• Aucun résultat trouvé

Nonparametric estimation of the local Hurst function of multifractional Gaussian processes

N/A
N/A
Protected

Academic year: 2021

Partager "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes"

Copied!
30
0
0

Texte intégral

(1)

HAL Id: hal-00728913

https://hal.archives-ouvertes.fr/hal-00728913

Submitted on 7 Sep 2012

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

multifractional Gaussian processes

Jean-Marc Bardet

To cite this version:

Jean-Marc Bardet. Nonparametric estimation of the local Hurst function of multifractional Gaussian

processes. Colloque Franco-Roumain de Mathématiques Appliquées, Aug 2012, Bucarest, Romania.

�hal-00728913�

(2)

Nonparametric estimation of the local Hurst function of

multifractional Gaussian processes

Joint paper with Donatas Surgailis (Lithuania)

Jean-Marc Bardet

bardet@univ-paris1.fr

SAMM, Universit´

e Paris 1

(3)

Outline

1

Introduction

2

A new nonparametric estimator of the local Hurst function

First definition, assumptions and limit theorems

Second definition and limit theorems

Case of the General multifractional Brownian motion

3

Numerical comparison with the quadratic variations estimators

Definition and limit theorems

Numerical comparisons

(4)

Outline

1

Introduction

2

A new nonparametric estimator of the local Hurst function

First definition, assumptions and limit theorems

Second definition and limit theorems

Case of the General multifractional Brownian motion

3

Numerical comparison with the quadratic variations estimators

Definition and limit theorems

Numerical comparisons

(5)

An athletic example...

0.5 1 1.5 2 x 104 320 340 360 380 400 420 HR(Msec.) Ath.1 0.5 1 1.5 2 x 104 2.2 2.4 2.6 2.8 3 HR(Hertz) Ath.1 0.5 1 1.5 2 x 104 140 150 160 170 180 HR(BPM) Ath.1 0.5 1 1.5 2 2.5 x 104 140 150 160 170 180 HR(BPM) Ath.2 0.5 1 1.5 2 2.5 x 104 110 120 130 140 150 160 170 HR(BPM) Ath.3 0.5 1 1.5 2 2.5 x 104 130 140 150 160 170 180HR(BPM) Ath.4

(6)

A fact...

0 0.5 1 1.5 2 2.5 x 104 −14000 −12000 −10000 −8000 −6000 −4000 −2000 0 2000 4000 6000 1 1.1 1.2 1.3 1.4 1.5 x 104 −13000 −12000 −11000 −10000 −9000 −8000 −7000 −6000 −5000 −4000 −3000 1.2 1.25 1.3 x 104 −1.25 −1.2 −1.15 −1.1 −1.05 x 104

(7)

The fractional Brownian motion

B

H

=

{B

H

t

, t

∈ R}

fractional Brownian motion

(FBM) with H

∈ [0, 1]:

B

H

is a Gaussian centered process with stationary increments and

Var (B

H

t

) = σ

2

|t|

2H

.

Property

A Gaussian process X having stationary increments H-selfsimilar

⇐⇒ X F.B.M. with paremeter H

A trajectory of B

H

is a.s.

α-H¨

olderian

for any α < H:

(8)

Two trajectories of FBM

0 100 200 300 400 500 600 700 800 900 1000 −1.5 −1 −0.5 0 0.5 1 f.B;m. (H=0.3) 0 100 200 300 400 500 600 700 800 900 1000 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 f.B.m. (H=0.9)

(9)

Other definitions of FBM

Harmonizable representation:

B

t

H

= C

1

(H) σ

2

Z

R

e

itξ

− 1

|ξ|

2H+1

W

c

(dξ)

t

∈ R

Temporal representation:

B

t

H

= C

2

(H) σ

2

Z

R

(t

− u)

H−1/2

+

− (−u)

H−1/2

+



W

(du)

t

∈ R

(10)

Another example

0 1 2 3 4 5 6 7 8 9 x 104 200 400 600 800 1000 1200 1400 1600 Time in seconds Heart interbeat in ms 0 1 2 3 4 5 6 7 x 104 −0.5 0 0.5 1 1.5 2 2.5 x 106

Heartbeats during 24h.

=

H

depending on t!

(11)

Multifractional Brownian motion

Two first versions:

Harmonizable representation

(Benassi et al., 1997)

:

X

t

= C

1

(H(t)) σ

2

Z

R

e

itξ

− 1

|ξ|

2H(t)+1

W

c

(dξ)

t

∈ R

Temporal representation

(Peltier et L´

evy-V´

ehel, 1995)

:

X

t

= C

2

(H(t)) σ

2

Z

R

(t

− u)

H(t)−1/2

+

− (−u)

H(t)−1/2

+



W

(du)

t

∈ R

(12)

Aims

From an observed trajectory X

1

n

, X

2n

, . . . , X

1



,

Define a

new non-parametric estimator H(

·)

;

Asymptotic properties

of this estimator.

(13)

Outline

1

Introduction

2

A new nonparametric estimator of the local Hurst function

First definition, assumptions and limit theorems

Second definition and limit theorems

Case of the General multifractional Brownian motion

3

Numerical comparison with the quadratic variations estimators

Definition and limit theorems

Numerical comparisons

(14)

First definition

For t

0

∈ (0, 1) and α ∈ (0, 1), define:

b

H

n,α

(IR)

(t

0

) := Λ

−1

 1

2n

1−α

[nt

0

X

+n

1−α

]

k

=[nt

0

−n

1−α

]

k

n

X

+ ∆

k+1

n

X

k

n

X

+

k+1

n

X



with

k

n

X

= X

k+2 n

− 2X

k+1 n

+ X

kn

Λ(h) = E

h |∆

0

1

B

h

+ ∆

1

1

B

h

|

|∆

0

1

B

h

| + |∆

1

1

B

h

|

i

for h

∈ (0, 1)

= 1 πarccos(−ρ2(h)) + 1 π r 1+ρ2(h) 1−ρ2(h)log 1+ρ2(h)2  with ρ2(h) =−32h +22h+2−78−22h+1 .

=

Explanation...

(15)

Multifractional Gaussian processes?

Assumptions:

X

= (X

t

)

t

is a centered

Gaussian process

such as:

(A)

κ

There exist

η-H¨

olderian

functions 0 < H(t) < 1 and c(t) > 0 for t

∈ (0, 1)

such that for any 0 < ε < 1/2 and j

∈ Z,

max

[nε]≤k≤[(1−ε)n]

n

κ

Cov ∆

k

n

X

, ∆

k+j

n

X



Cov ∆

k

n

B

H(k/n)

, ∆

k+j

n

B

H(k/n)

 − c(

k

n

)

−→

n→∞

0.

(B)

α

There exist C > 0, γ > 1/2 and 0

≤ θ < γ/2 such that for any n ∈ N

and

1

≤ k, k

< n

− q

Cor ∆

k

n

X

, ∆

k

n

X

)



≤ C n

(1−α)θ

(

|k

− k| ∧ n

1−α

)

−γ

.

(16)

Limit theorems for multifractional Gaussian processes

Theorem

Under Assumptions

(A)

κ

and

(B)

α

, for all t

0

∈ (0, 1),

If

0 < α <

2(γ−θ)

γ−2θ

,

b

H

n,α

(IR)

(t

0

)

−→

a.s.

n→∞

H(t

0

).

If

κ

≥ µ and

3γ−2θ+4γ(η∧2)

2γ−2θ

≤ α <

2γ−2θ

3γ−2θ

then for any

ǫ > 0

sup

ǫ<t<1−ǫ

b

H

n,α

(IR)

(t)

− H(t)

= O

p

(n

−µ

).

If

κ

≥ µ

1

and

3γ−2θ+4γ(η∧2)

γ−2θ

≤ α <

3γ−2θ

γ−2θ

then for any

ǫ > 0, δ > 0

sup

ǫ<t<1−ǫ

b

H

n,α

(IR)

(t)

− H(t)

= O(n

−(µ

1

−δ)

)

a.s.

(17)

Central Limit theorem for multifractional Gaussian

processes

Theorem

Let Z

= (Z (t))

t∈(0,1)

be a zero-mean Gaussian process satisfying

(A)

κ

and

(B)

α

,

with

α >

1

1+2(η∧2)

,

κ

1−α

2

and

θ = 0. Then for 0 < t

1

<

· · · < t

u

< 1,

2n

1−α

H

b

(IR)

n,α

(t

i

)

− H(t

i

)



1≤i≤u

D

−→

n→∞

W

(IR)

(t

i

)



1≤i≤u

,

where W

(IR)

(t

i

), i = 1,

· · · , u are inedependent centered Gaussian r.v.’s such as

E[W

(IR)

(t

i

)]

2

:=

h ∂

∂x

2

)

−1

2

(H(t

i

)))

i

2

σ

2

(H(t

i

))

where

σ

2

(H) :=

X

k∈Z

Cov

ψ ∆

0

1

B

H

, ∆

1

1

B

H



, ψ ∆

k

1

B

H

, ∆

k+1

1

B

H



.

(18)

Proof: based on a CLT of triangular arrays of functional of

Gaussian vectors

Theorem (

Bardet et Surgailis, 2012)

Let

(Y

n

(k))

1≤k≤n,n∈N

be a triangular array of standard Gaussian R

ν

-vectors.

For m

≥ 1, there exists ρ : N → R such as for 1 ≤ p, q ≤ ν,

∀(j, k),

EY

n

(p)

(j)Y

n

(q)

(k)

≤ |ρ(j − k)| with

X

j ∈Z

|ρ(j)|

m

<

∞;

For

τ

∈ [0, 1] and J ∈ N

, with

(W

τ

(j))

j ∈Z

a stationary Gaussian process

(Y

n

([nτ ] + j))

−J≤j ≤J

D

−→

n→∞

(W

τ

(j))

−J≤j ≤J

;

If ˜

f

k,n

∈ L

2

0

(X) (n

≥ 1, 1 ≤ k ≤ n) with Hermite rank ≥ m and ∃ ˜

φ

τ

, τ

∈ [0, 1]

such as

sup

τ ∈[0,1]

k˜f

[τ n],n

− ˜

φ

τ

k

2

= sup

τ ∈[0,1]

E(˜f

[τ n],n

(X)

− ˜

φ

τ

(X))

2

−→

n→∞

0.

(19)

Theorem

Then with

σ

2

=

Z

1

0

 X

j ∈Z

E ˜

φ

τ

(W

τ

(0)) ˜

φ

τ

(W

τ

(j))



<

∞,

n

−1/2

n

X

k

=1

˜

f

k

,n

(Y

n

(k))

D

−→

n→∞

N 0, σ

2



.

(20)

Second definition

For t, α

∈ (0, 1) and j = 1, . . . , p,

b

H

n,α,j

(IR)

(t

0

) := Λ

−1

j

 1

2n

1−α

[nt

0

X

+n

1−α

]

k=[nt

0

−n

1−α

]

k

n

X

+ ∆

k

n

+j

X

|∆

k

n

X

| + |∆

k

+j

n

X

|

,



.

Theorem

Under Assumptions

(A)

κ

and

(B)

α

, for all t

0

∈ (0, 1),

n

(1−α)/2

H

b

n,α,j

(IR)

(t

0

)

− H(t

0

)



1≤j≤p

D

−→

n→∞

N



0 , Γ(H(t

0

))



(21)

Second definition (end)

Let b

Γ := Γ( b

H

n,α

(IR)

).

A new nonparametric estimator of H(

·) using

Pseudo-Generalized least squares

:

e

H

n,α

(IR)

(t

0

) := 11

p

−1

11

p



−1

11

p

−1

H

b

(IR)

n,α,j

(t

0

)



1≤j≤p

.

Theorem

Under Assumptions

(A)

κ

and

(B)

α

, for all t

0

∈ (0, 1),

n

(1−α)/2

H

e

n,α

(IR)

(t

0

)

− H(t

0

)



D

−→

n→∞

N



0 , 11

p

Γ

−1

(H)11

p



−1



(22)

Definition

(Stoev and Taqqu, 2006)

On pose

Y

(a

+

,a

)

(t) := K (H(t))

Z

R

e

itx

− 1

|x|

H(t)+

1 2

U

(a

+

,a

)

(H(t), x) c

W

(dx),

with for h

∈ (0, 1)

U

(a

+

,a

)

(h, x)

:=

a

+

e

−i

sign

(x)(h+

1 2

)

π2

+ a

e

i

sign

(x)(h+

12

)

π2



(a

+

)

2

+ (a

)

2

− 2a

+

a

sin(π h)



1/2

.

:=

1

π

if h = 1/2 and a

+

= a

.

(23)

Estimation of H(·)

Theorem

For a trajectory of the process

(Y

(a

+

,a

)

(t))

t

,

If

max(0, 1

− 4((η ∧ 2) − H(t))) < α <

1

2

,

e

H

n,α

(IR)

(t

0

)

a.s.

−→

n→∞

H(t

0

)

If

max

n

1

1 + 2(η

∧ 2)

, 1

− 4 η ∧ 2 − H(t

0

)

o

< α < 1,

n

(1−α)/2

H

e

n,α

(IR)

(t

0

)

− H(t

0

)



D

−→

n→∞

N



0 , 11

p

Γ

−1

(H)11

p



−1



(24)

Outline

1

Introduction

2

A new nonparametric estimator of the local Hurst function

First definition, assumptions and limit theorems

Second definition and limit theorems

Case of the General multifractional Brownian motion

3

Numerical comparison with the quadratic variations estimators

Definition and limit theorems

Numerical comparisons

(25)

Generalized quadratic variations estimator of H(·)

Define (see

Istas and Lang, 1994, Benassi et al., 1998, Coeurjolly, 2005

):

b

H

n,α

(QV )

(t

0

) :=

1

2

A

A

A



log

1

2n

1−α

[nt

0

X

+n

1−α

]

k=[nt

0

−n

1−α

]

X

k+2j n

− 2X

k+j n

+ X

k n

2



1≤j≤p

with A := log i

1

p

P

p

j=1

log j



1≤i≤p

∈ R

p

.

Theorem

(26)

0 500 1000 1500 2000 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 0 500 1000 1500 2000 −1 −0.5 0 0.5 1 1.5

Figure:

Examples of MBM trajectories (up, H ∈ C

η−

with η = 0.6, down

(27)

0 0.2 0.4 0.6 0.8 1 0.4 0.5 0.6 0.7 0.8 0.9 1 t H(t) alpha=0.3 0 0.2 0.4 0.6 0.8 1 0.4 0.5 0.6 0.7 0.8 0.9 1 t H(t) alpha=0.4 0 0.2 0.4 0.6 0.8 1 0.4 0.5 0.6 0.7 0.8 0.9 1 t H(t) alpha=0.3 0 0.2 0.4 0.6 0.8 1 0.4 0.5 0.6 0.7 0.8 0.9 1 t H(t) alpha=0.4

Figure:

Estimation of H

4

(t) = 0.1 + 0.8(1 − t) sin

2

(10t) for n = 6000, α = 0.3 (left) and

(28)

H1(t) = 0.6 α 0.2 0.3 0.4 0.5

n= 2000 pp[MISEfor bHn,α(QV ) 0.041 0.051 0.069 0.096

[MISEfor bHn,α(IR) 0.061 0.077 0.106 0.145

n= 6000 pp[MISEfor eHn,α(QV ) 0.025 0.033 0.050 0.074

[MISEfor eHn,α(IR) 0.037 0.049 0.076 0.115

H2(t) = 0.1 + 0.8t α 0.2 0.3 0.4 0.5

n= 2000 p[MISEfor eHn,α(QV ) 0.170 0.073 0.072 0.096

p

[MISEfor eHn,α(IR) 0.059 0.071 0.098 0.135

n= 6000

p

[MISEfor eHn,α(QV ) 0.114 0.044 0.048 0.070

p

[MISEfor eHn,α(IR) 0.036 0.046 0.069 0.103

H3(t) = 0.5 + 0.4 sin(5t) α 0.2 0.3 0.4 0.5

n= 2000 pp[MISEfor eHn,α(QV ) 0.362 0.123 0.080 0.096

[MISEfor eHn,α(IR) 0.093 0.071 0.091 0.124

n= 6000 pp[MISEfor eHn,α(QV ) 0.260 0.077 0.052 0.072

[MISEfor eHn,α(IR) 0.057 0.047 0.065 0.097

H4(t) = 0.1 + 0.8(1 − t) sin2 (10t) α 0.2 0.3 0.4 0.5

n= 2000

p

[MISEfor eHn,α(QV ) 0.320 0.164 0.117 0.112

p

[MISEfor eHn,α(IR) 0.165 0.098 0.091 0.112

n= 6000 pp[MISEfor eHn,α(QV ) 0.251 0.135 0.071 0.078

[MISEfor eHn,α(IR) 0.148 0.062 0.067 0.091

Table:

Estimators e

H

n,α(QV )

et e

H

n,α(IR)

when H(·) is a C

(29)

H ∈ C

1.5

(0, 1)

α

0.2

0.3

0.4

0.5

n

= 2000

p

p

\

MISE

for e

H

n,α(QV )

0.261

0.112

0.085

0.098

\

MISE

for e

H

n,α(IR)

0.098

0.077

0.093

0.128

n

= 6000

p

p

\

MISE

for e

H

n,α(QV )

0.164

0.066

0.053

0.070

\

MISE

for e

H

n,α(IR)

0.054

0.047

0.066

0.098

H ∈ C

0.6

(0, 1)

α

0.2

0.3

0.4

0.5

n

= 2000

p

p

\

MISE

for e

H

n,α(QV )

0.140

0.086

0.081

0.094

\

MISE

for e

H

n,α(IR)

0.088

0.078

0.096

0.135

n

= 6000

p

\

MISE

for e

H

n,α(QV )

0.130

0.067

0.056

0.071

p

\

MISE

for e

H

n,α(IR)

0.066

0.052

0.067

0.103

(30)

Figures

0 0.2 0.4 0.6 0.8 1 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 H L(H) 3 €€€€€ 4 7 €€€€€ 4 4 €€€€€ 4 5 €€€€€ 4 1 €€€€€ 4 2 €€€€€ 4 6 €€€€€ 4 H 0.34 0.36 0.38 0.42

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to