• Aucun résultat trouvé

Exercise sheet

N/A
N/A
Protected

Academic year: 2022

Partager "Exercise sheet"

Copied!
2
0
0

Texte intégral

(1)

EXERCISE SHEET - KERNEL METHODS

STATISTICAL LEARNING COURSE, ECOLE NORMALE SUP ´ERIEURE

Rapha¨el Berthier raphael.berthier@inria.fr

Let X be a set. We recall that that a symmetric function K :X × X → R is a positive definite kernel if the two following equivalent conditions hold:

(a) for allα1, . . . , αn∈R, for all x1, . . . , xn∈ X X

i,j

αiαjk(xi, xj)≥0.

(b) there exists a Hilbert spaceHand a feature mapφ:X → Hsuch that for allx, x0 ∈ X, k(x, x0) =

φ(x), φ(x0) .

1. Examples of positive definite kernels (1) Basic operations. Letk1, k2 be two positive definite kernels on X.

(a) Show thatk1+k2 is a positive definite kernel on X.

(b) Show that the pointwise productk1k2 is a positive definite kernel on X.

(2) Minimum. Show that the function k(x, y) = min(x, y) is a positive definite kernel on R+.

(3) Chi-2. Show that the function k(x, y) = x+yxy is a positive definite kernel on R+ (4) On finite sets. LetX be a finite set, and X =P(X) the collection of all subsets of

X. Show that the function k(A, B) = |A∩B||A∪B| is a positive definite kernel on X. (5) Greatest common divisor. Show that the function k(n, m) = GCD(n, m), where

GCD(n, m) is the greatest common divisor ofnandm, is a positive definite kernel on N.

2. Distance in the feature space

(1) (a) Let k be a positive definite kernel on X. Let H be a Hilbert space and φ : X → H be a feature map such thatk(x, y) =hφ(x), φ(y)i. Express the distance kφ(x)−φ(y)k2 as a function ofk only.

(b) What is the distance in the case of the Chi-2 kernel?

(2) In this question, we want to apply the kernel trick for a simple method for classifica- tion: the distance to the mean. More precisely, we are given points x1, . . . , xn ∈ X and their classesy1, . . . , yn∈ {−1,1}. We define the centers of each class

µ+= 1 n+

X

i,yi=1

φ(xi) µ= 1

n

X

i,yi=−1

φ(xi)

where n+ (resp. n) is the number of points labeled +1 (resp. −1). We classify a new point Φ(x) in the class +1 if and only if it is closer to µ+ than µ in the kernel space.

(2)

2 STATISTICAL LEARNING COURSE, ECOLE NORMALE SUP ´ERIEURE

(a) Express the distance kφ(x)−µ+k2 using the kernelk and the data only.

(b) Express the classication rule explained above using the kernel k and the data only.

(c) Assume now and in the next question thatkµ+k=kµk, and that the two classes are balanced, i.e.,n+=n. Simplify the rule of the previous question.

(d) We now take X = Rd and the Gaussian kernel k(x, y) = exp

kx−yk2 2

. Show that the classification rule boils down to a local averaging rule.

Références

Documents relatifs

STATISTICAL LEARNING COURSE, ECOLE NORMALE SUP ´ ERIEURE.. Rapha¨ el

Show that Γ is an

[r]

Let k be an

La conante de conneivit´e du r´eseau hexagonal a ´et´e calcul´ee par Hugo Duminil-Copin et Stanislav Smirnov en  [  ], r´esolvant ainsi une conje ure formul´ee

La conante de conneivit´e du r´eseau hexagonal a ´et´e calcul´ee par Hugo Duminil-Copin et Stanislav Smirnov en  [], r´esolvant ainsi une conjeure formul´ee en

Rïîð²R;ñŸòRó5ô;NQM*ëÿV èURfM}çíô ä ñIæ S&}XTaTE^UBAmõ÷ö

For those zonotopes, Ziegler proves that the space of tilings can be directed so as to get a graded poset (with a unique minimal element and a unique maximal element), for c ≤ 4. To