradedomplexofsheaves

F

()= M

i2Z F

(i); withF

(i)2D +

(V):

Thusforeahsmoothquasi-projetiveshemeX2Ob(V)wehavetheohomology

groups H

(X;F

()). We need to assume ertain properties of this ohomology

theoryinorder tomimitheonstrutionofChernlassesof setion2.

Let us denote by O

the sheaf of invertible rational funtions. It denes an

elementofD +

(V)assumingthatitisaomplexonentratedindegreezero. Then

H 1

(X;O

)parameterizesisomorphismlassesofalgebrailinebundlesoverX. The

rstpropertyweneedforourohomologytheoryis:

P 1: There isamorphisminD +

(V)

O

[1℄ !F

(1):

In partiular, for eah X 2 Ob(V), we obtain a morphism

1 : H

1

(X;O

) !

H 2

(X;F

(1))whih allowsusto denetherstChernlassofalinebundle.

Thenextpropertyweneedisamultipliativestruturefortheohomology.

P 2: Foreahn; m2Z,therearehomomorphismsinD +

(V)

[:F

(n) L

Z F

(m) !F

(n+m); ande:Z !F

(0)

whihmakeF

()anassoiativeandgraded ommutative(withrespet to

therstdegree)algebrawithunit.

Thethird propertyweneedisaformula fortheohomologyof theprojetive

spae,inother words,weneedtheDold-Thom isomorphismtobesatised.

P 3: ForX 2Ob(V),letp:P n

X

!X bethen-dimensional projetivespae

overX. Let be therst Chern lass of theline bundle O(1). Then, for

eahpairofintegersi; m,themorphism

n 1

X

k =0 p

()[ k

: n 1

M

k =0 H

m 2k

(X;F

(p k)) !H m

(P n

X

;F

(p))

isanisomorphism.

ByaLerayspetralsequeneargument,from propertyP3itfollowsthatthe

Dold-Thomisomorphismissatisedforanyprojetivebundle.

WithpropertiesP1,P2andP3,weanrepeattheproedureofthesetion

2 and dene, for eah vetorbundle E over X 2 Ob(V), Chern lasses

i (E) 2

H 2i

(X;F

(i)). Butin orderto havetheWhitney sumformulaweneed toassume

(10)

P 4: Leti:Y ,!X bealosedimmersioninV ofpureodimension1andlet

[Y℄2H 1

(X;O

)bethelassofthedivisorY:Thenforanyx2H 2i

(X;F

(i))

suhthati

x=0,wehave

x[

1

([Y℄)=0:

ThenextstepistoextendthedenitionofChernlassestosimpliialshemes.

Let bethe ategorywhose objetsarethe orderedsets [n℄ =f0;:::;ng, n0

andwhosemorphismsareorderedmaps. LetSV denotetheategoryof simpliial

objetsin V,thatis, theategoryofontravariantfuntorsbetweenandV.

Definition4.1. Let X

2 ObSV be a simpliial sheme. A rank n vetor

bundle over X

is an objet of SV, E

, together with a morphism of simpliial

shemes

:E

!X

satisfyingthefollowingonditions

1. Foranyk0themorphism

k :E

k

!X

k

isaranknvetorbundle.

2. Foranyj; k0andany2Mor

([j℄;[k℄)theommutativediagram

E

k E()

! E

j

?

?

y k

?

?

y k

X

k X()

! X

j

isarelativemorphismof vetorbundles.

Alternatively,following[12℄,weandeneavetorbundleoverX

asavetor

bundle E

0

over X

0

, together with an isomorphism : Æ

0 E

0

! Æ

1 E

0

of vetor

bundlesoverE

1

,suhthat Æ

2 ÆÆ

0 =Æ

1 .

IfX

isasimpliialshemethenagainH 1

(X

;O

)parameterizesisomorphism

lassesoflinebundles(see[12℄ex1.1). Moreover,thepropertyP3impliesthatthe

Dold-Thomisomorphismissatisedforarbitraryprojetivebundlesoversimpliial

shemes (see [11℄ Lemma 2.4). Therefore Grothendiek's onstrution of Chern

lassesanbeappliedtosimpliialshemes. Inpartiularitanbeapplied inthe

universalase.

LetB

GL

n

=k bethelassifyingshemeofthegroupshemeGL

n

overk. The

simpliial sheme B

GL

n

=k is provided with a universal rank n vetor bundle,

denoted by E

n

. Letus denote by (n)

i

=

i (E

n )2 H

2i

(B

GL

n

=k;F

(i)) the i-th

Chernlassoftheuniversalbundle.

Thenextobjetiveistoexplainhowlassesintheohomologyofthelassifying

shemegiveriseto mapsbetweenK-theoryandohomologyofshemes.

LetS

beasimpliialset andlet X be asheme. Then weanonstrutthe

simpliialshemeS

X suh that

(S

X)

n

= a

p2Sn

fpgX;

and the faes and degeneraies are indued by those of S

. Let A be a nitely

generated k-algebrasuhthat U =SpeA is asmoothsheme. ThenB

GL

n (A)

is asimpliial set. Thus we anonstrut thesimpliial sheme B

GL

n

(A)U.

SineanelementofB

j GL

n

(A)isamorphismbetweenU andB

j GL

n

=kweobtain

atautologialmorphismofsimpliialshemes

:B

GL

n

(A)U !B

GL

n

=k:

Thus,weobtainlasses

( (n)

)2H 2i

(B

GL

n

(A)U;F

(i)).

(11)

For asimpliial set S

, letus denoteby ZS

thehomologial omplexwhih,

in degree j is the free abelian group generated by S

j

, and whose dierential is

d= P

( 1) i

Æ

i .

Lemma 4.2. Let S

bea simpliial set andlet X be asmooth quasi-projetive

sheme. Then thereisanatural shortexatsequene

0 ! Y

p+q=n 1 Ext

1

Z (H

p (ZS

);H

q

(X;F

(i)) !H n

(S

X;F

(i))

! Y

p+q=n

Hom(H

p (ZS

);H

q

(X;F

)) !0:

Proof. Thisresult isthedual of theKunnethformula(seefor instane [29℄

Thm. 11.32).

Thus,from eah lass (n)

i 2H

2i

(B

GL

n

=k;F

(i)) weobtainafamilyofmor-

phisms

Æ( (n)

i )

j :H

j (ZB

GL

n

(A)) !H 2i j

(U;F

(i)):

Now wewant to go to the limit when n goes to innity. Form > n, let us

onsidertheinlusioni

n;m GL

n

=k !GL

n+1

=k givenby

A7 !

A 0

0 I

;

whereI istheidentitym nm n-matrix. Sine

i

n;m E

m

=E

n

(atrivialvetorbundle);

wehavethati

n;m

(m)

i

= (n)

i

. Therefore,thefamilyofmorphismsf Æ'(

(n)

i )

j g

n1

denesamorphism

i;j :H

j

(GL(A);Z)=lim

!

n H

j (ZB

GL

n

(A)) !H 2i j

(U;F

(i)):

TheK-theory groupsof A are thehomotopygroupsof the+-onstrutionof

B

GL(A). Sinethe+-onstrutionisayli,wehavethat

H

(B

GL(A)

+

;Z)=H

(B

GL(A);Z)=H

(GL(A);Z):

Definition 4.3. LetAbeanitelygeneratedk-algebrasuhthatU =SpeA

is a smooth sheme. For eah pair of integersi; j, the i-th Chern lass map in

K

j

(A)istheomposition

i;j :K

j

(A)=

j (B

GL(A)

+

)

Hurewiz

! H

j

(GL(A);Z) i;j

!H 2i j

(U;F

(i)):

Thefollowingresultisaneasyonsequeneofthedenition.

Proposition4.4. Let f

: A ! B be a morphism of nitely generated k

algebrassuhthatU =SpeAandV =SpeB aresmoothshemes. Letf :V !

U be theorresponding morphismof k-shemes. Then thefollowing diagram

K

j (A)

i;j

! H 2i j

(U;F

(i))

f

?

?

y

f

?

?

y

K

j (B)

i;j

! H 2i j

(V;F

(i))

(12)

InordertoextendtheonstrutionofChernlassestoarbitrarysmoothquasi-

projetiveshemeswewill requireapropertyofinvarianeunder homotopy. This

will allow us to useJouanolou's trik. But stritly speaking this property is not

neessary(see[11℄).

P 5: For any sheme X 2 Ob(V), the natural map A 1

X

! X indues an

isomorphism

H

(X;F

()) !H

(A 1

X

;F

()):

This property implies that, for any bre bundle p : Y ! X, with bre A n

,

(not neessarilyavetorbundle), themap p

H

(X;F

()) !H

(Y;F

()) isan

isomorphism.

ForanyshemeX2V,byJouanolou'slemma([20℄lemma1.5)thereisabre

bundlep:Y !X,withY aÆne,whihisatorsoroveravetorbundle.

Definition4.5. Let X bea smoothsheme overk. Let us hoosean aÆne

torsorp : Y !X. For eah pair of integersi; j, thei-th Chern lass map for

K

j

(X)istheomposition

i;j :K

j (X)

p

=K

j (Y)

i;j

!H 2 i j

(Y;F

(i)) p

=H 2i j

(X;F

(i)):

Thanks to the naturality of the map

i;j

in the aÆne ase (proposition 4.4)

and[20℄proposition1.6,thisdenitiondoesnotdependonthehoieoftheaÆne

torsorY.

SofarwehaveonstrutedChernlassesforhigherK-theory. Nowwewantto

onstrutharateristilassesforarbitrarypowerseries. LetagainBbeasubring

ofR andassumethatF isasheafofB-modules. Observethat,replaingT

n+1 by

0,wehaveamorphismbetweentheringofinvariantpowerseries

B[[T

1

;:::;T

n+1

℄℄

Sn+1

!B[[T

1

;:::;T

n

℄℄

Sn

:

Intermsofelementarysymmetrifuntionstheabovemorphismisthemorphism

B[[

1

;:::;

n+1

℄℄ !B[[

1

;:::;

n

℄℄

thatsends

n+1

to 0. Wewill denoteby

i

n;m :

IP(m) !

IP(n)

theinduedmorphisms. These morphismsmakef

IP(n)g

n

aninversesystem. Ob-

servethatwehaveaommutativediagram

f

IP(m)g

n

! Q

i H

2i

(B

GL

m

=k;F

(i))

i

n;m

?

?

y

i

n;m

?

?

y

f

IP(n)g

n

! Q

i H

2i

(B

GL

n

=k;F

(i))

wherethehorizontalarrowssendtheelementarysymmetrifuntion

i

tothei-th

Chernlass.

Definition4.6. Astable invariantpowerseries isanelement

f' (n)

g2lim

IP(n):

(13)

Observethat anystableinvariantpowerseriesisgivenbyanelement

'2B[[

1

;:::;

n

;:::℄℄:

ProeedingaswiththeChern lasses,foranyinvariantstable powerseries',

weobtainharateristilasses

':K

j

(X) ! M

H 2 i j

(X;F(i)):

Example4.7. AssumethatB Q. Letusdenotebyh (n)

thereduedChern

haraterofrankn. Thatis

h (n)

(T

1

;:::;T

n

)=h(T

1

;:::T

n ) n:

Sine h (n+1)

(T

1

;:::;T

n

;0) =h (n)

(T

1

;:::;T

n

), then fh (n)

gis astable invariant

powerseries. ThusitdenesareduedChernharaterlass,denotedh.

Definition 4.8. TheChernharateristhemap

h:K

i () !

M

j H

2 j i

(;F(j));

givenby

h= (

h; ifi>0;

rank+h; ifi=0:

Reallthatthere isaprodutstruture([21℄)

K

i K

j

!K

i+j

thatextendsthemultipliativestrutureinduedinK

0

bythetensorprodut. The

Chernharateris alsoompatiblewiththis produt. Foraproofofthefollowing

resultsee[11℄or[31℄.

Theorem 4.9. Forx2K

i

andy2K

j then

h(xy)=h(x)[h(y):

5. Real Deligneohomology

Let us reall the denition of real Deligne ohomology and some omplexes

thatan beused toomputeit. AgainletX beasmoothproperomplexvariety.

As in setion 3let B beasubring ofR. Letus write B(p) =(2i) p

B C. We

will denote alsobyB(p)the onstant sheaf. Let

X

bethesheaf ofholomorphi

dierentialformsonX.

Definition5.1. The(B-)Deligneohomology ofX,denoted H

D

(X;B(p)),is

thehyperohomologyof theomplexofsheaves

B(p) !O

X

!

1

X

! ! p 1

X :

Thisdenition hasbeenextendedbyBeilinsontotheaseof smoothomplex

algebraivarieties,notneessarilyproper(see[2℄,[1℄,[10℄and[19℄). Thisextension

is known as Deligne-Beilinson ohomology. Beilinson also showed that Deligne-

BeilinsonohomologyanbewrittenassheafohomologyforasheafintheZariski

topology, satisfyingthe properties 1to 5 of last setion. Thus wean apply the

onstrution of the last setion and obtain harateristi lasses from higher K-

(14)

ChernharaterinrealDeligne-BeilinsonohomologyisalledBeilinson'sregulator

anditisageneralizationofBorel'sregulator(see[4℄,[2℄,[27℄).

LetF denote theHodgeltration:

F p

X

= M

p 0

p

p 0

X :

Thenreal Deligneohomologyanbedened alsoasthehyperohomologyofthe

simpleomplexassoiatedtothemorphismofomplexes

R(p)F p

X

!

X :

WewanttohaverealDeligneohomologyastheohomologyofanexpliitomplex,

asdeRhamohomologyistheohomologyoftheomplexofdierentialforms. To

this end wewill resolvetheonstant sheafand the sheaves ofholomorphi forms

usingsmoothdierentialforms. Wewilluse thesamenotation asin setion3for

thesheavesandomplexesofdierentialforms.

TheHodgeltrationof theomplexE

isgivenby

F p

E n

= M

p 0

p E

p 0

;n p 0

:

Thesheavesofdierentialformsarene,heneayli. SineE

R

(p)isaresolution

oftheonstantsheafR(p),andE

isaresolutionof

X

,ompatiblewiththeHodge

ltration,weobtainthat realDeligne ohomology ofX isthe ohomologyof the

simpleomplexassoiatedtothemorphismofomplexes

u

p :E

R

(p)(X)F p

E

(X) !E

(X);

givenbyu

p

(r;f)=f r. Letusdenotethesimpleomplexassoiatedtou

p as

s(u

p )=s(E

R

(p)(X)F p

E

(X) !E

(X)):

An elementofs n

(u

p

)isgivenbyatriple

(r;f;!)2E n

R

(p)(X)F p

E n

(X)E n 1

(X);

andthedierentialisgivenbyd(r;f;!)=(dr;df;f r d!).

Following Deligne [9℄ we anuse a simpleromplex to ompute real Deligne

ohomology.

Definition 5.2. LetD

(X;p)denotetheomplexgivenby

D n

(X;p)= 8

>

>

>

>

>

<

>

>

>

>

>

: E

n 1

R

(p 1)(X)\ M

p 0

+q 0

=n 1

p 0

<p;q 0

<p E

p 0

;q 0

(X); forn2p 1

E n

R

(p)(X)\ M

p 0

+q 0

=n

p 0

p;q 0

p E

p 0

;q 0

(X); forn2p:

Thedierentialof thisomplex,denoted byd

D

, isinduedbyd indegreegreater

orequalthan2p, by d indegreelessorequalthan2p 2andis equalto 2

indegree2p 1.

A proof that the ohomology of this omplex is Deligne ohomology an be

(15)

1. Themorphismu:E

R

(p)(X)F E (X) !E (X)isinjetiveforn2p 1

andtheokernelis

E n 1

R

(p 1)(X)\ M

p 0

+q 0

=n 1

p 0

<p;q 0

<q E

p 0

;q 0

(X):

2. Theabovemorphismuis surjetiveforn2p 1andthekernelis

E n

R

(p)(X)\ M

p 0

+q 0

=n

p 0

p;q 0

q E

p 0

;q 0

(X):

3. Inpartiular,forn=2p 1themorphismuisanisomorphism. Moreover,

if!2E 2p 2

(X),thendu 1

d!= 2!.

Example5.3. Observethat D 2p

(X;p)=E 2p

R

(p)(X)\E p;p

(X). Thusif(E;h)

isahermitianholomorphivetorbundleofranknand'2R[[T

1

;:::;T

n

℄℄isareal

invariantpowerseries, then

e

' (E;h)2 M

p D

2p

(X;p):

InordertowritedownexpliitmorphismsbetweenD

(X;p)ands(u

p

)weneed

tointroduesomenotations. Givenadierentialforma,wewill writea= P

a p;q

itsdeompositionin formsofpurebidegree. LetF p;p

bethemorphismdenedby

F p;p

a= X

p 0

p

q 0

p a

p 0

;q 0

:

Let

p

bethemorphismgivenby

p

a=(a+( 1) p

a)=2:

Observethat

p

isthe projetionofE

(X)onto E

R

(p)(X),and that, forn <2p,

p

=

p 1 ÆF

n p+1;n p+1

istheprojetionofE n

(X)ontotheokernelofu

p .

Let : s n

(u

p

) ! D n

(X;p) and ' :D n

(X;p) !s n

(u

p

)be themorphisms

givenby

(r;f;!)= (

p

(!); forn2p 1;

F p;p

r+2

p (!

p 1;q+1

); forn2p;

'(x)= (

(x p 1;q

x q;p 1

;2x p 1;q

;x); forn2p 1;

(x;x;0); forn2p;

where q=n p. Then and 'are homotopyequivalenesinverseto eah other

(see[7℄).

RealDeligneohomologyhasaprodut[2℄,[1℄thatanbedesribed,interms

oftheomplexess(u

p

)in thefollowingway. Let01bearealnumber. For

(r;f;!)2s n

(u

p

)and(s;g;)2s m

(u

q

),letuswrite

(r;f;!)[

(s;g;)=(r^s;f^g;

(!^s+( 1) n

f^)+(1 )(!^g+( 1) n

r^)):

This is afamilyof produts, allof them homotopially equivalent. Moreover,for

=1=2thisprodut isgraded ommutative,whereasfor=0;1thisprodutis

(16)

Deligneohomology. ThisprodutinduesaprodutintheomplexD

(X;p)(see

[7℄). Thisomplexisonlyassoiativeorgradedommutativeuptohomotopy.

Inordertohaveaomplexwithagradedommutativeandassoiativeprodut

we will use the Thom-Whitney simple, introdued in [26℄. The Thom-Whitney

simple assoiates, to a strit osimpliial dierential omplex, a new dierential

omplex. This new dierential omplex is homotopially equivalent to the total

omplex of the original osimpliial omplex. The main interest of the Thom-

Whitney simpleis that,ifwestart withastrit osimpliialgraded ommutative

assoiativealgebra,theomplexthatweobtainisagainadierentialgradedom-

mutativeassoiativealgebra.

Inourase,weanonsider themorphismu

p

astritosimpliialomplexu

p

writing

u 0

p

=E

R

(p)(X)F p

E

(X);

u 1

p

=E

(X);

u i

p

=0; fori2;

withmorphismsgivenby

Æ 0

(r;f)=f; Æ 1

(r;f)=r;

andtheothermorphismsequaltozero.

LetusdesribetheThom-Whitney simpleinthisase. LetL

1

betheomplex

of algebraiforms in theaÆneline A 1

R

. That is,L 0

1

=R[t℄, and L 1

1

=R[t℄dt. Let

Æ

0

1 : L

1

! R be the morphisms given by evaluation at 0 and 1 respetively.

ThatisÆ

0

(f(t)+g(t)dt)=f(0),and Æ

1

(f(t)+g(t)dt)=f(1).

Definition 5.4. The Thom-Whitney simple of u

p

, denoted s

TW (u

p

) is the

subomplexof

E

R

(p)(X)F p

E

(X)L

1 E

(X)

formedbytheelements(r;f;!)suh that

f =(Æ

0

Id)(!);

r=(Æ

1

Id)(!):

Thedierentialand theprodutof theThom-Whitney simplearegivenom-

ponentwise:

d(r;f;!)=(dr;df;d!)

and

(r;f;!)^(s;g;)=(r^s;f^g;!^):

Withthese denitionsofdierentialandprodut,thediretsum L

p s

TW (u

p )isa

dierentialgradedommutativeassoiativealgebra.

Weanonstrutexpliitequivalenes(see[26℄)

s

TW (u

p )

I

!

E s(u

p )

givenby

(17)

and

I(r;f;(h(t)+g(t)dt)!)=

r;f;

Z

1

0

g(t)dt!

:

WewillwriteI 0

= ÆI :s

TW (u

p

) !D

(X;p)andE 0

=EÆ':D

(X;p) !

s

TW (u

p

). We will later use that I 0

and E 0

is a pair of homotopy equivalenes,

inverse to eah other, between D

(X;) and a omplex with an assoiative and

gradedommutativeprodut.

6. Bott-Chern forms

For anystableinvariantpowerseries'andanyexatsequene

:0 !(S;h 0

) f

!(E;h) !(Q;h 00

) !0

ofhermitianvetorbundles,theWhitneysumformulaimpliesthattheassoiated

Chernlassessatisfy

'(E)='(SQ):

(6.1)

But in general this equation is no longer true for the Chern forms. That is, the

form

e

' (E;h) '((S;e h 0

)(Q;h 00

))2 M

D 2p

(X;p)

maybe nonzero. Nevertheless, equation6.1 andthe-lemma ([16℄)imply that

thereexistsadierentialform'e

1

suhthat

e

' (E;h) ' ((S;e h 0

)(Q;h 00

))= 2'e

1 : (6.2)

SineD 2p

(X;p)=E 2p

R

(p)(X)\E p;p

(X)and 2 isapurelyimaginaryoperator,

bihomogeneousofbidegree(1;1),weanhoose

e '

1 2

M

p E

2p 2

R

(p 1)(X)\E p 1;p 1

(X)= M

p D

2p 1

(X;p):

In other words, the form '(Ee ;h) '((S;e h 0

)(Q;h 00

)) is exat in the omplex

L

D

(X;p)Theaimofthissetionistosolvetheequation6.2inafuntorialway.

Wewillsaythattheexatsequene issplitif(E;h) istheorthogonaldiret

sum(S;h 0

)and(Q;h 00

).

Theorem 6.1(Gillet andSoule[13℄). Let'beastableinvariantpowerseries.

Toeahexat sequeneof hermitian vetorbundle

:0 !(S;h 0

) f

!(E;h) !(Q;h 00

) !0

we an assign a dierential form 'e

1 () 2

L

p D

2p 1

(X;p), alled the Bott-Chern

form. satisfying thefollowing properties.

1. 2'e

1

='(E;e h) '((S;e h 0

)(Q;h 00

)).

2. If f :X !Y isamorphism of omplexmanifolds then

e '

1 (f

)=f

e '

1 ():

3. If isasplit exatsequeneof hermitianbundles, then'e

1

()=0.

Moreover, these properties haraterize 'e

1

up to Im+Im. That is, up to a

boundaryin the omplex L

D

(X;p).

(18)

TheproofthatthesepropertiesharaterizeBott-Chernformsanbefoundin

[3℄. Letus giveaonstrutionofBott-Chernforms. Themethod wewill followis

amodiationofthemethod ofGilletandSoulethat avoidstheneedto hoose a

partition ofunity. In thiswayweobtainwelldened Bott-Chernformssatisfying

theonditionsoftheorem6.1and notonlylassesuptoIm+Im.

Astandardproedure toprovethattwodierentialformsand,denedon

a dierential variety Y, are ohomologousis thefollowing. First, oneonstruts

ageometrihomotopy betweenand. Thatis, adierentialform dened on

Y R suhthat j

Yf1g

=and j

Y0

=. Fromthis homotopyone obtainsa

primitivefor byintegration:

d Z

1

0

= : (6.3)

Letusdenoteby 1

theurrent

1

()= Z

1

0 :

Thentheequation6.3anbeexpressedastheequationinurrents

d 1

1 Æ

0

; (6.4)

whereÆ

0 andÆ

1

aretheDiradeltaurrentsenteredat 0and1respetively. We

willadapt theaboveproeduretoDeligneohomology.

Letusassumeforawhilethat thehermitianmetrih 00

onQisthehermitian

metri indued by the metri hof E. The rst step is to onstrut a geometri

homotopybetweenthehermitianvetorbundles(E;h)and(S;h 0

)(Q;h 00

). This

homotopywillbeparametrizedbytheomplexprojetivelineinsteadofbytheunit

interval. Let (x : y)behomogeneous oordinates of P 1

=P 1

C

. Then x and y are

setionsofthebundleO

P

1(1). ThestandardmetriofC 2

induestheFubini-Study

metrionO

P

1(1). Letusdenotebyg thismetri. Then

g(x)= xx

xx+yy

and g(y)= yy

xx+yy :

Let p

1

: XP 1

! X and p

2

:X P 1

! P 1

denote the projetions. Let

us write E(1) = p

1 E p

2

O(1) and S(1) = p

1 Sp

2

O(1). Let us onsider the

morphism

: S ! S(1)E(1)

s 7 ! sy+f(s)x:

ObservethatthevetorbundleS(1)E(1)hasametriinduedbythemetrisof

S,E andO(1).

Definition 6.2. Thetransgressionbundle assoiatedto theexatsequene

isthehermitianvetorbundle

tr

1

()=oker( )

withthehermitianmetriinduedbythemetriofS(1)E(1).

Therestritionsofthetransgressionbundletr

1 ()are

tr

1 ()j

X(0:1)

=(E;h);

(6.5)

tr ()j =(S;h 0

)(Q;h 00

):

(6.6)

(19)

Thus tr

1

() is ageometri homotopy between (S;h)(Q;h ) and (E;h). Note

thatto obtain6.5wehadto assumethat h 00

istheinduedmetri.

Theseondstepisto obtainageometrihomotopyofdierentialforms. This

homotopyisgivenbytheform'(tre

1

()). ThenthefuntorialityoftheChernforms

andtheequations6.5and6.6implythat

e ' (tr

1 ())j

X(0:1)

='e((E;h)); (6.7)

e ' (tr

1 ())j

X(1:0)

='e((S;h 0

)(Q;h 00

)): (6.8)

The third step is to integratethe geometri homotopy to obtaina primitive.

Let t = x=y be an absolute oordinate in P 1

. Let [1=2logtt℄ denote the urrent

dened by

[1=2logtt℄()= 1

2i Z

P 1

1

2 logtt:

Theurrent[1=2logtt℄will playtherole,in Deligneohomology,thattheurrent

1

playsin de Rham ohomology. Theanalogueof equation 6.4 isthe Poinare-

Lelongequation(seeforinstane[16℄)

2[1=2logtt℄=Æ

(0:1) Æ

(1:0) : (6.9)

Definition 6.3. TheBott-Chernform assoiatedtotheexatsequene and

thepowerseries 'isthedierentialform

e '

1

()=[1=2logtt℄(tr

1 ()):

(6.10)

Equations6.7,6.8and6.9implytheondition1oftheorem6.1. Moreoverthe

funtoriality(ondition2) islearfromtheonstrutionofBott-Chernforms.

Lemma 6.4. If isasplit exatsequenethen'e

1

()=0.

Proof. Letusonsiderthemorphism:P 1

!P 1

givenby(x:y)=(y:x).

Theline bundle O(1)with theFubini-Studymetriis invariantunder

. Sine

issplit,themap inthedenitionofthetransgressionbundleis

: S ! S(1)S(1)Q(1)

s 7 ! sy+sx+0:

Therefore,bytheinvarianeofO(1),

tr

1

()is theokernelofthemorphism

0

: S ! S(1)S(1)Q(1)

s 7 ! sx+sy+0;

whih is isometri to tr

1

(). Therefore

e '(tr

1

()) = ' (tre

1

()). Thus it is an

even form. On the other hand, the urrent [1=2logtt℄ is odd:

[1=2logtt℄ =

[1=2logtt℄. Hene'e

1

()=[1=2logtt℄(tr

1

())=0.

Letusassumenowthatthemetrih 00

ofQisarbitrary. Leth 000

bethehermitian

metrionQinduedbythemetrih. Thenfromtheexatsequeneweandene

twonewexatsequenes.

1

:0 !(S;h 0

) !(E;h) !(Q;h 000

) !0

2

:0 !(Q;h 00

) !(Q;h 000

) !0 !0:

(20)

Definition 6.5. Let

:0 !(S;h 0

) !(E;h) !(Q;h 00

) !0

beanexatsequeneofhermitianvetorbundles. Let'beastableinvariantpower

series. ThentheBott-Chernform assoiatedto'anf is

e '

1 ()='e

1 (

1

)+'e

1 (

2

)

Remark 6.6. Sine,byLemma6.4theBott-Chernoftheexatsequene

0 !(Q;h) !(Q;h) !0 !0

is zero,if isanexatsequene withthe thirdmetriinduedby theseond one

thendenition 6.3givesthesameresultasdenition 6.5.

7. Exatubes

Let X be a smooth quasi-projetive variety over C. Let us x a small full

subategoryE=E(X)oftheategoryofalgebraivetorbundlesoverX,whihis

equivalenttoit.

Let h 1;0;1i be the ategory assoiated to the ordered set f 1;0;1g. Let

h 1;0;1i n

bethen-thartesianpower,andleth 1;0;1i 0

betheategorywithone

elementandonemorphism. FollowingLoday[22℄,wedeneexatubesasfollows:

Definition 7.1. Anexatn-ubeofEisafuntorFfromh 1;0;1i n

toEsuh

that,forallintegers1in,andalln 1-tuples(

1

;:::;

n 1

)2h 1;0;1i n 1

thesequene

F

1;:::;i 1; 1;i;:::;n

1

!F

1;:::;i 1;0;i;:::;n

1

!F

1;:::;i 1;1;i;:::;n

1

isashort exatsequene. Wehavewritten F

1;:::;n

forF(

1

;:::;

n ).

We will denote by C

n

E the ategory of exat n-ubes. It is a small exat

ategory. WewillwriteC

n

E=Ob(C

n E).

Definition 7.2. Given an exat n-ube F and integers i 2 f1;:::;ng, j 2

f 1;0;1g,the fae j

i

F istheexatn 1-ubedenedby

j

i F

1;:::;n

1

=F

1

;:::;

i 1

;j;

i

;:::;

n 1 :

Examples7.3.

1. Anexat0-ubeisanelementofOb(E).

2. Anexat1-ubeisanexatsequeneofobjetsofE.

3. Foreahi2f1;:::;ng,weanseeanexatn-ubeF astheexatsequene

ofexatn 1-ubes

0 ! 1

i

F !

0

i

F !

1

i

F !0

This exatsequenewill bedenoted

i

F. Notethat F is haraterizedby

anyoftheexatsequenes

i F.

Let ZC

n

(E) be the free abelian group generated by C

n

(E). Let us dene a

dierentiald:ZC

n

(E) !ZC

n 1

(E)bytheformula

d= n

X 1

X

( 1) i+j+1

j

i :

(21)

It iseasyto see thatd =0;thus wehaveobtainedahomologyomplexdenoted

ZC

(E). Sine weareusingaubitheory,in orderto obtaintherighthomology,

weneedtofatoroutbythedegenerateelements.

Foreahexatn 1-ubeF,andeahintegeri2f1;:::;ngwewilldenoteby

s i

1

F theexatn-ubedenedbytheexatsequene(seeexample7.3.3)

i (s

i

1

F):0 !0 !F Id

!F !0:

Analogouslywedenes i

1

bytheexatsequene

i (s

i

1

F):0 !F Id

!F !0 !0:

The exat ubes in the image of s

1 and s

1

are alled degenerate n-ubes.

Clearly the dierential d sends a degenerate ube to a linear ombination of de-

generateubes. Thereforethesubgroupgeneratedbyalldegeneratedubesforma

subomplexof ZC

(E) denotedbyD

.

Definition7.4. Thereduedubial omplex oftheategoryEis

e

ZC

E=ZC

E/D

:

ThehomologyoftheomplexZC red

EisloselyrelatedtotheK-theoryofX.

Forinstane,letS

EbetheWaldhausenspaeassoiatedwiththeategoryE[32℄.

Then

K

i

(X)=

i+1 jS

Ej:

Now,as in[33℄, [8℄or[24℄,oneanonstrutamorphismofomplexes

:ZS

E[1℄ ! e

ZC

E:

Composing withtheHurewiz morphismoneobtainsanaturalmap

K

i

E !H

i (

e

ZC

E):

Forthepurposeofonstrutingharateristilassesthismapisenough(see[8℄).

But R. MCarthy [24℄ has given a preise desription of the homology of e

ZC

E

thatmakesthisomplexmuhmoreinteresting.

Theorem 7.5. The homology of e

ZC

E is the homology of the algebrai K-

theoryspetrumof the ategory E. In partiular

K

i

(E)Q

= H

i (

e

ZC

E)Q:

Moreover,theuseofubesmakes e

ZC

Everywellbehavedtostudy produts.

Definition 7.6. Let F be an exat n-ube and let G be an exat m-ube.

ThenFGistheexatn+m-ubegivenby

(FG)

1;:::;n+m

=F

1

;:::;

n G

n+1

;:::;

n+m :

This produt makes e

ZC

E an assoiativedierentialalgebra whih is homo-

topiallyommutative. Thereforeitshomologyhasthestrutureof anassoiative

andommutativealgebra.

Theorem 7.7(R. MCarthy[24℄.). The morphism

K

(E) !H

(

e

ZC

E)

(22)

Wewanttointroduehermitianmetrisin thevetorbundles.

Definition 7.8. LetE=E(X)betheategorywith

ObE= (

(E;h)

E2ObE

hhermitianmetrionE )

and

Hom

E

((E;h);(F;g))=Hom

E (E;F):

Foreah vetorbundle E2Eletus hooseahermitianmetrih

E

. Thisgives

us a funtor F : E ! E. Let G : E ! E be the funtor forget the metri.

These funtors are equivalenes inverse to eah other. In partiular, this implies

thefollowingresult.

Lemma 7.9. Thefuntors FandGinduemorphisms of omplexes

F: e

ZC

E !

e

ZC

E;

G: e

ZC

E !

e

ZC

E;

whih arehomotopy equivalenes, inverseoneof the other.

Proof. ItislearthatGÆF=Id. InadditionthehomotopyhbetweenFÆG

andtheidentityisgiveninthefollowingway. LetF beanelementof e

ZC

n

E. Then

hF istheexatn+1ubedened bytheexatsequene

n

(hF):0 !FÆG(F) Id

!F !0 !0:

TodenehigherBott-Chernformsforexatubesofhermitianvetorbundles,

extendingthetehniqueof setion6,weneedthe third metriin any short exat

sequenetobeinduedbythemiddlemetri. Tothisendweintroduethefollowing

notation.

Definition 7.10. LetF=f(E

;h

)gbeanexatn-ubeofhermitianvetor

bundles. WesaythatFisanemi-n-ube,if,foreahn-tuple=(

1

;:::;

n ),and

eahiwith

i

=1,themetrih

isinduedbythemetrih

(1;:::;i 1;0;i+1;:::;n) .

LetZC emi

EbethesubomplexofZCEgeneratedbythetheemi-n-ubes,and

let D emi

be the subomplex generated by the degenerate emi-n-ubes. We will

write

e

ZC emi

E=ZC emi

E Æ

D emi

e

ZCE:

Letusseethattheomplexes e

ZCEand e

ZC emi

Earehomotopiallyequivalent.

LetF=f(F

;h

)g2C

n

E. Fori=1;:::;nlet 1

i

F bedened by

1

i F

= (

(F

;h

); if

i

= 1;0;

(F

;h 0

); if

i

=1;

where h 0

is the metriindued by h

(

1

;:::;

i 1

;0;

i+1

;:::;

n )

. Thus theoperator 1

i

hanges the metris of the fae 1

i

F by those induedby the metris of the fae

0

i F.

Let 2

i

F betheexatn-ubedeterminedbytheexatsequene

( 2

F):0 ! 1

F !

1

1

F !0 !0:

(23)

Thisn-ubemeasuresthedierenebetweenF and

i F.

Letuswrite

i F=

1

i F+

2

i

F, andletusdenote bythemap

: ZC

n

E ! ZC

n E

F 7 !

(

n :::

1

F; ifn1;

F; ifn=0:

Themap is amorphismofomplexes. Moreover,the imageof liesin the

set of emi-n-ubes and sends degenerate ubesto degenerate ubes. Therefore

themorphisminduesamorphismofomplexes

e

: e

ZCE !

e

ZC emi

E:

Proposition7.11. Themorphism e

isahomotopy equivalene.

Proof. Letusdenoteby

: e

ZC emi

E !

e

ZCE

theinlusion. Observethat,ifF isanemi-n-ubethen

F =F+ degenerateelements.

Therefore e

Æ =Id. LetF and Gbethemorphisms of omplexesof lemma 7.9.

SineFÆGishomotopiallyequivalenttotheidentity,weobtaintheequivalene

FÆGÆÆ e

Æ e

:

But, sine the funtor G forgets the metri, G(ÆF) G(F) onsists only in

degenerateubes. ThereforeFÆGÆÆ e

=FÆG:InonsequeneÆ e

Id .

8. Higher Bott-Chern forms

Let X bea smoothomplex projetivevariety. Theaim of this setion is to

give a morphism between the omplex of emi-ubes and the omplex D

(X;).

This morphismwill realizetheharateristilassesfrom higherK-theoryto real

Deligneohomology.

Observethat,sinewewanttorealizetheharateristilassesasamorphism

ofomplexesofabeliangroups,wewillobtainamorphismofgroups. Inpartiular

theinduedmap

K

0

(X) ! M

p H

2p

D (X;p)

willbeadditive. ThisforesustohoosetheChernharaterasourharateristi

lass. Nevertheless,sinetheChernlassesanbereoveredfromtheomponents

oftheChernharaterform,theformulaeweobtainanbeappliedtoanyhara-

teristilass.

Thereasonwerestritourselvestoprojetivevarietiesistoavoidthetehnial

diÆulties ofthelogarithmisingularities at innity. Butnotethat amain ingre-

dient in the proof that higher Bott-Chern forms give Beilinson's regulator is the

extensiontoquasi-projetivevarieties(see[8℄)

Letus see thatBott-Chernforms are thedegreeonestepofthe morphismof

omplexeswearelookingfor. If

0 f

00

(24)

isanexatsequeneofhermitianvetorbundles,then

d=(E;h) (Q;h 00

) (S;h 0

):

Therefore

d

D e

h

1

()= 2

e

h

1 ()

= e

h(E;h) e

h(Q;h 00

) e

h(S;h 0

)

= e

h(d):

Toextendthismorphismto higherdegrees, wewill iterate thedenition ofBott-

Chernforms.

LetF=fF

gbeanemi-n-ube. Therststepistoonstrutageometrin-th

order homotopybetweenthevertexesofF. Thereasonfor alling itahomotopy

will belear inproposition8.3. This homotopywill beahermitian vetorbundle

denedoverX(P 1

) n

andwillbealledthen-thtransgressionbundle. Moreover,

we want the n-th transgression bundle to be an exat funtor. Let us dene it

indutively. Ifn=1,anemi-1-ubeisashortexatsequene ofhermitianvetor

bundles withthethird metriinduedby theseond one. Then, thedenition of

the rst transgression bundle is given in 6.2. It follows from the denition that

tr

1

is an exatfuntor. Assume nowthat wehavedened thefuntor tr

n 1 and

thatitisanexatfuntor. Asin 7.3.3,Theemi-n-ubeF anbeseenasanexat

sequeneofemi-n 1-ubes:

n F:

n

(F)0 ! 1

n

F !

0

n

F !

1

n

F !0:

Applyingthefuntortr

n 1

tothisexatsequeneofemi-n 1-ubes,weobtain

anexatsequeneofhermitianvetorbundlesonX(P 1

) n 1

,denotedtr

n 1 (

n F).

Definition 8.1. LetF beanemi-n-ube. Thenthen-thtransgressionbundle

is

tr

n

(F)=tr

1 (tr

n 1 (

n F)):

Sinetr

1

isanexatfuntor,andbyindutionhypothesiswemayassumethat

tr

n 1

isalsoanexatfuntor,weobtainthattr

n

isalsoanexatfuntor.

Remark 8.2. An emi-n-ubeanbeseenas anexatsequene ofemi-n 1-

ubesin n dierentwaysdependingon whih faeswetake. Thus theaboveon-

strutionmaydepend,in priniple,onthehoieofanorderingofthesubindexes.

Nevertheless, the resultis independent of this order. See for instane [8℄ Deni-

tion3.8 foramoresymmetridenitionor[28℄Proposition 2.1for aproof ofthe

invarianeunderpermutations.

Thebasipropertyofthetransgressionbundleisthefollowing.

Proposition8.3 ([8℄Proposition3.9). LetF be anemi-n-ube. Let(x

i :y

i )

behomogeneousoordinates inthe i-thfator of(P 1

) n

. Then

tr

n (F)j

fxi=0g

= tr

n 1 (

0

i F);

tr

n (F)j

fy

i

=0g

=tr

n 1 (

1

i F)

?

tr

n 1 (

1

i F):

Inviewof thisproposition,then-thtransgression bundleof anemi-n-ubeis

(25)

Theseondstepistogofromahomotopyofvetorbundlesto ahomotopyof

dierentialforms. Thisstepissimple;therequiredhomotopyis e

h(tr

n

(F))beause

bythefuntorialityoftheChernharaterformandProposition8.3weobtainthat

e

h(tr

n (F))j

fxi=0g

= e

h(tr

n 1 (

0

i F));

(8.1)

e

h(tr

n (F))j

fyi=0g

= e

h(tr

n 1 (

1

i

F))+ e

h(tr

n 1 (

1

i F)):

(8.2)

Thethird stepisto integratethedierentialform e

h(tr

n

(F))dened onX

(P 1

) n

,toobtainadierentialform, e

h

n

(F),denedonX.

To this end wewill introdue some urrents on (P 1

) n

. Let us introdue the

homologialanalogueof the omplexD

, where these urrents will live. For any

smooth omplex projetive variety Y, let D

(Y) be the omplex of urrents on

Y. That is, D

n

(Y) is the topologial dual of E n

(Y). We will denote by D R

(Y)

thesubomplexof realurrentsand byD

p;q

(Y) theurrentsof typep;q(i.e. the

topologialdualofE p;q

(Y)). WewillwriteD R

(Y)(p)=(2i) p

D R

(Y).

Definition8.4. LetD

(Y;)betheomplexdenedby

D

n

(Y;p)= 8

>

>

>

>

>

<

>

>

>

>

>

: D

R

n

(p)(Y)\ M

p 0

+q 0

=n

p 0

p;q 0

p D

p 0

;q 0

(Y); forn2p:

D R

n+1

(p+1)(X)\ M

p 0

+q 0

=n+1

p 0

>p;q 0

>q D

p 0

;q

0(X); forn2p+1:

The homology of the above omplex is the Deligne homology of Y. If Y is

equidimensionalofdimensionnthen,foranyform!2D j

(Y;p), wewilldenoteby

[!℄2D

2n j

(Y;n p)theurrentdenedby

[!℄()= 1

(2i) n

Z

Y

!^: (8.3)

This morphismrealizesthe Poinareduality. If ! is aloally integrableform,we

willusealsothenotation[!℄todenoteitsassoiatedurrent.

Let us denote by d i

j : (P

1

) n 1

! (P 1

) n

, for i = 1;:::;n and j = 0;1 the

inlusionsgivenby

d i

0 (x

1

;:::;x

n )=(x

1

;:::;x

i 1

;(0:1);x

i

;:::;x

n )

d i

1 (x

1

;:::;x

n )=(x

1

;:::;x

i 1

;(1:0);x

i

;:::;x

n ):

The urrentsweneed in order to integratethe form e

h(tr

n

(F)) are provided

bythefollowingresult.

Theorem 8.5([33℄, seealso[8℄and[15℄). There exists a family of urrents

f[W

n

℄g

n0

with [W

n

℄2D

n ((P

1

) n

;0) suhthat

1. [W

0

℄=1.

2. d

D [W

n

℄= n

X

i=1 ( 1)

i

(d i

0 )

[W

n 1

℄ (d i

1 )

[W

n 1

.

Proof. Byequation6.9, weanwrite [W

1

℄=[1=2logtt℄. Letp

i :(P

1

) n

!

P 1

denote the projetion over the i-th fator. Let us write

i

= p

(1=2logtt).

(26)

Then

i

isaloallyintegrablefuntionover(P 1

) n

. LetI 0

andE 0

bethehomotopy

equivalenesintroduedattheend ofsetion5. Thenwewillwrite

W

n

=I 0

(E 0

(

1

)[[E 0

(

n )) (8.4)

whih is a loally integrable form. The urrent [W

n

℄ is the assoiated urrent.

Condition2is,formally,onsequeneoftheequation6.9andLeibnitzrule(see[8℄

Proposition6.7and[33℄). Expliitly,theformsW

n

aregivenby(ompare[15℄2.2)

W

n

= ( 1)

n

2n!

n

X

i=1 X

2S

n ( 1)

i 1

( 1)

log(t

(1) t

(1) )

dt

(2)

t

(2)

^^ dt

(i)

t

(i)

^ dt

(i+1)

t

(i+1)

^^ dt

(n)

t

(n) :

Definition 8.6. LetF beanemi-n-ube. Then then-thBott-Chernform of

F is

e

h

n

(F)=[W

n

℄(

e

h(tr

n (F)))

= 1

(2i) n

Z

(P 1

) n

W

n

^ e

h(tr

n (F)):

LetEbeasmallategoryofhermitianvetorbundlesoverX (seesetion 7).

Letus write e

ZC n

emi E=

e

ZC emi

n

E. Then e

ZC

emi

Eis aohomologialomplex. The

denition ofhigherBott-Chernformsinduesmaps

h: e

ZC n

emi

E !

M

p D

n

(X;p)[2p℄:

Proposition8.7. The induedmap

h: e

ZC

emi

E !

M

p D

(X;p)[2p℄:

isamorphism ofomplexes.

Proof. Thisproposition isadiretonsequeneof8.1and8.5.

ThemainresultonerninghigherBott-Chernformsis

Theorem 8.8([8℄). The ompositionmap

K

i (X)

Hurewiz

! H

i

( e

ZC

emi E) !

M

p H

2p i

D

(X;R(p))

agrees withBeilinson'sregulator map.

Remark 8.9. The onstrution of higher Bott-Chern an be made working

alwayswiththeThom-Whitneysimple. WedenetheChernharaterforminthe

Thom-Whitneyomplexas

e

h(F)

TW

=E 0

( e

h(F)):

TheanaloguesoftheformsW

n

aretheforms

(W ) =E 0

( )[[E 0

( ):

Références

Documents relatifs

Reconstitue le titre de l'histoire lue en classe en écriture scripte.. Repasse sur les mots en cursive en t'aidant

Cоветские власти тогда не отреагировали заметным образом на нарушение принципа первенства между братскими республиками, считая, по-видимому, что издание на

[r]

programme objet (lang. virt.).

[r]

MRI/fMRI

ÚÐ=ÓBØcÑ Ò?Ð=ÓEØoáÂ߃ՃÐ=ãcã^Ð}Ø ÞÐ ÒÖàÍÖ}ØoÑgàÓ àÌ ÞÐ Ò¤ÑgÓÜà—ÍÖØcÑgàÓ ÞÐ ßÖ â=àÓã^ÑÖ=ÓâBÐ

Cureton, William and Charles Rieu, Catalogus codicum manuscriptorum orientalium qui in Museo