• Aucun résultat trouvé

Effect of moisture content on frozen ground strength

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of moisture content on frozen ground strength"

Copied!
20
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Technical Translation (National Research Council of Canada), 1978

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=61aac962-d4bd-40d9-93fb-cd4e5f24b7bc https://publications-cnrc.canada.ca/fra/voir/objet/?id=61aac962-d4bd-40d9-93fb-cd4e5f24b7bc

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20358850

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Effect of moisture content on frozen ground strength

Shusherina, E. P.; Bobkov, Y. P.; National Research Council of Canada.

Division of Building Research

(2)

NATIONAL RESEARCH COUNCIL OF CANADA CONSEIL NATIONAL DE RECHERCHES DU CANADA

TECHNICAL TRANSLATION

91

TRADUCTION TECHNIQUE

A N A L Y Z E D

T i tl e/Ti t r e : E f f e c t o f m o i s t u r e c o n t e n t on f r o z e n ground s t r e n g t h ( 0 v l i y a n i

i

v l a z h n o s t i merzlykh gruntov na i kh prochnost)

Au thors/Au t e u r s : E.P. Shusherina and Yu. P. Bobkov

Reference/Reference: Merzl otnye I s s 1 edovaniya, 9: 122-1 37, 1969 Trans1 ator/Traducteur: V . Poppe

Canada I n s t i t u t e f o r I n s t i t u t canadien de

S c i e n t i f i c and Technical 1 ' i n f o r m a t i o n s c i e n t i f i q u e I n f o r m a t i o n e t technique

Ottawa, Canada KIA OS2

(3)

PREFACE

S t r e n g t h p r o p e r t i e s o f f r o z e n s o i l s have been shown b y many i n v e s t i g a t o r s t o be a f u n c t i o n o f t h e t o t a l m o i s t u r e c o n t e n t , expressed as a r a t i o o f t h e w e i g h t o f w a t e r c o n t a i n e d i n t h e f r o z e n s o i l t o t h e d r y w e i g h t o f t h e s o i l m a t r i x . The a u t h o r s o f t h i s paper have i n v e s t i g a t e d t h e e f f e c t o f t o t a l m o i s t u r e c o n t e n t o n t h e u n i a x i a l compressive s t r e n g t h o f t h r e e f r o z e n s o i l s (supes, s u g l i n o k and c l a y ) under s h o r t - t e r m l o a d i n g a t t e m p e r a t u r e s between -1 OOC and - 5 5 ' ~ . P o l y c r y s t a l l i n e i c e specimens were

a l s o t e s t e d under s i m i l a r c o n d i t i o n s . \

The compressive s t r e n g t h o f a l l f r o z e n s o i l s i n c r e a s e s a t m o i s t u r e c o n t e n t s s h o r t o f c o n i p l e t e w a t e r s a t u r a t i o n and decreases when t h e s o i l i s f u l l y s a t u r a t e d o r o v e r s a t u r a t e d w i t h m o i s t u r e g r a d u a l l y a p p r o a c h i n g t h e compressive s t r e n g t h o f p u r e i c e .

The d i v i s i o n i s g r a t e f u l t o M r . V . Poppe, T r a n s l a t i o n S e r v i c e s , Canada I n s t i t u t e f o r S c i e n t i f i c and T e c h n i c a l I n f o r m a t i o n , N a t i o n a l Research C o u n c i l o f Canada, f o r t r a n s l a t i n g t h i s paper and t o M r . T.H.W. Baker o f t h i s D i v i s i o n , f o r c h e c k i n g t h e t r a n s 1 a t i o n f o r t e c h n i c a l a c c u r a c y . C.B. Crawford, D i r e c t o r , D i v i s i o n o f B u i l d i n g Research. Ottawa, O n t a r i o , J a n u a r y 1978

(4)

EFFECT OF MOISTURE CONTErlT ON FROZEN GROUND STRENGTH

The m o i s t u r e c o n t e n t o f f r o z e n s o i l s ( t h e t o t a l c o n t e n t o f i c e and u n f r o z e n w a t e r ) i s one of t h e most i m p o r t a n t f a c t o r s w h i c h d e t e r m i n e t h e s t r e n g t h o f f r o z e n s o i l s . However, t h e r o l e o f t h i s f a c t o r has ~ o t been a d e q u a t e l y s t u d i e d , a l t h o u g h t h e e f f e c t of t h e m o i s t u r e c o n t e n t on t h e s t r e n g t h o f f r o z e n s o i l s was i n v e s t i g a t e d b y s e v e r a l a u t h o r s 1 $3-10)

The a v a i l a b l e d a t a r e f e r t o d i f f e r e n t s o i 1 s . ( c o m p o s i t i o n , s t a t e ) and d i f f e r e n t e x p e r - i ~ i i e n t a l c o n d i t i o n s ( t e n i p e r a t u r e , t y p e o f d e f o r m a t i o n , d u r a t i o n o f l o a d i n g ) . The t e s t s were performed m a i n l y on specinlens w i t h a d i s t u r b e d s t r u c t u r e . The g r a i n s i z e c o m p o s i t i o n and t h e m o i s t u r e c o n t e n t v a r i e d w i t h i n a w i d e r a n g e o f v a l u e s . I n most e x p e r i m e n t s t h e r a n g e o f t h e m o i s t u r e c o n t e n t s extended beyond t h e A t t e r b e r g l i m i t s ( t h e upper and t h e l o w e r ) . I n some e x p e r i m e n t s , t h e m o i s t u r e c o n t e n t amounted t o a f e w p e r c e n t , w h i l e i n o t h e r i t exceeded t h e w a t e r r e t a i n i n g c a p a c i t y o f t h e s o i l . Most e x p e r i m e n t s were c a r r i e d o u t a t t e ~ i p e r a t u r e s r a n g i n g f r o m

- l 0 c

t o - 1 0 ' ~ 93-8)

,

much f e w e r were performed a t - 1 0 ' ~ t o - 2 0 ' ~ 4 y 7 y 9 )

,

and s t i l l f e w e r

O 4,9) o r l o w e r ( - 5 5 0 ~ ) ~ ) . The d e f o r m a t i o n a t t e m p e r a t u r e s o f - 2 0 ' ~ t o -40 C t e s t s i n c l u d e d u n i a x i a l compression and t e n s i o n , s h e a r , p e n e t r a t i o n t e s t i n g , e t c . As a r u l e , l o a d i n g was of s h o r t d u r a t i o n ( f r o m f r a c t i o n s o f a second6) ,, t o 20

-

30 m i n u t e s ) . E x a m i n a t i o n o f a v a i l a b l e d a t a y3-10) shows t h a t t h e e f f e c t o f t h e m o i s t u r e c o n t e n t o n t h e s t r e n g t h o f f r o z e n s o i l s may v a r y .

A c c o r d i n g t o W .A. T s y t o v i c h and O.M. ~ u m e n s k a ~ a ~ s 7 ) , who p e r f o r m e d

u n i a x i a l compression t e s t s on sand, s u g l i n o k * , supes**, and c l a y a t - 5 ' ~ and - 1 ~ O C , t h e s t r e n g t h o f f r o z e n s o i l i n c r e a s e s w i t h i n c r e a s i n g ~ n o i s t u r e c o n t e n t

b u t t h e n f a l l s t o a c e r t a i n 1 i m i t . As a r u l e , t h e a s c e n d i n g 1 imb o f t h e c u r v e c o r r e s p o n d s t o an i n c o m p l e t e and r i s i n g s a t u r a t i o n o f f r o z e n s o i l

,

whi 1 e t h e descending 1 imb corresponds t o corr~pl e t e s a t u r a t i o n .

*

S u g l i n o k

-

c l a y e y s i l t w i t h some sand, c o n t a i n s 10 t o 30% c l a y s i z e b y w e i g h t w i t h p a r t i c l e s l e s s t h a n 0.005 mm i n s i z e , 0.005 b e i n g t h e d i v i d i n g

l i n e between c l a y s i z e and s i l t s i z e i n t h e S o v i e t s o i l c l a s s i f i c a t i o n ( T r a n s l

. ) .

**

Supes

-

s i l t y sand w i t h some c l a y , c o n t a i n s 3 t o 10% c l a y s i z e by w e i g h t w i t h p a r t i c l e s l e s s t h a n 0.005 mm i n d i a m e t e r ( T r a n s l . )

.

(5)

Similar r e s u l t s were obtained by E . P .

Shusherina and

Y u .

P .

~obkov" in uniaxial compression t e s t s

o n

super

and

suglinok a t temperatures

0

ranging from - 1 0 ' ~ t o -55 C .

I n

the case of supes, an increase in the

moisture content a t incomplete and r i s i n g saturation was accompanied by an

increase in the strength.

The l a t t e r f e l l when saturation was complete. I n

the case of suglinok, the pores were almost completely f i l l e d with i c e and

unfrozen water and a reduction in the moisture content was accompanied by a

reduction in strength. I n the case of clay, however, t h e same experimental

conditions led t o d i f f e r e n t r e s u l t s : when saturation was complete, the

strength of frozen clay increased or remained practically the same as the

moisture content was r i s i n g .

Apart from the aforemen t i oned experiments

3 9 7 9 9 ) ,

we should also

mention the work of

G . M .

Veselov, A . I . Zelenin and A . P . stepanovl

~ ~ 1 ,

who too

observed a peak on the curves i l l u s t r a t i n g the dependence of the strength of

frozen s o i l s on t h e i r moisture content. The l a t t e r authors experimented with

a wide range of temperatures

(-1°c

t o

-40°c), d i f f e r e n t s o i l s (sand, supes,

suglinok, clay) and d i f f e r e n t types of deformation (cutting, f a i l u r e under an

impact

load,

uniaxial

crushing

and rupture, penetration

t e s t i n g ) .

Unfortunately, no allowances were made f o r the f i l l i n g - i n of pores with i c e

and unfrozen water.

I n

the experimental data of N . K . Pekarskaya and

G . A .

Shloido 5,6)

o n

d i f f e r e n t s o i l s (sand, supes, clay) a t - l O c

t o

-loOc, the maximum

o n

the

curves was present only in the case of uniaxial rupture.

In the case of

uniaxial compression, shear and penetration, the strength of frozen s o i l s

increased with t h e i r moisture content.

Water saturation was determined by

these authors only in the uniaxial compression t e s t s on supes, where i t was

p r a c t i c a l l y compl e t e .

The data of

M . L .

~ h e i

kov8) f o r completely saturated c l a y , supes

and s i l t show t h a t a t about

-zOc,

the shear strength i s practically

independent of the moisture content. However, a t - 5 ' ~ ~

the shear strength

increases with the moisture content. This was also noted by R .

on^")

who

performed shear t e s t s

on

frozen sand, supes and clay between - 5 ' ~ and -18'~.

The l a t t e r author did

n o t

provide any information

o n

the water saturation of

the specimens.

(6)

Therefore, t h e a v a i l a b l e e x p e r i m e n t a l m a t e r i a l i n d i c a t e s t h a t t h e e f f e c t o f t h e m o i s t u r e c o n t e n t on t h e s t r e n g t h of f r o z e n s o i l s v a r i e s , which i s due t o a number of f a c t o r s , and f i r s t of a l l t h e s a t u r a t i o n w i t h w a t e r , t h e t e m p e r a t u r e , t h e c o m p o s i t i o n o f t h e s o i l s k e l e t o n , and t h e m o i s t u r e c o n t e n t . U n f o r t u n a t e l y , s e v e r a l a u t h o r s d i d n o t pay enough a t t e n t i o n t o t h e s e f a c t o r s , w h i c h makes i t d i f f i c u l t t o a n a l y s e t h e i r d a t a .

E x a m i n a t i o n o f a v a i l a b l e d a t a on t h e dependence of t h e s t r e n g t h o f f r o z e n s o i l s o n t h e i r m o i s t u r e c o n t e n t i n d i c a t e s t h a t i t i s n o t p o s s i b l e t o s u g g e s t any g e n e r a l p a t t e r n s t h i s dependence may f o l l o w f o r t h e main t y p e s o f f r o z e n s o i l s u n d e r c o n d i t i o n s o f b o t h c o m p l e t e and p a r t i a l s a t u r a t i o n w i t h w a t e r .

A t t h e same t i m e , i t i s i m p e r a t i v e t o know t h e s e p a t t e r n s b o t h f o r p r a c t i c a l purposes and f o r t h e s t u d y o f c e r t a i n a s p e c t s of t h e p h y s i c s and mechanics o f f r o z e n s o i l s .

The Department o f Permafrost S t u d i e s , Moscow S t a t e U n i v e r s i t y and t h e VNIIPROMGAS* I n s t i t u t e c a r r i e d o u t e x p e r i m e n t a l s t u d i e s t o d e t e r m i n e t h e r e l a t i o n s h i p between t h e s t r e n g t h o f f r o z e n s o i l s and t h e i r m o i s t u r e c o n t e n t . The e x p e r i m e n t s were conducted on d i f f e r e n t s o i l s w i t h i n a w i d e r a n g e o f t e m p e r a t u r e s and m o i s t u r e c o n t e n t s . E x p e r i m e n t a l d e t a i 1 s. S i n c e i t was q u i t e i n i p o s s i b l e t o d u p l i c a t e even t h e m a i n s i t u a t i o n s w h i c h o c c u r i n n a t u r e , we had t o l i m i t o u r e x p e r i m e n t s t o t h e f o l l o w i n g cases. I n t h e f i r s t s t a g e o f o u r i n v e s t i g a t i o n s we s t u d i e d f r o z e n s o i l s w h i c h were c o m p l e t e l y s a t u r a t e d w i t h w a t e r . O b v i o u s l y , we c o u l d e x p e c t t h a t a t c o n d i t i o n s r e m a i n i n g t h e same ( t h e d e n s i t y o f t h e s o i l s k e l e t o n , t e m p e r a t u r e ) , a decrease i n s a t u r a t i o n w o u l d l e a d t o a r e d u c t i o n i n t h e s t r e n g t h o f f r o z e n s o i l s and t h a t t h e l a t t e r would depend o n t h e m o i s t u r e c o n t e n t .

The e x p e r i m e n t a l s o i l s were supes, s u g l i n o k and c l a y 9 ) , w h i c h were s u b j e c t e d t o u n i a x i a l c o r r ~ p r e s s i o n te s t s u n d e r a s h o r t - t e r m 1 oad. The t e m p e r a t u r e ranged from - 1 0 ' ~ t o - 5 5 ' ~ . The m o i s t u r e c o n t e n t v a r i e d between v a l u e s c o r r e s p o n d i n g t o a minimum p o r o s i t y and t h o s e e x c e e d i n g t h e w a t e r r e t a i n i n g c a p a c i t y o f t h e s o i l . The specimens had a d i s t u r b e d s t r u c t u r e .

*

A l l - U n i o n Research I n s t i t u t e of Gas U t i l i z a t i o n i n t h e N a t i o { , a l Economy and of Underground S t o r a g e of Petroleum, P e t r o l e u m P r o d u c t s and L i q u e f i e d Gas (Trans1

.

)

.

(7)

T h e i r s a t u r a t i o n w i t h w a t e r was t a k e n as 1 , t h e t e x t u r e was massive. The specimf?ns had a c y l i n d r i c a l form and were a b o u t 36 mm i n d i a m e t e r and 8 5

-

8 6 mm i n h e i g h t . P r e p a r a t i o r o f t h e specimens and t h e physico-mechanical

9 p r o p e r t i e s o f t h e e x p e r i m e n t a l s o i l s were d e s c r i b e d e a r l i e r

.

I n a d d i t i o n t o f r o z e n s o i l s we a l s o t e s t e d i c e under i d e n t i c a l c o n d i t i o n s , s i n c e i c e i s t h e main component o f f r o z e n s o i l and d e t e r m i n e s t h e s p e c i f i c mechanical p r o p e r t i e s o f t h e 1 a t t e r . Furthermore, i c e may be r e g a r d e d a s t h e u l t i m a t e s t a t e o f f r o z e n s o i l ( t h e m o i s t u r e c o n t e n t equal t o i n f i n i t y ) .

Experiments were c a r r i e d o u t on 1 ayered, f i n e - c r y s t a l 1 in e i c e ( a v e r a g e u n i t w e i g h t 0.90 g/cm3, p o r o s i t y a b o u t 2 % ) . The average volume o f

3

c r y s t a l s was a b o u t 1 mm

,

t h e t o r t u o s i t y f a c t o r was a b o u t 4.2, and t h e 2 3 s p e c i f i c i n t e r f a c e 61 cm /cm

.

The p r e d o m i n a n t o r i e n t a t i o n o f t h e m a i r o p t i c a l c r y s t a l axes was c h a o t i c b u t i n a b o u t 20% of c r y s t a l s t h e m a i n o p t i c a l axes were o r i e n t a t e d a l m o s t p e r p e n d i c u l a r l y t o t h e i c e l a y e r s . To p r e p a r e t h e specimens, 2 mm l a y e r s o f d i s t i l l e d w a t e r were f r o z e n l a y e r b y l a y e r a t a b o u t - 2 0 ' ~ i n c y l i n d r i c a l s t e e l t u b e s 60

mm

i n d i a m e t e r and 200 mm i n h e i g h t . The l a t e r a l s u r f a c e s o f t h e specimens were m e l t e d down t o g i v e them a c y l i n d r i c a l f o r m . The ends o f t h e i c e specimens were t h o r o u g h l y p o l i s h e d w i t h sand p a p e r . The dimensions o f i c e specimens were i d e n t i c a l t o t h o s e o f f r o z e n s o i l .

The u n i a x i a l compression s t r e n g t h o f f r o z e n s o i l s and i c e was d e t e r m i n e d i n a 30 t o n u n i v e r s a l ZDMK d e v i c e ( f r o m E a s t Germany) a t

-loOc,

-20°c, -40°c, and - 5 5 ' ~ . B o t h l o n g i t u d i n a l and t r a n s v e r s e d e f o r m a t i o n s were measured. The t e s t s were s t o p p e d when t h e l o a d began t o f a 1 1 ( a s i n d i c a t e d b y t h e manometer), w h i c h was u s u a l l y accompanied b y f o r m a t i o n o f v i s i b l e c r a c k s . I n t h e cases where no c r a c k f o r m a t i o n was o b s e r v e d and t h e r e was no decrease i n t h e l o a d , t h e t e s t s were s t o p p e d when l o n g i t u d i n a l d e f o r m a t i o n was o f t h e o r d e r o f 30

-

35%.

The u l t i m a t e s t r e n g t h o f f r o z e n s o i l s and i c e was d e t e r m i n e d from t h e t r u e compression diagrams ( w i t h a l l o w a n c e s f o r t h e a r e a of t h e specimen) as t h e maxinlum r e s i s t a n c e t o u n i a x i a l compression. T h i s method was d e s c r i b e d i n d e t a i l i n a n e a r l i e r s t u d y 9 ) .

(8)

R e s u l t s and d i s c u s s i o n . The maximum v a l u e s o f r e s i s t a n c e o f f r o z e n s o i l s t o u n i a x i a l compression a r e g i v e n i n t h e T a b l e and i n F i g s . 1-3.

The h i g h e s t u n i ? x i a l compression s t r e n g t h o f f r o z e n , c o m p l e t e l y s a t u r a t e d supes was observed a t a m o i s t u r e c o n t e n t o f a b o u t 26% t h r o u g h o u t t h e i n v e s t i g a t e d t e m p e r a t u r e range. The s t r e n g t h decreased as t h e m o i s t u r e c o n t e n t i n c r e a s e d . The l o w e r t h e t e m p e r a t u r e , t h e h i g h e r was t h e e f f e c t o f t h e m o i s t u r e c o n t e n t .

A t m o i s t u r e c o n t e n t s below 26% t h e s t r e n g t h o f supes decreased a t a l l t e m p e r a t u r e s . I t s h o u l d be noted, however, t h a t a t t h e s e w a t e r c o n t e n t s i t was i m p o s s i b l e t o a c h i e v e c o m p l e t e s a t u r a t i o n w i t h w a t e r . Hence t h e d a t a f o r m o i s t u r e c o n t e n t s below 26% s h o u l d n o t b e c o n s i d e r e d .

The t e s t s a t -lo°C showed t h a t t h e r e l a t i o n s h i p between t h e compression s t r e n g t h o f f r o z e n supes and t h e m o i s t u r e c o n t e n t i s n o t l i n e a r : a s t h e m o i s t u r e c o n t e n t i n c r e a s e s , t h e s t r e n g t h decreases a t a s l o w e r r a t e . We may assume t h a t t h e same o c c u r s a t t e m p e r a t u r e s below - l o ° C .

Comparison of t h e s t r e n g t h o f c o m p l e t e l y s a t u r a t e d f r o z e n supes w i t h t h a t o f i c e shows t h a t w i t h i n t h e i n i t i a l r a n g e o f m o i s t u r e c o n t e n t s f r o z e n s o i l i s s t r o n g e r t h a n i c e a t a l l t e m p e r a t u r e s . The l a r g e s t d i f f e r e n c e i n t h e s t r e n g t h o f f r o z e n supes and i c e o c c u r s a t n i o i s t u r e c o n t e n t s o f a b o u t 26%; t h i s d i f f e r e n c e decreases, a s t h e m o i s t u r e c o n t e n t i n c r e a s e s . I t i s a1 so dependent o n t h e t e m p e r a t u r e : as t h e t e m p e r a t u r e i ncreases, t h e d i f f e r e n c e decreases. The d a t a o b t a i n e d a t - 1 0 ' ~ i n d i c a t e t h a t t h e compression s t r e n g t h s o f supes and i c e become i d e n t i c a l a t c e r t a i n n i o i s t u r e c o n t e n t s . On f u r t h e r i n c r e a s e i n t h e m o i s t u r e c o n t e n t , t h e compression s t r e n g t h o f i c e surpasses t h a t o f supes, and t h e d i f f e r e n c e between t h e s t r e n g t h s o f i c e and supes i n c r e a s e s i n accordance w i t h t h e r e l a t i o n s h i p between t h e s t r e n g t h o f supes and i t s m o i s t u r e c o n t e n t ( w i t h d i m i n i s h i n g i n t e n s i t y ) . The same w i l l e v i d e n t l y a p p l y a t t e m p e r a t u r e s be1 ow -1 o°C.

The u n i a x i a l compression s t r e n g t h o f f r o z e n , c o n ~ p l e t e l y s a t u r a t e d s u g l i n o k depends on t h e m o i s t u r e c o n t e n t i n t h e same way a s i n t h e case o f supes: t h e s t r e n g t h of s u g l i n o k decreases a s i t s m o i s t u r e c o n t e n t i n c r e a s e s . I n a g e n e r a l case, t h i s dependence i s n o n l i near, i . e . t h e s t r e n g t h decreases a t a s l o w e r r a t e as t h e m o i s t u r e c o n t e n t i n c r e a s e s .

(9)

'The aforementioned r e 1 a t i o n s h i p s o c c u r a t a1 1 temperatures, and a s t h e temperature decreases, t h e e f f e c t o f t h e m o i s t u r e c o n t e n t on t h e s t r e n g t h i n c r e a s e s ( a s i n t h e case o f supes). I n t h e i n i t i a l m o i s t u r e c o n t e n t rangE, t h e compression s t r e n g t . h o f s u g l i n o k a t - 5 5 ' ~ and - 4 0 ' ~ i s g r e a t e r t h a n t h a t o f i c e , and as t h e m o i s t u r e c o n t e n t i n c r e a s e s , t h e d i f f e r e n c e i n t h e s t r e n g t h s o f s u g i i n o k and i c e decreases. For each t e m p e r a t u r e t h e r e i s a d e f i n i t e m o i s t u r e c o n t e r l t f o r w h i c h t h e cgmpression s t r e n g t h s of f r o z e n s u g l i n o k and i c e become i d e n t i c a l , b u t o n f u r t h e r i n c r e a s e i n t h e m o i s t u r e c o n t e n t t h e c o n ~ p r e s s i o n s t r e n g t h o f s u g l i n o k f a l l s below t h a t o f i c e . As t h e m o i s t u r e c o n t e n t i n c r e a s e s , t h e d i f f e r e n c e between t h e compression s t r e n y t h s of i c e and sugl i n o k i n c r e a s e s a t a s l o w e r r a t e .

A t - 2 0 ' ~ and

-loOc,

t h e s t r e n g t h o f i c e i s h i g h e r t h a n t h a t o f

s u g l i nok t h r o u g h o u t t h e i n v e s t i g a t e d range o f moi s t u r e c o n t e n t s . As a t - 4 1 ~ ~ ~ and -55Oc, t h e d i f f e r e n c e between t h e s t r e n g t h s o f i c e and s u g l i n o k i n c r e a s e s

a t a s l o w e r r a t e as t h e m o i s t u r e c o n t e n t i n c r e a s e s .

For f r o z e n c l a y , t h e dependence o f t h e compression s t r e n g t h on t h e m o i s t u r e c o n t e n t i s a t f i r s t t h e same as f o r supes and s u g l i n o k . A t h i g h e r m o i s t u r e c o n t e n t s , t h e r e may be 170 d i s c e r n i b l e r e l a t i o n s h i p between t h e

s t r e n g t h o f f r o z e n c l a y and i t s m o i s t u r e c o n t e n t (e.g., a t -IO~C), b u t a t s t i l l h i g h e r m o i s t u r e c o n t e n t s t h e s t r e n g t h o f c l a y i n c r e a s e s . T h i s p a t t e r n has been observed a t a l l i n v e s t i g a t e d t e m p e r a t u r e s . However, t h e s t r e n g t h o f c l a y becomes more dependent on t h e m o i s t u r e c o n t e n t as t h e temperature d r o p s .

I n a l l i n v e s t i g a t e d cases, t h e s t r e n g t h o f f r o z e n c l a y i s l o w e r t h a n t h a t o f i c e . A t 1 ow m o i s t u r e c o n t e n t s t h e d i f f e r e r ~ c e between t h e s t r e n g t h s o f i c e and c l a y i n c r e a s e s a t a s t e a d i l y d e c r e a s i n g r a t e , as t h e m o i s t u r e c o n t e n t i ncreases, and a t c e r t a i n m o i s t u r e c o n t e n t s becomes p r a c t i c a l l y c o n s t a n t . T h i s d i f f e r e n c e decreases, as t h e m o i s t u r e c o n t e n t i n c r e a s e s s t i l l f u r t h e r , and t h e s t r e n g t h o f c l a y approaches t h a t o f i c e .

B e f o r e e x p l a i n i n g t h e aforementioned r e l a t i o n s h i p s , 1 e t us examine some g e n e r a l concepts o f t h e s t r e n g t h o f f r o z e n s o i l .

(10)

As i s known, f r o z e n s o i l i s m e c h a n i c a l l y n o n u n i f o r m due t o d i f f e r e n t mechanical p r o p e r t i e s o f i t s components ( s o i l g r a i n s , i c e , u n f r o z e n w a t e r , gases) and t o d i f f e r e n t s t r e n g t h s o f t l - ~ e bonds between i t s s t r u c t u r a l elements ( s o i l g r a i n s , s o i l aggregates, s o i l p a r t i c l e s , i c e i n c l u s i o n s , e t c

.)

.

The s t r e n g t h o f s o i l g r a i n s i s c o n s i d e r a b l y h i g h e r t h a n t h e s t r e n g t h o f o t h e r s o i l components and t h a t o f t h e s t r u c t u r a l bonds.

The s t r e n g t h o f f r o z e n s o i l depends on t h e complex i n t e r a c t i o n o f a l l i t s components and s t r u c t u r a l bonds. The r o l e o f each component depends o n i t s dimensions, i t s mechanical p r o p e r t i e s , and i t s arrangement w i t h r e s p e c t t o o t h e r components.

The dimensions o f t h e components c a n b e d e t e r m i n e d q u a n t i t a t i v e l y from t h e r a t i o o f s p e c i f i c w e i g h t t o u n i t w e i g h t , t h e t o t a l m o i s t u r e c o n t e n t , and t h e m o i s t u r e c o n t e n t due t o u n f r o z e n w a t e r . Some q u a l i t a t i v e d a t a a r e a v a i l a b l e o n t h e mechanical p r o p e r t i e s o f f r o z e n s o i 1 ~ 3 ~ ) .

A t p r e s e n t t h e o n l y a v a i l a b l e d a t a o n t h e m u t u a l arrangement o f components and o n t h e s t r u c t u r a l bonds o f f r o z e n s o i l a r e i n t h e f o r m o f qua1 i t a t i v e d e s c r i p t i o n s . There a r e p r a c t i c a l l y no q u a n t i t a t i v e c h a r a c t e r i s t i c s . S i n c e t h e s t r u c t u r a l bonds a r e g r e a t l y a f f e c t e d by t h e c o m p o s i t i o n o f f r o z e n s o i l , t h e q u a n t i t a t i v e c h a r c t e r i s t i c s of t h e l a t t e r may b e used t o examine t h e s t r u c t u r a l bonds.

The u n i a x i a l compression of f r o z e n s o i l r e s u l t s i n l o c a l shear phenomena, i . e . i n f o r m a t i o n o f f i s s u r e s w h i c h d e v e l o p p r e d o m i n a n t l y i n t h e d i r e c t i o n o f t h e l a r g e s t s h e a r i n g s t r e s s e s . The l a t t e r may be s t r o n g e r t h a n t h e f o r c e s o f i n t e r a c t i o n between t h e components and t h e r e s i s t a n c e o f i c e and u n f r o z e n w a t e r . I f t h e d e n s i t y o f t h e s o i l s k e l e t o n i s s u f f i c i e n t l y h i g h , t h e s o i l p a r t i c l e s a r e n o t o n l y i n c o n t a c t w i t h each o t h e r b u t may adhere t o each o t h e r as w e l l . I n o r d e r t o move d u r i n g shear, t h e p a r t i c l e s must disengage and t h i s may l e a d t o d e s t r u c t i o n o f i c e , r u p t u r e o f f i l m s of u n f r o z e n w a t e r , and f a i l u r e o f s t r u c t u r a l bonds.

To dete,rmine t h e s t r e n g t h o f f r o z e n s o i l i t i s e s s e n t i a l t o know t h e magnitude o f each component ( s o i l s k e l e t o n , i c e , u n f r o z e n w a t e r , a i r ) and t h e i r r a t i o s . I t s h o u l d be borne i n mind t h a t a t a l l o t h e r c o n d i t i o n s b e i n g equal

,

t h e amount o f i c e and u n f r o z e n w a t e r ( a n d hence t h e i r r a t i o ) , as we1 1

(11)

as t h e i r s t r e n g t h , v a r y depending on t h e temperature. Because o f t h i s , t h e s t r e q g t h o f bonds between t h e components o f f r o z e n s o i l i s a l s o dependent on t h e temperature.

The components o f i n v e s t i g a t e d f r o z e n s o i l s a r e shown i n F i g s . 1-3 ( s o i 1 s k e l e t o n

,

i c e , unfrozen water, and a i r )

.

To understand t h e dependence o f t h e u n i a x i a l compression s t r e n g t h on t h e m o i s t u r e c o n t e n t , we s h o u l d b e a r i n mind t h a t t h e mechanism o f d e f o r m a t i o n and f a i l u r e changes w i t h t h e m o i s t u r e c o n t e n t .

A t low m o i s t u r e c o n t e n t s , t h e s k e l e t o n o f frozen supes forms a dense framework whose s t r e n g t h i s g r e a t l y dependent on t h e adhesion o f s o i l p a r t i c l e s . F i l m s o f unfrozen water* occupy a small volume and a r e p r o b a 5 l y i n t e r r u p t e d by s o i l p a r t i c l e s and i c e . I c e f i l l s t h e pores i n t h e framework i n t h e for111 o f s c a t t e r e d i n c l u s i o n s . L o c a l shear, which o c c u r s d u r i n g u n i a x i a l compression i n t h e weakest s p o t s (i .e. voids**, f i l m s o f unfrozen w a t e r , and i c e ) , c a n n o t develop as 1 ong as t h e i n i t i a l d e n s i t y o f t h e s o i 1 s k e l e t o n remains unchanged.

As t h e m o i s t u r e c o n t e n t i n c r e a s e s , t h e d e n s i t y o f t h e s o i l s k e l e t o n and t h e s o i l volume decrease ( F i g . 1

) .

The adhesion between s o i l p a r t i c l e s weakens and t h e v o i d s i n t h e framework i n c r e a s e i n s i z e . The volume o f i c e i n c l u s i o n s i n c r e a s e s a c c o r d i n g l y ( F i g . 1 ) . I n t h e i n i t i a l p e r i o d , l o c a l shear develops a l o n g f i l m s o f unfrozen w a t e r and on i c e . The o v e r a l l r e s u l t o f t h i s i s a decrease i n t h e s t r e n g t h o f frozen supes ( F i g .

1 ) .

As l o n g as t h e t o t a l f o r c e r e q u i r e d t o overcome t h e r e s i s t a n c e o f t h e s o i l s k e l e t o n and f i l m s o f unfrozen w a t e r d u r i n g shear i s g r e a t e r t h a n t h e f o r c e r e q u i r e d t o develop shear i n t h e i c e i n c l u s i o n s , t h e o v e r a l l s t r e n g t h o f f r o z e n s o i l w i l l exceed t h e s t r e n g t h o f i c e . As t h e m o i s t u r e c o n t e n t i n c r e a s e s , t h e s t r e n g t h o f f r o z e n s o i l approaches t h a t of i c e , and when t h e s t r e n g t h e n i n g e f f e c t o f t h e s o i 1 s k e l e t o n i s c o m p l e t e l y balanced o f f

by t h e weakening e f f e c t o f t h e water f i l m s and gas, t h e s t r e n g t h of f r o z e n s o i l becomes equal t o t h a t o f i c e . A t s t i l l h i g h e r m o i s t u r e c o n t e n t s , t h e weakening e f f e c t o f u n f r o z e n w a t e r exceeds t h e s t r e n g t h e n i n g e f f e c t of the s o i l s k e l e t o n . As a r e s u l t o f t h i s , f r o z e n s o i l becomes weaker t h a n i c e . As

*

Unfrozen w a t e r c o n t a i n e d i n frozen supes cannot be d e t e r ~ i . ~ e u by t h e

c a l o r i m e t r i c method b u t i t i s present.

**

I n most cases, t h e v o i d s occupied 1 t o

52

o f t h e volume of frozen

supes

( F i g . 1 ) .

(12)

t h e r o l e o f t h e s o i l s k e l e t o n d i m i n i s h e s , t h e d i f f e r e n c e between t h e s t r e n g t h o f i c a and t h a t o f s o i l i n c r e a s e s . I t was mentioned e a r l i e r t h a t as t h e m o i s t u r e c o n t e n t o f f r o z e n supes i n c r e a s e s , i t s s t r e n g t h decreases a t a d i m i n i s h i n g r a t e . T h i s r e f 1 e c t s t h e processes which t a k e p l a c e d u r i n g f a i l u r e o f t h i s s o i l a t d i f f e r e n t m o i s t u r e c o n t e n t s . The r a p i d decrease i n t h e s t r e n g t h i n t h e i n i t i a l r a n g e o f m o i s t u r e c o n t e n t s i s e v i d e n t l y r e l a t e d t o a r a p i d decrease i n t h e s t r e n g t h e n i n g e f f e c t of t h e s o i l s k e l e t o n . The l e v e l l i n g o f f o f t h e a-w c u r v e a t h i g h e r m o i s t u r e c o n t e n t s can be e x p l a i n e d b y t h e d i m i n i s h i n g r o l e o f t h e s o i l s k e l e t o n and a n i n c r e a s e i n t h e volume o f i c e .

Temperature a f f e c t s t h e dependence o f t h e u n i a x i a l compression s t r e n g t h o f f r o z e n supes on t h e m o i s t u r e c o n t e n t because i t causes changes i n t h e amount and s t r e n g t h o f unfrozen w a t e r and i c e , w h i c h i n t u r n a f f e c t s t h e r e s i s t a n c e o f s o i l p a r t i c l e s t o d i s p l a c e m e n t .

I n t h e case of f r o z e n s u g l i n o k , a s w e l l a s f r o z e n c l a y ( b u t o n l y i n t h e i n i t i a l r a u g e o f m o i s t u r e c o n t e n t s ) , t h e r e l a t i o n o f t h e u n i a x i a l compression s t r e n g t h t o t h e m o i s t u r e c o n t e n t a t f u l l s a t u r a t i o n i s g e n e r a l l y t h e same as f o r supes. However, t h e ~ e a k e n i n g e f f e c t o f unfrozen w a t e r i n t h e s e s o i l s i n c r e a s e s ( t h e q u a n t i t y o f t h i s w a t e r i n c r e a s e s ) . T h i s i s e s p e c i a l l y t r u e i n t h e case o f c l a y .

The e f f e c t o f t h e g r a i n s i z e c o m p o s i t i o n on t h e a-w r e l a t i o n s h i p i s shown i n F i g . 4. It f o l l o w s from F i g . 4 t h a t t h i s e f f e c t m a n i f e s t s i t s e l f s t r o n g e s t i n t h e case o f supes and l e a s t i n t h e case o f c l a y ( i n t h e i n i t i a l r a n g e o f m o i s t u r e c o n t e n t s ) . The e f f e c t o f t h e g r a i n s i z e c o m p o s i t i o n decreases as t h e m o i s t u r e c o n t e n t i n c r e a s e s , which i s due t o t h e r i s i n g i m p o r t a n c e o f i c e .

F i g . 4 shows f u r t h e r t h a t t h e e f f e c t o f t h e g r a i n s i z e c o m p o s i t i o n i s s t r o n g e s t a t - 5 5 ' ~ and decreases a s t h e t e m p e r a t u r e i n c r e a s e s .

The e f f e c t o f t h e g r a i n s i z e c o m p o s i t i o n manifests i t s e l f a l s o i n t h e f a c t t h a t a t - 2 0 ' ~ and

-loOc

i n t h e case o f sugl-inok, and a t a l l i n v e s t i g a t e d temperatures

i

n t h e case o f c l a y , t h e u n i a x i a l compression s t r e n g t h i s never h i g h e r t h a n t h a t o f i c e , a s i n d i c a t e d by t h e a-w c u r v e s (see F i g s . 2, 3 and 4 ) . The e x p l a n a t i o n i s t h a t a t t h e s e t e m p e r a t u r e s t h e

(13)

s t r e n g t h e n i n g e f f e c t of t h e s k e l e t o n o f s u g l i n o k and c l a y i s l e s s t h a n t h e weakeninp e f f e c t o f unfrozen water. The s t r e n g t h o f s u g l i n o k exceeds t h a t o f

i c e a t - 4 0 ' ~ and - 5 5 ' ~ ( F i g . 2), which p o i n t s t o a r e d u c t i o n i n t h e weakening e f f e c t o f unfrozen water. E v i d e n t l y t h i s may a l s o a p p l y t o c l a y below -55'~. As was p o i n t e d o u t e a r l i e r , t h e a-w curves f o r supes c o n t a i n segments

i n d i c a t i n g a h i g h e r s t r e n g t h t h a n t h a t o f i c e a t a l l i n v e s t i g a t e d temperatures ( f r o m - 5 5 ' ~ t o - 1 0 ' ~ ) .

Reduction i n t h e s t r e n g t h o f f r o z e n s o i l w i t h i n c r e a s i n g m o i s t u r e c o n t e n t cannot go on i n d e f i n i t e l y . As t h e i c e i n c l u s i o n s i n c r e a s e .in number and s i z e , t h e y j o i n u p forming an i c e framework whose c e l l s a r e t h e n f i l l e d w i t h frozen s o i l c o n t a i n i n g ice-cement and unfrozen water. The volume o f unfrozen water decreases* and t h e r o l e o f t h i s water diminishes ( F i g . 3 ) . The l a r g e s t number o f displacements occurs i n an i c e framework t h e volume o f which i s i n c r e a s i n g ( F i g . 3 ) . The s t r e n g t h o f f r o z e n s o i l begins t o i n c r e a s e and approach t h a t o f i c e .

Therefore, t h e a n a l y s i s o f t h e experimental d a t a shows t h a t under c o n d i t i o n s of complete s a t u r a t i o n , t h e dependence o f t h e u n i a x i a l compression s t r e n g t h o f f r o z e n s o i l s on t h e i r water c o n t e n t i s g e n e r a l l y t h e same, i r r e s p e c t i v e o f t h e g r a i n s i z e composition. The general form o f t h i s dependence i s shown i n F i g . 5. The c u r v e i n F i g . 5 can be d i v i d e d i n t o t h e f o l l o w i n g segments: AB

-

a decreases a s w increases;

u

> uice. A t B, o = uice. BC

-

0 decreases as w increases; a 4 uice. CD

-

a i s p r a c t i c a l l y

independent o f

w .

DE

-

0 increases as w increases; a t E, = i c e ' W m i n i s

t h e m o i s t u r e c o n t e n t which corresponds ( a t f u l l s a t u r a t i o n ) t o t h e minimum p o r o s i t y o f f r o z e n s o i l ( t h e maximum d e n s i t y o f t h e s k e l e t o n ) . The o r d i n a t e o f p o i n t A corresponds t o t h e u n i a x i a l compression s t r e n g t h a t wmin.

The 0 - w r e l a t i o n s h i p s a l s o depend on t h e temperature and t h e

composition of t h e s k e l e t o n of f r o z e n s o i l .

*

Merging o f i c e i n c l u s i o n s w i l l reduce t h e s u r f a c e o f i c e . Because o f t h i s , t h e amount o f unfrozen water i n

w t . %

per d r y sample should decrease and hence V should decrease t o a g r e a t e r e x t e n t than shown i n Table 3, which was combiled on t h e assumption t h a t t h e amount o f unfrozen water

1

oras

independent o f t h e t o t a l moisture c o n t e n t . There a r e some data i n d i c a t - i n g t h a t t h e amount o f unfrozen water increases as t h e t o t a l m o i s t u r e con- t e n t increases. However, some authors b e l i e v e t h a t t h i s i s not so.

(14)

We should n o t e t h a t F i g . 5 a p p l i e s t o s o i l s completely s a t u r a t e d w i t h w a t e r . If s a t u r a t i o n i s n o t complete b u t i s c o n s t a n t f o r a l l m o i s t u r e c o n t e n t s , t h e a-w c u r v e w i l l f l a t t e n o u t and t h e A B segment w i l l tend t o g e t s h o r t e r and may disappear a1 t o g e t h e r . If t h e degree o f s a t u r a t i o n v a r i e s w i t h t h e m o i s t u r e c o n t e n t , t h e n a t u r e o f t h e a-w r e l a t i o n s h i p may be e n t i r e l y d i f f e r e n t . For example, if t h e degree o f s a t u r a t i o n increases w i t h t h e m o i s t u r e c o n t e n t , o n l y t h e s t r e n g t h o f f r o z e n s o i l w i l l i n c r e a s e . F i n a l l y ,

F i g . 5 r e f e r s t o c o n d i t i o n s o f short-term l o a d i n g . Under a long-term load, t h e 0 - w r e l a t i o n s h i p may be d i f f e r e n t .

References

1 .

Veselov, G . M. 0 kharaktere i zmeneniya prochnostnykh s v o i s t v merzlykh gruntov v z a v i s i m o s t i o t

i

kh v l a z h n o s t i . Sb. " F i z i k o - mekhanicheskie s v o i s t v a , d a v l e n i e

i

r a z r u s h e n i e gornykh porod"

(Changes i n t h e s t r e n g t h o f f r o z e n s o i l s i n r e l a t i o n t o t h e i r m o i s t u r e c o n t e n t . I n : "Physico-mechanical p r o p e r t i e s , pressure and f a i l u r e o f s o i l s 1 ' ) , No. 2, Moscow, Izd-vo AN SSSR, 1963. V o i t k o v s k i i

,

K.F. Mekhanicheskie s v o i s t v a 1 Ida (Mechanical p r o p e r t i e s of i c e ) , Moscow, I z d - v o AN SSSR, 1960.

Gumenskaya, 0 .M. V l i y a n i e v l a z h n o s t i i temperatury na s o p r o t i v l e n i e merzlykh gruntov. "Laboratornye i s s l edovaniya mekhanicheski kh

s v o i s t v merzlykh g r u n t o v " ( E f f e c t o f m o i s t u r e and temperature on t h e s t r e n g t h o f f r o z e n s o i l s . "Laboratory s t u d i e s o f mechanical p r o p e r t i e s o f f r o z e n s o i l s " ) , No. 1

,

Moscow-Leningrad, 1936.

Z e l e n i n , A.N., Veselov,

G.M.

and Stepanov, A.P. Rezul ' t a t y

l a b o r a t o r n y k h i s s l e d o v a n i i prochnostnykh s v o i s t v merzlykh gruntov. Sb. "Voprosy gornogo d e l a " ( R e s u l t s o f 1 a b o r a t o r y i n v e s t i g a t i o n s o f t h e s t r e n g t h o f frozen s o i l s . I n "Mining p r o b l e ~ i l s " ) ,

Moscow, U g l e t e k h i zdat, 1958.

Pekarskaya, N.K. Prochnost merzlykh gruntov p r i s d v i g e i ee z a v i s i m o s t o t t e k s t u r y (The shear s t r e n g t h o f f r o z e n s o i l s and i t s dependence o n t h e t e x t u r e ) , Moscow, Izd-vo AN SSSR, 1963. Pekarskaya, N.K., Vyalov, S.S., R o v i n s k i i , M . I . , and Shloido, G . A .

I s s l e d o v a n i y a parametrov p r o c h n o s t i merzlykh gruntov, opredelyayushchikh p r o t s e s s i k h razrusheniya zemleroinymi mashinami. " T r . I V soveshchaniya- seminara po obmenu opytom s t r o i t e l ' s t v a v surovykh k l im a t i c h e s k i kh

u s l o v i y a k h " ( I n v e s t i g a t i o n o f t h e s t r e n g t h parameters which determine t h e w o r k a b i l i t y o f f r o z e n s o i l s u s i n g e x c a v a t i n g equipment. "Proc. I V seminar on t h e exchange o f c o n s t r u c t i o n experience under severe c l i m a t i c c o n d i t i o n s " )

,

Vorkuta, 1966.

(15)

T s y t o v i c h , N .A. and Sumgin, M. I

.'

Osnovaniya mekhani k i merzlykh gruntov (Fundamentals o f mechanics o f f r o z e n s o i l ) , Moscow, I z d - v o AN SSSR, 1937. Sheikov, M. L. S o p r o t i v l e n i e merzlykh gruntov sdvigu. "Laboratornye i ssledovaniya mekhanicheski kh s v o i s t v rnerzlykh gruntov" (Shear s t r e n g t h o f frozen s o i l . I n "Laboratory i n v e s t i g a t i o n s of mechanical p r o p e r t i e s of frozen s o i 1 'I), No. 2, Moscow-Leni ngrad

,

1936.

Shusherina, E.P. and Bobkovy Yu. P. I s s l e d o - a n i e mekhanijiheskikh s v o i s t v merzlykh gruntov p r i n i z k i k h temperaturakh ( o t -10 do -55 C ) ( I n v e s t i g a t i o n o f mechanical p r o p e r t i e s o f f r o z e n s o i l s a t l o w temperature ( f r o m -10 t o -55%), "Merzlotnye i ssledovaniya"

,

i s s u e V I 11, Izd-vo MGU, 1968.

Jong, R.N. S o i l f r e e z i n g c o n s i d e r a t i o n i n f r o z e n s o i l s t r e n g t h . Proc. I n t . Conf. on Permafrost (November 1963). Washington, 1965.

(16)
(17)

F i g u r e 1

l a

-

o o f f r o z e n supes v s . w a t d i f f e r e n t t e m p e r a t u r e (1 t o 4): - 5 5 O ~ , -40°c, -20°c,

-loOc

r e s p e c t i v e l y .

l a , 2a, 3a, 4a

-

oice a t t h e same temperatures. I b

-

R e l a t i v e volumes o f components o f f r o z e n supes

v s . w a t t h e same temperatures a s above (1 t o 4 ) . v = c k

-

' s k e l e t o n "A

-

-

-

' i c e

v~

'unfrozen w a t e r vr = v gas

(18)

Figure 2

2a

-

Same

as

Fig.

1

a

for frozen sugl inok

2 b

-

Same

as

Fig.

1

b

for frozen suglinok

2c

-

Changes in

v

in frozen suglinok

gas

(19)

F i g u r e

3

3 a

-

Same

a s

F i g .

l a

f o r f r o z e n

c l a y 3 b

-

Same

a s

f i g .

1 b

f o r f r o z e n

c l a y

(20)

F i g u r e 4

G vs. w f o r d i f f e r e n t g r a i n s i z e compositions o f f r o z e n s o i l s

a t - 5 5 ' ~

(a),

- 4 0 ' ~ (b)

,

-20°c ( c )

,

-1 OOC

( d )

1

-

supes, 2

-

suglinok, 3

-

c l a y

F i g u r e 5

Références

Documents relatifs

i) The calculated intensities are very close to those obtained by the software CaRIne, ii) There is a difference between the calculated intensities and those given by the base

c Department of Chemical Engineering , Saad Dahlab University of Blida , Blida , Algeria d Laboratory of Environmental Biotechnologies BIOGEP , Ecole Polytechnique d’Alger—10

Par contre si le scénario d’accords agricoles alternatifs a augmenté les prix aux producteurs et l’équité, il a aussi augmenté les dépenses publiques pour le financement

اًﻮْﻀُﻋ ﺔﻴﻧﺪﻤﻟا ﺔﻴﻟوﺆﺴﻤﻟا ﻦﻣ ﻦﻴﻣﺄﺘﻟا ﺠﻟا نﻮﻧﺎﻘﻟا ﻲﻓ روﺮﻤﻟا ثداﻮﺣ جﺎـــــــﺤﻟوأ ﺪـــــــﻨﺤﻣ ﻲـــــــــﻠﻛأ

The nominal result and statistical uncertainty is given in black, while the results of the dominant systematic variations to the nominal model (per Sec. VI ) are given by the

راد ،(ةنراقم ةسارد) كلهتسملا ةيامح دعاوق ءوض يف ةحايسلا دوقع يف ةمالسلا نامضب مازتلالا ،حاتفلا دبع ديلف دباع رهاقلا ،ةيبرعلا ةضهنلا ،ة 2006 ص ، 26..

detection of flooded areas on the 526 MODIS images, chosen to monitor the annual and interannual variations of the flood. The IDL routine automatically computed

the criteria towards design and accepting the latter two as constraints, a proposal for the total form of the campus for 1980 is suggested. The existing