• Aucun résultat trouvé

Piles au zinc

N/A
N/A
Protected

Academic year: 2022

Partager "Piles au zinc"

Copied!
53
0
0

Texte intégral

(1)

Faculté Polytechnique

Prof. M. Olivier

Piles au zinc

Marjorie.olivier@umons.ac.be

Auteur

(2)

PILE LECLANCHE

A la cathode:

Graphite inerte

MnO2: oxydant de la réaction électrochimique non conducteur Mélange à du graphite et du noir d’acétylène le tout finement broyé + agent gélifiant

Parfaite cohésion et passage des e-

Collecteur d’e- sous forme de bâton de graphite

(3)

PILE LECLANCHE

A l’anode:

Zinc – constitue le boîtier.

Composé métallique dans

l’électrolyte: le chlorure de zinc Couple Zn2+/Zn

Electrolyte gélifié (gel à base d’amidon de faible résistance interne).

pH proche de 4 f.e.m = 1,5 V

(4)

PILE LECLANCHE

(5)

PILE LECLANCHE

Masse active anodique - Zinc:

Différents additifs:

- Augmentation des propriétés mécaniques

- Déplacement du potentiel de dégagement de H2 (réduire la corrosion)

- Additifs : Cd, Hg, Pb (0,01 à 0,06% en masse)

- Suppression de Hg (toxique): utilisation d’un zinc plus pur (sans impureté métallique)

(6)

PILE LECLANCHE

Milieu électrolytique:

- Solution concentrée (60 à 80% en masse d’eau pour 40% à 20% en masse de sel) de NH4Cl pouvant

comporter ZnCl2

- Sel dissocié dans l’eau en NH4+ et Cl- (milieu conducteur ionique)

- Risque: permet les échanges ioniques se produisant lors des phénomènes de corrosion à l’électrode

négative (autodécharge) ou de certaines parties inactives de la pile (collecteurs, connexions internes et boîtier par exemple)

- Solution de ZnCl2 : meilleures caractéristiques de décharge en régime continu

- Inhibiteurs de corrosion en faible quantité

(7)

PILE LECLANCHE

Milieu électrolytique:

- Consommation de sel lors de la décharge: formation d’un sel dérivé du chlorure de zinc à l’anode

- A la cathode, les protons libérés par les cations

ammonium sont fixés par les O2- de la structure MnO2 - Formation de MnOOH, dans lequel le métal de transition

est à un niveau d’oxydation plus faible (III au lieu de IV) - Diffusion des protons dans la structure du MnO2 pour

accéder aux sites réactifs: importance de la granulométrie de la poudre de MnO2 pour obtenir la capacité la plus

grande

(8)

PILE LECLANCHE

Réactions globales de décharge.

Electrolyte à base de NH4Cl En décharge lente :

En décharge rapide :

Et en prolongeant la décharge :

3 2

4

2

2 2 . 2

2 MnO NH Cl MnOOH ZnCl NH

Zn + + → +

3 2

4

2

2 ( )

2 MnO NH Cl H O MnOOH Zn OH Cl NH

Zn + + + → + +

O H

ZnO O

Mn MnOOH

Zn + 6 → 2 + + 3

(9)

PILE LECLANCHE

Réactions globales de décharge.

Electrolyte à base de ZnCl2 En décharge lente ou rapide :

Et en prolongeant la décharge :

Cl OH

Zn MnOOH

ZnCl O

H MnO

Zn + 2

2

+ 2

2

+

2

→ 2 + 2 ( )

O H ZnO

ZnCl O

Mn Cl

OH Zn

MnOOH

Zn + 6 + ( ) → 2

3 4

+

2

, 2 , 4

2

(10)

PILE LECLANCHE

Capacité pratique

L’ordre de 85 A.h/kg aux faibles régimes

Jusqu’à des valeurs d’environ 35 A.h/kg pour des régimes élevés

(11)

PILE LECLANCHE

(12)

PILE LECLANCHE

(13)

PILE LECLANCHE

En pratique,

Energie massique : 70 Wh/kg Energie volumique: 110 Wh/dm3

Masse volumique moyenne: 1,6 g/cm3

Rendement très dépendant du régime de décharge : A régimes très faibles, la capacité restituée est très

supérieure à celle obtenue à des régimes de décharge élevés (rapport jusqu’à 10)

(14)

PILE LECLANCHE

Applications et formats

Peu de puissance ou un fonctionnement intermittent Exemples:

lampes de poche, postes de radio à transistors,

télécommandes, certains jouets, pendules, caméras super 8, appareils photographiques, flashes électroniques,

allume-gaz, certaines calculatrices, télécommandes diverses, etc…

Les formats fabriqués en très grande quantité sont les formats cylindriques.

(15)

PILE ALCALINE

Différences par rapport à la pile Leclanché:

A l’anode

• Anode toujours en zinc mais ne constitue plus le boîtier.

Poudre pour augmenter la surface réactionnelle

• Collecteur d’e- n’est plus le zinc mais un clou en acier central

Couple Zn(OH)42-/Zn A la cathode

• L’oxydant toujours MnO2 comprimé avec du graphite

• Collecteur d’e-: boîtier en acier. On peut loger 2,5 X plus de MnO2. La pile alcaline dure plus longtemps

Couple MnO2/MnO(OH)

(16)

PILE ALCALINE

Différences par rapport à la pile Leclanché:

L’électrolyte

• Potasse (KOH) en solution concentrée

F.e.m: sensiblement la même dans les deux cas

• Pour éviter les fuites et les déformations: second boîtier en acier nickelé.

• Les cellules peuvent être plates.

• la gamme de température : – 20°C à +70°C.

• Zinc de haute pureté (99,9%)

(17)

PILE ALCALINE

(18)

PILE ALCALINE

(19)

PILE ALCALINE Zn/KOH(30% à 50%)+ZnO/MnO2

Réaction globale:

MnO ( )   MnOOHH O H O MnOOH ZnO

Zn + + → +

9 20 3

15 2 , 0 : 9 :

20

2 2

1 , 9 0

, 2

0

(20)

PILE ALCALINE

(21)

PILE ALCALINE

En pratique,

Energie massique : 100 Wh/kg (même ordre de grandeur que les piles Leclanché)

Energie volumique: 250 Wh/dm3

Masse volumique moyenne: 2,5 g/cm3

Rendement très supérieur à celui des piles salines à régimes de décharge élevés ou dans des conditions d’utilisation plus sévères. Dans ces conditions, énergie massique pratique des piles supérieure à celle des piles salines

(22)

PILE ALCALINE

Applications et formats

Applications nécessitant de la puissance Exemples:

Appareils mettant en œuvre des petits moteurs électriques : rasoirs, magnétophones portables, appareil photo, jouets, tournebroche

Les formats fabriqués en très grande quantité sont les formats cylindriques

(23)

PILE Zn/Ag2O

Autre oxydant que le dioxyde de manganèse (miniaturisation).

• Fortes énergies massiques et courants de décharge importants

• Fonctionnement aux basses températures (-20°C)

• Fabriquées en faible quantité du fait de leur prix

• Marchés habituels conquis par les piles au Li-MnO2

(24)

PILE Zn/Ag2O

Autre oxydant que le dioxyde de manganèse (miniaturisation)

• Compartiment cathodique: oxyde d’argent mêlé à de la poudre de graphite imprégné de potasse

• Compartiment anodique: zinc en poudre amalgamé et humecté de potasse

• Electrolyte: potasse ou soude en solution (50%)

• Electrodes: deux moitiés de boîtier en acier nickelé (joint en nylon)

• La matière active anodique (pôle négatif) : zinc amalgamé ou de poudre de zinc gélifiée

(25)

PILES BOUTON

(26)

PILES BOUTON Zn/Ag2O

• Masse cathodique: Ag2O + graphite (moins de 10%) pour assurer une conductivité électronique.

• Lors de la décharge: Ag se forme et la conductivité devient très bonne.

• Matière active anodique: poudre de zinc, amalgamé ou

non, de haute surface spécifique et gélifiée par des agents comme la CMC (carboxyméthylcellulose) ou d’autres

liants de type polymère.

• Milieu électrolytique : une solution concentrée de potasse ou de soude.

• Les ions OH- formés à la cathode sont transportés vers l’anode lors de cette décharge.

• Séparateur: matériaux polymères (Ex: dérivés cellulosiques),

(27)

PILES BOUTON Zn/Ag2O Réactions globales de décharge

Ag ZnO

O Ag

Zn +

2

→ + 2

A l’anode: +

+

Zn e

Zn 2 2

+

+ →

24

2

4 OH Zn ( OH )

Zn

→ +

+ OH Zn OH e Zn 4 ( )

24

2

Globalement à l’anode:

O H OH

ZnO OH

Zn ( )

24

→ + 2

+

2

(28)

PILES BOUTON Zn/Ag2O Réactions globales de décharge

A la cathode:

Réaction globale de décharge:

→ +

+

+ H O e Ag OH O

Ag

2 2

2 2 2

2 2

2

O H O Zn 2 Ag Zn ( OH )

Ag + + → +

Consommation d’eau à la cathode pour former des ions OH- Consommation des ions OH- à l’anode pour former à

nouveau l’eau consommée à la cathode

(29)

PILES BOUTON Zn/Ag2O

(30)

PILES BOUTON Zn/Ag2O

(31)

PILES BOUTON Zn/Ag2O

En pratique,

Energie massique : 100 Wh/kg Energie volumique: 395 Wh/dm3

Masse volumique moyenne: 3,95 g/cm3

Très bonne stabilité de la tension en circuit ouvert, en fonction de la durée de stockage et de la température.

Autodécharge assez faible

Entre +20°C et 45°C, la perte de capacité en stockage est d’1% environ par mois pendant 24 mois

(32)

PILES BOUTON Zn/Ag2O

Applications et formats Régimes de décharge élevés.

Les applications actuelles : petites lampes de poche, désignateurs lasers de poche, cellule d’appareils

photographiques, calculatrices, montres, instrumentation Applications militaires spécifiques : la propulsion des

torpilles électriques, l’alimentation des intensificateurs de lumière, les bouées actives, les systèmes de secours, les systèmes de surveillance, certains capteurs de sécurité, etc.

(33)

PILES BOUTON Zn/HgO

Autre oxydant que le dioxyde de manganèse (miniaturisation).

• Stabilité de la tension et très faible autodécharge (le stockage dans les conditions tropicales est possible)

• Plus vendues maintenant car Hg ainsi que ses composés sont très toxiques

• La matière active cathodique (pôle positif) : mélange d’oxyde de mercure très peu conducteur et de graphite compacté pour former l’électrode

• Le milieu électrolytique : gel alcalin de potasse ou de soude

• La matière active anodique (pôle négatif) : zinc amalgamé ou de poudre de zinc

(34)

PILES BOUTON Zn/HgO Réactions globales de décharge.

A l’anode: +

+

Zn e

Zn 2 2

+

+ →

24

2

4 OH Zn ( OH )

Zn

→ +

+ OH Zn OH e Zn 4 ( )

24

2

Globalement à l’anode:

Hg ZnO

HgO

Zn + → +

O H OH

ZnO OH

Zn ( )

24

→ + 2

+

2

(35)

PILES BOUTON Zn/HgO Réactions globales de décharge.

A la cathode:

Consommation d’eau à la cathode pour former des ions OH- Consommation des ions OH- à l’anode pour former à

nouveau l’eau consommée à la cathode

→ +

+

+ H O e Hg OH

HgO

2

2 2

(36)

PILES BOUTON Zn/HgO

(37)

PILES BOUTON Zn/HgO

(38)

PILES BOUTON Zn/HgO

En pratique,

Energie massique : 90 Wh/kg Energie volumique: 355 Wh/dm3

Masse volumique moyenne: 3,95 g/cm3

Très bonne stabilité de la tension en circuit ouvert, en fonction de la durée de stockage et de la température Autodécharge assez faible

(39)

PILES BOUTON Zn/HgO

Applications et formats

Conditions d’utilisation ou de stockage tropicales Energie volumique élevée.

• Les applications actuelles : aides auditives, cellules

d’appareil photo, calculatrices, montres, détecteurs de fumée, parfois des piles étalons, instrumentation,

détonateur, etc

• Les applications militaires: bouées actives, les systèmes de secours, les systèmes de surveillance, certains

capteurs de sécurité, etc

• Formats bouton et cylindriques type R6, R20 et R50

(40)

PILES BOUTON Zn/Air

Composé réactif cathodique (O2) = air environnant (libération de la place et de la masse)

• Possibilité d’une grande quantité de composé anodique

(aboutir à des énergies massiques élevées) pour des régimes de décharge faibles (ex : décharge en un temps supérieur à 10h)

• Cathode non consommable adaptée à la réduction de O2 (Surface d’autant plus grande que l’on cherchera à débiter des courants importants).

• Densités d’énergie très élevées = 150 à 350 Wh/kg (avant décharge).

• Décharge de ces piles = fixation de l’O2 de l’air et stockage des produits de réaction qui alourdissent la pile de façon

significative lors de cette décharge (prévoir l’augmentation de volume des matières actives).

(41)

PILES BOUTON Zn/Air

Capacités: quelques mA.h (bouton) à plus d’un millier A.h (prismatique)

La matière active cathodique (pôle positif) : l’oxygène de l’air environnant (sans stockage): ouverture pour l’accès de O2 à l’électrode afin de permettre sa réduction

Le milieu électrolytique : solution alcaline de potasse

concentrée et pas consommée par la réaction de décharge de la pile

La matière active anodique (pôle négatif) est composée de zinc sous forme soit métallique, soit de poudre de zinc

gélifiée

(42)

PILES BOUTON Zn/Air

(43)

PILES BOUTON Zn/Air

• La masse cathodique = une structure poreuse de carbone (contenant éventuellement un catalyseur de réduction de O2) + un polymère hydrophobe

• Interface dite à « triple contact » = réaction de réduction de l’O2 au contact de la structure poreuse conductrice électronique (apport d’électrons) et

évacuation des espèces ioniques formées vers l’électrolyte.

• Arrivée en O2 en quantité suffisante et rapidement pour des régimes de décharge élevés .

• Le rôle du composé hydrophobe: assurer la stabilité des films d’électrolyte aqueux formés dans le milieu poreux carboné ; ces films sont responsables du bon fonctionnement de l’électrode à air.

(44)

PILES BOUTON Zn/Air Structure à grande surface développée

La stabilité de ces films d’épaisseur micrométrique

(45)

PILES BOUTON Zn/Air

• La matière active anodique = poudre de zinc, amalgamé ou non, de haute surface spécifique et gélifiée.

• Le milieu électrolytique = solution concentrée KOH ou NaOH (30 à 45% en masse)

• Flux de OH- formés à la cathode vers l’anode lors de la décharge

• Accès de l’air environnant à l’intérieur de la pile, risque de formation de carbonate de potassium qui dégrade les

propriétés et le fonctionnement de la pile = dispositif de décarbonatation

• Dans le cas de piles utilisées à régime élevé (décharge en un temps court), la carbonatation de l’électrolyte n’a pas le temps d’avoir lieu

• Opercule de protection avant utilisation

• Le séparateur est identique aux précédents

(46)

PILES BOUTON Zn/Air Réactions globales de décharge.

A l’anode:

Globalement à l’anode:

ZnO O

Zn

OH Zn

O O

H Zn

→ +

→ +

+

2

2 2

2

1 2

) 2 (

1

O H OH

ZnO OH

Zn ( )

24

→ + 2

+

2

→ +

+ OH Zn OH e Zn 4 ( )

24

2

→ + +

+ OH ZnO H O e

Zn 2 2

(47)

PILES BOUTON Zn/Air Réactions globales de décharge.

A la cathode:

Consommation d’eau à la cathode pour former des ions OH-

Consommation des ions OH- à l’anode pour former à nouveau l’eau consommée à la cathode

+

+ H O e OH

O

2

2

2

4 4

(48)

PILES BOUTON Zn/Air

(49)

PILES BOUTON Zn/Air

(50)

PILES BOUTON Zn/Air

En pratique,

Energie massique : 230 Wh/kg Energie volumique: 400 Wh/dm3

Masse volumique moyenne: 1,74 g/cm3

(51)

PILES BOUTON Zn/Air

Applications et formats

Longues durées de décharge (régimes plutôt faibles) et coûts d’usage les plus bas

Les applications actuelles : signalisation des chemins de fer et les clôtures électriques pour le bétail, l’alimentation des aides auditives, des petits systèmes électroniques portables comme les calculatrices et les montres

Formats bouton et prismatiques

(52)

PILES BOUTON

Pile Réaction cathodique

Zn – Ag2O Ag2O + H2O + 2e- → 2 Ag + 2 OH

Zn - HgO HgO + H2O + 2e- → Hg + 2 OH Zn - O2 ½ O2 + H2O + 2e- → 2 OH

Réaction anodique commune: Zn + 4 OH- → Zn(OH)42- + 2 e-

(53)

PILES BOUTON

Matière cathodique

active

fem

(V) Capacité pratique

(Ah)

Energie

(Wh) Energie volumique

(Wh/cm3)

Energie massique

(Wh/kg)

Poids (g) MnO2 1,5 0,1

(5mA x 20h) 0,15 0,26 83,3 1,8

Ag2O 1,6 0,130

(6,5 mA x 20h) 0,2 0,35 100 2

HgO 1,4 0,24

(12 mA x 20h) 0,34 0,6 136 2,5

O2 1,4 0,5

(25 mA x 20h) 0,56 0,98 295 1,9

Piles boutons de 11,6 mm de ,

de 5,4 mm de hauteur (0,57 cm3 en volume)

Références

Documents relatifs

Sachant que les ions sulfates n'ont pas participé à la transformation chimique, quels ions contient la solution incolore sur laquelle on a effectué le test avec la soude.. Écris

• Pour pouvoir utiliser une pile, il faut la déclarer, c'est-à-dire réserver un espace mémoire pour son utilisation, puis initialiser les registres avec les valeurs correspondant

26.3 - Sur un exemple décrit par l’interrogateur, expliquer qualitativement le fonctionnement d’un électrolyseur : sens du courant ou de la tension d’électrolyse,

Comme le cadmium et le cuivre sont des impuretés, les ions Ni 2+ sont en concentration très supérieure dans l’électrolyte, donc le courant de diffusion est très supérieur

- écrire une classe item qui contient un champ nom (String) et deux champs entiers delai et prix ; - ajouter à la classe pile les méthodes associées au triFusion ;.

Le Registre PA vise à recenser les producteurs français et à consolider les déclarations annuelles des producteurs et des opérateurs de traitement : la réglementation

Le tonnage des PA portables traités en France en 2014 est en baisse de 2 % (baisse des quantités d’accumulateurs lithium, Ni-MH et Ni-Cd) et des projets de recherche sont en cours

A cause des émissions liées à la production, mais aussi au stockage et au transport, les émissions d'un bout à l'autre de la chaîne, que l'on appelle encore "du puits à