• Aucun résultat trouvé

Propriétés des absorbants Lyman-alpha à grand décalage spectral

N/A
N/A
Protected

Academic year: 2021

Partager "Propriétés des absorbants Lyman-alpha à grand décalage spectral"

Copied!
296
0
0

Texte intégral

(1)

HAL Id: tel-00003969

https://tel.archives-ouvertes.fr/tel-00003969

Submitted on 12 Dec 2003

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Propriétés des absorbants Lyman-alpha à grand décalage

spectral

Céline Péroux

To cite this version:

Céline Péroux. Propriétés des absorbants Lyman-alpha à grand décalage spectral. Astrophysics

[astro-ph]. University of Cambridge, 2001. English. �tel-00003969�

(2)

at High-Redshift C  eline P  eroux Institute of Astronomy & Fitzwilliam College September, 2001

(3)
(4)

De laration

Thisthesis,entitledProperties of Lyman- Absorbersat High-Redshift, issubmittedfor

the degree of Do tor of Philosophy at the University of Cambridge. The resear h

de-s ribedwasperformedintheInstituteofAstronomybetweenO tober1998and

Septem-ber2001. Thework ontainedinthisdissertationisoriginal,ex eptwhereexpli it

refer-en eto theresultsofothersisgiven. Partsofthiswork,whi hareindi atedinthetext,

wereperformedin ollaborationandsome oftheresultshaveappeared orwillappearin

publishedform:

 Celine Peroux, Mike Irwin, Ri hard G. M Mahon & LisaJ. Storrie-Lombardi,

The Evolution andSpa e Densityof Damped Lyman-alpha Galaxies,2000, in

pro- eedings of the Euro onferen e: "The Evolution of Galaxies. I - Observational

Clues"ed. J.M. Vil hez,G. Stasinska andE. Perez.

 Celine Peroux, LisaJ. Storrie-Lombardi, Ri hard G. M Mahon & Mike Irwin,

Absorption Systems in the Spe tra of 66z >

4 Quasars,2001, AJ,121,1799.

 Celine Peroux, Ri hard G. M Mahon, Mike Irwin & LisaJ. Storrie-Lombardi,

Cosmologi al Evolution of the Universe Neutral Gas Mass Measured by Quasar

AbsorptionSysems,2001,inthepro eedingsofthe"Cosmi Evolution" onferen e,

held at l'Institutd'Astrophysiquede Paris, November13-17, 2000.

 Celine Peroux, Ri hard G. M Mahon, Lisa J. Storrie-Lombardi & Mike Irwin,

The Natureof High-Redshift Damped Ly- Absorbers,2001,MNRAS, submitted.

 Celine Peroux, Mike Irwin, Ri hard G. M Mahon & LisaJ. Storrie-Lombardi,

Statisti al Properties of DLAs and sub-DLAs,2001, inpro eedings ofthe

"Chem-i alEnri hmentof Intra luster andIntergala ti medium"Vul ano Workshop,ed.

Fran es aMatteu i.

The lengthofthisworkdoesnotex eed 60,000words.

Celine Peroux

(5)
(6)

Summary

Properties of Lyman- Absorbers at High-Redshift

Celine Peroux

Inre ent years, anextremely su essfulmethod to observationally studyearly

stagesof galaxy formationhasbeenprovidedbythe studyof quasar absorbers. Quasar

absorption lines are systems inter epting our line-of-sight to a given quasar and thus

produ e a feature in the quasar spe trum. Damped Lyman- systems (hereafter

DLAs) have N (H I) > 210 20

atoms m

2

, and were originally thought to be the

pre ursorsofpresentdaydiskgalaxiesbutthereiseviden ethattheymaybedominated

by gas-ri h proto-dwarf galaxies representing the basi building blo ks of hierar hi al

growthofstru ture. Sin etheirdete tionisindependentoftheirsize,shape,and overing

fa tor,they provideaunbiasedmethod withwhi h to studyearlygalaxies. DLAsare a

subsetofLyman-limitSystems(hereafterLLS)whi hhavehydrogen olumndensities

N(H I)>1:610 17

atoms m 2

. At z<1,they areprobablyasso iatedwithgala ti

halos. Finally,theLyman- forest is omposedofmanysmall olumndensitysystems

rangingfromN (HI) =10 12 to 1:610 17 atoms m 2 .

This thesis presents a sample of 66 bright z >

4 quasars observed with the 4

m Cerro Tololo Inter-Ameri an Observatory teles ope and the 4.2 m William Hershel

teles ope. The rst part of the study on entrates on the quasars themselves via the

tting of quasar ontinua and the measurement of ontinuum depression parameters

hara terising the mean absorption a ross the Lyman- forest. The quasar spe tra

are then analysed to investigate the absorption systems they ontain. This led to the

dis overy of 26 new DLAs, 34 LLSand many asso iated metal lines whi h enables the

analysisoftheevolution ofthe olumndensitydistribution,f(N;z),andthetotal mass

in high- olumn density neutral hydrogen quasar absorbers. The observed number of

LLS per unit redshift is used to onstrain f(N;z) below the DLA limit in the range

N(HI) = 1:610 17 to 210 20 atoms m 2

. The joint analysis shows unambiguously

thatf(N;z) deviatessigni antlyfromasingle powerlawandthata -lawdistribution

of the form f(N;z) = (f  =N  )(N=N  ) exp( N=N 

) provides a better des ription of

the observations. These results are further used to determine the amount of neutral

gas ontained inbothDLAs and in systems withN(HI) 210 19

atoms m

2

(\sub-DLAs"). Inthe redshiftrange2 { 3,85% of theneutral H I + HeII mass density isin

DLAs,howeverwe ndthatat z>3.5thisfra tion dropsto 55%andthattheremaining

neutral gas mass lies in sub-DLAs. After orre tion of the observed mass in H I for

this\missing"neutralgasthe omovingmassdensitynolongershowsanyeviden e fora

de reaseovertherangez=2{5. The hangeinthe olumndensitydistributionsupports

a pi ture, where at z>3.5, we may be dire tly observing the formation of high olumn

density neutral hydrogen systems from lower olumn density units. Finally, predi tions

on the redshift evolution of the sub-DLAs number density are presented. Preliminary

(7)
(8)

Contents

Contents v

List of Figures viii

List of Tables x

1 Introdu tion 2

1.1 S ienti Ba kground . . . 2

1.1.1 Quasars: Cosmologi al Lighthouses . . . 2

1.1.2 Quasar Absorbers: UnrevealingtheStru turesof theUniverse . . 5

1.2 FindingHigh-RedshiftQuasars . . . 6

1.2.1 The 2 nd APM Quasar Sample . . . 6

1.2.2 OtherHigh-RedshiftQuasars . . . 9

1.3 Theory ofQuasar Absorbers. . . 10

1.3.1 Classi ationof QuasarAbsorbers . . . 10

1.3.2 AbsorptionLine Formationand ColumnDensityDetermination. . 22

1.4 S ienti Motivation . . . 27 1.4.1 ThesisMotivation . . . 27 1.4.2 ThesisOutline . . . 27 2 The z > 4 Quasar Sample 29 2.1 Introdu tion. . . 29 2.2 Observations . . . 30 2.2.1 WHTRuns . . . 30 2.2.2 CTIO Runs . . . 33 2.2.3 Ke kObservation. . . 33 2.3 TheData . . . 33 2.3.1 Data Redu tion. . . 33 2.3.2 Quasar Spe tra . . . 34

2.4 Redshiftand MagnitudeMeasurements . . . 50

2.4.1 RedshiftMeasurements . . . 50

2.4.2 MagnitudeMeasurements . . . 75

2.5 Notes onIndividual Obje ts . . . 79

2.6 Summary . . . 86

3 Quasar Continua 87 3.1 QuasarContinuum Fitting. . . 87

3.1.1 Introdu tion . . . 87

(9)

3.1.4 Analysis . . . 93

3.2 Dete ting Dust inQuasarAbsorbers . . . 96

3.3 Continuum Depression . . . 102 3.3.1 Introdu tion . . . 102 3.3.2 Methodology . . . 103 3.3.3 Measurements . . . 103 3.3.4 Analysis . . . 106 3.4 Summary . . . 110

4 LymanLimit Systems Analysis 114 4.1 Introdu tion. . . 114 4.1.1 Ba kground . . . 114 4.1.2 PreviousSamples . . . 115 4.2 New High-RedshiftLLS . . . 115 4.2.1 LLSdete tion . . . 115 4.2.2 TheSampleof LLS . . . 120 4.3 LLSAnalysis . . . 124 4.3.1 LLSProperties . . . 124 4.3.2 Dis ussion. . . 129 4.4 Summary . . . 129

5 Damped Lyman- Systems Analysis 133 5.1 Introdu tion. . . 133

5.1.1 Ba kground . . . 133

5.1.2 PreviousSamples . . . 134

5.1.3 PreviousResults . . . 135

5.2 New DLA Sample . . . 135

5.2.1 Survey'sSensitivity . . . 135

5.2.2 DLADete tion . . . 137

5.2.3 OtherLinesat theDLAs' Redshift . . . 151

5.3 Metal Systems . . . 151

5.4 DLA Analysis . . . 154

5.4.1 DLAProperties. . . 154

5.4.2 NumberDensityofDLAs . . . 154

5.5 Summary . . . 156

6 Quasar Absorbers: a Study of the History of the Universe 159 6.1 ColumnDensityDistribution . . . 159

6.1.1 Introdu tion . . . 159

6.1.2 PreviousWork . . . 162

6.1.3 Results . . . 164

6.1.4 ComparisonwithModels . . . 168

6.2 Cosmologi alEvolutionof NeutralGas Mass . . . 172

6.2.1 Introdu tion . . . 172

6.2.2 PreviousWork . . . 173

6.2.3 Results . . . 173

6.2.4 Models . . . 187

(10)

7 Con lusions and Future Work 192

7.1 Con lusions . . . 192

7.2 Future Work . . . 193

Bibliography 2

A Normalised Quasar Spe tra 13

B Metal systems 27

(11)

List of Figures

1 Quasar spe trumovera largewavelength range . . . 3

2 Fra tional look-ba ktime . . . 4

3 Cartoonrepresentationof a quasarsight line . . . 7

4 Colour-magnitude diagram . . . 8

5 Typi alquasar spe trum . . . 11

6 MilkyWayabsorptionfeatures in3C273 spe tra . . . 13

7 Quasar absorbers ross-se tions . . . 13

8 Light elements abundan es . . . 15

9 Simulationsof theLyman- forest . . . 17

10 The z6:28 Sloanquasar . . . 19

11 Expe tedquasar spe trumat z em >z reionisation . . . 20

12 Formation ofVoigt pro le . . . 24

13 Variousregimes ofthe urve-of-growth . . . 26

1 Sky lines . . . 35

2 B-star uxstandard and orre tionforatmospheri features . . . 36

3 Fluxed spe tra of allthe observed quasars . . . 38

4 Main quasaremission lines. . . 76

5 Filters usedinvarious surveys. . . 80

6 APM versusspe tralmagnitudes . . . 81

1 F() median omposite spe trum . . . 90

2 F() ompositespe trum . . . 90

3 Comparisonof ompositespe tra fromvarious surveys . . . 91

4 Median ompositespe trumforvarioussurveys . . . 91

5 Continuum slope asa fun tionof thequasaremission redshift . . . 97

6 Continuum slopes: omparing our measurements with Storrie-Lombardi (1994) . . . 97

7 Number ofquasars withorwithoutDLAs asa fun tionof ontinuumslope100 8 KS teston thedistribution ofslopesof quasarwithand withoutabsorbers101 9 Continuum depressionversusthe ontinuumslope . . . 107

(12)

11 Continuumdepression parameterversusemission redshift . . . 111

1 ExampleofLLSdete tion/non-dete tion . . . 117

2 LLSnumberdensityandlogarithmi likelihoodparametersestimators ex- ludingsystems within3000 km s 1 of z em . . . 125

3 LLSnumberdensityandlogarithmi likelihoodparametersestimators in- ludingsystems within3000 km s 1 of z em . . . 126

4 Logarithmi numberdensityofLLS . . . 128

5 Cumulativenumberof LLS . . . 130

6 Comparisonofobserved numberdensityof LLSwith\mini-halo"models. 131 1 Surveysensitivityfun tion. . . 136

2 FiguresillustratingDLA olumndensitymeasurements omparison . . . . 139

3 Correspondingspe tra . . . 140

4 DLAdete tion . . . 141

5 BRJ0307 4945 DLA . . . 143

6 Exampleofmediumresolution \lo al" ontinuum t . . . 144

7 ExampleofDLA andidates . . . 152

8 ColumndensitydistributionwithredshiftandnumberofDLAsofagiven olumndensity . . . 155

9 Numberdensityof DLAs . . . 157

1 Distan eintervalasa fun tionofredshift . . . 161

2 The olumn densitydistributionof quasarabsorbersat <z>2:8 . . . . 163

3 Cumulativenumberof absorbers . . . 165

4 Columndensitydistributionof quasarabsorbers forvarious redshiftranges169 5 Di erential olumndensitydistributionforz>3:5 . . . 170

6 SPHsimulationsofthe olumndensityof absorbers . . . 171

7 The\ osmi G-dwarfproblem" . . . 174

8 Massintegralplotfortwodi erent redshiftranges . . . 176

9 Numberdensityof DLAs and sub-DLAs . . . 177

10 DLA inanon-zero -Universe . . . 179

11 DLA indi erent osmologi al models . . . 180

12 DLA withdi erent valuesof theHubble onstant . . . 181

13 DLA freefrom dustbias . . . 185

14 Comparisonofobserved DLA withmodels . . . 188

15 DLA and thestar formationrateevolutionwithredshift . . . 191

(13)

List of Tables

1 Journal ofObservations . . . 31

2 Quasar RedshiftMeasurements . . . 73

3 Quasar MagnitudeMeasurements . . . 77

1 Continuum slope ( ) measurements of the quasar sample presented in Chapter 2 . . . 94

2 SDSS ontinuumslope ( ) measurements . . . 98

3 Continuum slope( ) measurementsof the1 st APMsurvey . . . 99

4 Continuum depressionmeasurements . . . 105

5 Continuum depressionmeasurementsof the1 st APM survey . . . 108

6 Continuum depressionmeasurementsfrom SDSS . . . 113

1 New survey forLyman-limitSystems . . . 118

2 Lyman-limit Systemspreviouslyknown . . . 121

3 LLSnumberdensityredshiftevolution parameters . . . 128

1 MediumandhighresolutionDLA olumndensitymeasurements omparison138 2 SurveyforDamped Lyman AbsorptionSystems . . . 145

3 Metal LinesRest Wavelengths. . . 153

1 Parameter t to the olumndensitydistribution . . . 166

2 DLA and DLA+sub DLA values . . . 182

1 Identi ationof Metal AbsorptionLines . . . 18

1 Quasar WithDamped Lyman-alphaAbsorbers- thiswork . . . 48

2 Quasar WithDamped Lyman-alphaAbsorbers- datafrom theliterature 49 1 Quasar Without DampedLyman-alpha Absorbers - thiswork . . . 55

(14)
(15)

Chapter 1

Introdu tion

`Il n'y a pas de sentiment plus ommunement partage, que de vouloir ^etre

di erent des autres'

Jean-Paul Sartre

In thisintrodu toryChapter, I re all histori al developments inthe dis overy

of both quasars (Se tion 1.1.1) and quasar absorbers (Se tion 1.1.2). In se tion 1.2, I

des ribethete hniqueusedto ndthequasarswhi hmakeupthesamplestudiedinthis

thesis. IthendetailthetheoryofabsorptionlinesandVoigtpro le tting(Se tion1.3.1)

as well as the urve of growth (Se tion 1.3.2). In the last part, I de ne the s ienti

motivations for the proje t (Se tion 1.4.1) and emphasise the stru ture of the thesis

(Se tion 1.4.2).

1.1 S ienti Ba kground

1.1.1 Quasars: Cosmologi al Lighthouses

The Third Cambridge (3C) Catalogue prepared in the early 1960s, listed

ra-dio sour es of whi h 10 were extremely small in size(less than 1 ar se ). At the same

time, Hazard et al. (1963) developed a new method, using lunar o ultation, to

a u-rately determine the position of radio sour es and hen e allow for opti al follow-up of

these ompa tobje ts. ThisenabledS hmidt(1963)totakeaspe trumof3C273,whi h

showedastar-likeobje tlyingattheunexpe tedlyhigh(atthetime)redshiftofz=0:16,

implying a distan e of  1 Gp and an opti al luminosity  510 12

L

. Other

simi-lar obje ts were subsequentlyobserved and they be ame known as quasi-stellar obje ts

(QSO)orquasars.

Su h obje ts were (and still are) a hallenge to theorists: how an so mu h

energy omewithsu hrapidvariabilityoutofsu ha ompa tregionandbedistributed

(16)
(17)

Fig. 2.| Fra tionallook-ba ktime asa fun tionofredshift. M =1:0,  =0:0(solid line), M =0:0and 

=0:0(dashedline)and M

=0:3and



(18)

beams arisesurroundedbyan a retion dis . In any ase, theluminous, ompa t

emis-sion from quasars has made them ideal bea ons from the early Universe. It is indeed

be ause they are extremely luminous that quasars are among the youngest obje ts

ob-served in the Universe. They have now been dete ted out to redshifts of z > 5. The

urrent re ordholder is SDSS1030+0524 (Figure10) at z 6:28 (Fan et al., 2001b), a

redshiftwhi h orresponds to a look-ba k time of over 90% of the age of the Universe

(Figure2).

1.1.2 Quasar Absorbers: Unrevealing the Stru tures of the Universe

Inadditionto beinginterestingobje tsintheirownright,quasars allowforthe

dete tionof mu h fainter systems,observed inabsorptionin theirspe tra.

The nature ofabsorption lineswastheobje t of mu hdebate inthe years

fol-lowingtheir dis overy (e.g. Pettini, 1998). A urrentlya epted hypothesis states that

the lines are intervening and arise in osmologi ally distributed gas between the

ba k-groundquasarand theobserver. Thisimpliesthattheobservedredshiftis osmologi al,

duetotheexpansionoftheUniverse. However,sin ethedensityoflinesasafun tionof

redshiftisobserved toin rease, thisimpliesthatthe ross-se tion oftheabsorbers were

higherinthepast. Earlierhypothesessuggested thattheabsorptionlinesystems

repre-sent material eje ted from thequasar itself. The redshiftwould thenbe kinemati and

represent a Doppler shift from the eje ted material. This would imply a large eje tion

velo ityrequiringavastamountofenergyandalsoame hanismto on netheeje tato

narrowvelo itydispersions,two on i tingrequirementsdiÆ ulttoa hieve. Atpresent,

the ommonly a eptedpi turefavours theinterveninghypothesis thanksto threemain

arguments:

1. Sargent et al. (1980) analysed the rst homogeneous sample of Ly forest lines

in six quasars. They show that neither the line density nor the equivalent width

distribution vary from quasar to quasar, or with redshift, along a given

line-of-sight. Theyalsofoundno lusteringonalls alesfrom300to 30,000kms 1

. This

la k of any orrelation between line properties and eje tion velo ity is extremely

diÆ ult to explainwithan eje tion model.

2. Boksenberg&Sargent(1978) observed,inemission,thegalaxyNGC3067

respon-sible for the Ca II absorption inthe spe trum of the quasar 3C 232, welloutside

theextentofthegalaxy. Thiswasthe rsteviden ethatitistheextendedgaseous

halo of the galaxy whi h is responsible for that absorption line observed in the

quasar spe trum. Similarly, more re ent work (e.g.Steidel et al., 1995)showthat

andidate galaxiesareasso iatedwithalmostallof thelowredshiftMgIIsystems.

3. Shaver &Robertson(1983)dis overed ommon absorptionsystemsinthespe tra

of quasar pairs providing indisputable eviden e in favour of the intervening

(19)

absorbers (Wolfe et al., 1993; Petitjean et al., 1998). The observation of quasar

pairs, or groups of quasars with small angular separations on the sky, indi ates

thatthe hara teristi sizeof theabsorbersislargerthantheproje tedseparation

of the lines of sight. At present, the number of suitable groups of quasars is too

smallto providedetailed onstraintsonthestru tureofLy omplexes. However,

despite this, Ly- absorbers provide a powerful way to study the orrelation of

baryoni matter at high redshiftand hen e a unique han e to study how galaxy

formation is related to the distribution and dynami s of the underlying matter

eld.

Thisplusothereviden ehasleadtothestandardpi tureofquasarabsorbersas

systemsalongtheline-of-sightbetweentheobserverandaluminousba kgroundquasar.

A artoon representationof thisphenomenonis shownon Figure 3.

1.2 Finding High-Redshift Quasars

Anysurvey for quasar absorbers starts with a survey for quasars. I have not

been dire tly involved in the sear h for the high-redshift quasars whi h make up the

sample presented in this thesis, but for ompleteness and later referen e, this se tion

des ribesthemethodologyusedto ndthequasarsample. Mostofthequasarspresented

inthisthesishavebeenopti allysele tedwhi h,be auseofreddeninge e ts, meansthat

we maypotentiallymissthemostdustyinterveningobje ts oralternativelythosewhi h

ontain more absorbers along their line-of-sight. Ellison et al. (2001 ) have re ently

undertakenobservationsofradio-sele tedquasarswiththeaimofpin-pointingthee e t

ofdustonquasarabsorbersurveys. InadditionPei&Fall(1995)haveusedself- onsistent

losed-box/in ow-out owgala ti modelstoshowthatthefra tionofmissingDLAsdue

to dust at z = 3 ranges from 23% to 38%. The following se tions brie y des ribe the

methods used to ndthe quasar sample. Storrie-Lombardiet al. (2001) provides more

detailson ndingtheAPMquasarsandFanetal.(1999);Warrenetal.(1991);Kenne k

et al. (1995a); Storrie-Lombardi et al. (1996 ); Zi kgraf et al. (1997); Kenne k et al.

(1995b); Henry et al. (1994); Hook (prep); Hall et al. (1996) give more informationon

thedis overyof theremaining quasars.

1.2.1 The 2

nd

APM Quasar Sample

Reviews on various te hniques used to nd quasars are des ribed in Hook

(1994); Kembhavi &Narlikar(1999). TheAPM quasarswerefoundusingamulti olour

te hnique whi h is the high-redshift (z > 2:2) ounterpart to the Ultra-Violet ex ess

(UVX) method (Sandage 1965). Irwin et al. (1991) developed the so- alled \BRX"

methodwheretheymadeuseofthefa tthatforz>3:9quasars,theregionofthe

spe -trumabsorbed byneutral hydrogen isredshiftedto theB band. A majorityof quasars

(20)

Fig. 3.| This artoon illustrates a quasar sight line along whi h various obje ts give

(21)

Fig. 4.|AB j

R olour-magnitudediagramforatypi alhighlatitudeUKST eldused

intheAPMsurvey. Everydete tedB J

,Rmat hedpairofobje ts lassi edasstellaron

(22)

in the olour- olour diagram that sele tion in the single olour B R is suÆ ient to

identify them with high probability. Figure 4 shows a B j

,R olour-magnitude diagram

for a typi al high latitude UKST eld. Every dete ted B j

,R mat hed pair of obje ts

lassi ed as stellar on the R plate is plotted as a small dot. Overlaid as lled ir les

are the omplete southern sample of BRX-sele ted quasars whi h form the 2 nd

part of

theAPM quasar survey (Storrie-Lombardiet al.,1996 , 2001). Oftheroughly 250,000

pairedobje ts on ea h high latitude UKST eld, two-thirds are lassi ed as stellar on

theR plate and roughly 50,000 of these are brighterthan R =19 { 19.5, the rangefor

theRmagnitudelimitofthesurvey. TheredboundaryforBRX andidatesele tionwas

set to approximately B j

{R = 2.5 to 3 to follow the red extremity of the stellar lo us.

Thee e tsof oloursele tiononsample ompletenesshavebeenthoroughlyinvestigated

over the past few years (Warren et al., 1994; Storrie-Lombardi et al., 1996 ; Kenne k

et al.,1995a).

The plates ame from the generi southern sky survey material taken by the

UKS hmidtteles ope(UKST)andweremeasuredandanalysedattheAutomatedPlate

Measuring 1

(APM) fa ility in Cambridge. The total area of Southern high latitude

sky surveyed is roughly 8000 square degrees from a total of 328 UKST elds. Low

resolution( > 10



A)spe tra werethenobtainedto identifythequasars,primarilyat the

LasCampanasObservatory(Storrie-Lombardiet al.,2001). Thiste hniquewasusedto

nd26 ofthequasars whi hmake upthesamplepresentedinthisthesis,theremaining

APMdis overedquasarswereobservedusingtheINTandWHT.Thequasarsdis overed

aspartof theAPM surveys arelabelled\BR"or\BRI"a ordingly.

1.2.2 Other High-Redshift Quasars

Thirty-two of the other quasars making up our 66 z >

 4 sample are from

the Se ond Palomar Observatory Sky Survey. Kenne k et al. (1995a,b) 2

arried out

a multi olour survey with the aim of determining the spa e density of bright quasars

(M B

< 27) at z>4. The quasars dis overed aspart ofthe Se ondPalomar Observ

a-torySkySurvey arelabelled\PSS".

Four of the quasars presented in thisthesis are part of the Sloan Sky Digital

Survey(SDSS)whi hmakesuseofthededi atedApa he Point3.5mteles ope. The

sur-veyisa jointproje tofTheUniversityofChi ago,Fermilab,theInstituteforAdvan ed

Study,theJapan Parti ipation Group,The JohnsHopkins University, the

Max-Plan k-InstituteforAstronomy(MPIA),theMax-Plan k-InstituteforAstrophysi s(MPA),New

Mexi oStateUniversity,Prin etonUniversity,theUnitedStatesNavalObservatory, and

theUniversityof Washington. Itaimstomapindetailone-quarteroftheentiresky,

de-terminingthepositionsand absolutebrightnessesofmorethan100 millionobje ts. The

quasars found are often faint and thus not the most appropriate for absorber sear hes

with4m lass teles ope.

1

http://www.ast. am.a .uk/mike/apm at/ 2

(23)

Of the four remaining quasars, one is radio-sele ted from the

Parkes-MIT-NRAOsurveyandislabelled\PMN"(Hook,prep)andoneisX-raysele tedandlabelled

\RX" (Henry et al., 1994). The two last obje ts areopti allysele ted byWarren et al.

(1991) and by Hallet al. (1996) as part of theDeep Multi olor Survey (DMS).All the

quasars making upthe samplestudied inthisthesis arelistedinTable2.2.1.

1.3 Theory of Quasar Absorbers

1.3.1 Classi ation of Quasar Absorbers

Quasarabsorptionfeatures anbeorderedinto ategorieshavingdi erent

har-a teristi s asillustratedon thetypi al quasarspe trumshowninFigure 5:

I) z abs

<z em

Forabsorptionsystems with wavelength(z abs

) belowthe quasarLy emission

line(z em

),Lynds(1970)suggested thattheabsorptionlineswere aused byLy

transi-tions. Thiswaslater on rmed by two arguments: rstly, thepresen e of theLyman-

line,whenobservable(Baldwinetal.,1974;Oemler&Lynds,1975),andse ondlybe ause

the number density of absorbers blueward of the quasar emission line is mu h greater

thanredward. Sin e theirdete tion isindependent oftheirluminosityand morphology,

these absorbersprovideaunbiasedmethod withwhi h to studyearlygalaxies.

Inafew ases,theLy absorptionlineisobservedatz abs

>z em

. Theobserved

orrespondingvelo ityrarelyex eeds 2 000 kms 1

in good agreement withtheoreti al

predi tions(Loeb&Eisenstein,1995),althoughquasarredshiftmeasurementsare

some-times subje t to systemati o sets. The proje ted velo ity of these louds is dire ted

towards the quasaritself. It ismost probablyasso iated with gasfalling into thebla k

holepotentialwellalthoughmoredetailedstudiesofthisproblemarerequiredtoa hieve

a betterunderstanding ofthisphenomenon.

Ly absorbers are sub-divided into three lasses a ording to their olumn

density, thenumberof hydrogenatomsperunitareaalongtheline-of-sightbetweenthe

observerandthequasar ( ommonlyexpressed inatoms m 2

). Thereforealow olumn

density loud ould eitherbe a small loud with highdensityora large loud withlow

density. They thus probe media spanning the range from voids through to halos and

disks ofbothdwarfandnormal (proto)galaxies.

1. Damped Lyman- systems (hereafter DLAs) have N(HI) > 210

20

atoms

m 2

. Thisde nitionis somewhat arti ial sin edamped wings appearforlower

olumn densities (N(H i) > 10 19

m 2

; see next Se tion and Figure 13). This

(24)

1600 1800 2000 2200 2400 2600 2800 3000 3200

0

1

2

3

4

5

Fig. 5.| Typi al spe trum of a quasar, showing the quasar ontinuum,emission lines,

andtheabsorptionlinesprodu edbygalaxiesandintergala ti materialthatliebetween

thequasarand theobserver. This spe trumof thez=1:34 quasarPKS0454+039 was

obtained with the Faint Obje t Spe trograph on the Hubble Spa e Teles ope. The

emissionlinesat2400 

Aand2850 

AareLyman- andLyman- . Thetwostrongest

(25)

at lowresolutionandthistresholdmadethem relativelyunambiguoustopi kout.

The equivalent width is w obs (z  2.5) > 17.5  A for N(H i) > 10 20 m 2 . The

probabilitythat su hastrongabsorptionfeature istheresultofblendingis small.

It is lear that this de nition may introdu e a systemati bias in the dis ussion

of the nature of these DLAs and the work presented in this thesis generalises

the de nition in order to ompare the properties of systems with 10 19 < N(HI) <210 20 andN(HI) >210 20 .

DLAswereoriginallythoughtto be thepre ursorsofpresentdayL 

diskgalaxies,

but there is growing eviden e that they may instead be dominated by gas-ri h

proto-dwarf galaxies representing the basi building blo ks of hierar hi al growth

ofstru ture. HypothesesforthemorphologyofDLAsrangefromlargedisksystems

(Pro haska&Wolfe,1998),tolowsurfa ebrightnessgalaxies(Jimenezetal.,1999;

Bowen et al.,2001;O'Neil,2001)and dwarfgalaxies(Matteu i etal.,1997). The

Milky Way itself is dete ted in the spe trum of the low-redshift quasar 3C 273

(Figure 6). At low redshift, some of the galaxies that are responsible for the

DLA absorption an be dire tly identi ed (Le Brun et al., 1997; Fynbo et al.,

1999). These galaxies area heterogeneouspopulation: they are notjust themost

luminousgalaxies,butin ludedwarfandlowsurfa ebrightnessgalaxies,andthere

are many ases where no galaxy has been identi ed to sensitive dete tion limits.

The size of one DLA, observed in PKS0458{020, hasbeen measured from 21 m

absorption observations (see Figure 7) and is found to be greater that 8h 1

kp

(Briggset al., 1989).

The kinemati stru ture of the absorption pro les of neutral and low ionisation

spe ies is onsistent with the rotation of a thi k disk(Pro haska & Wolfe, 1997),

so it is possible that these are the z = 3 progenitors of normal spiral galaxies.

However, thissignatureisnotunique. It ouldalso bethe onsequen eofdire ted

infall in an hierar hi al stru ture formation s enario (Ledoux et al., 1998).

Al-though the exa t nature of the quasar HI absorbers is not known, they form a

sampleofsystemsunbiasedasregardsluminosity,spe i morphology,oremission

line strength, thus enabling studies of metalli ity and HI evolution over a large

redshiftrange.

ForN(HI) >10 19

atoms m

2

, theopti aldepth at theLymanlimitis not

ne es-sarily largeenough for the interior to be self-shielded from the external radiation

eld and thusmight notbepredominantlyneutralHI gas. The orre tion forthe

ionisingfra tionissofarunknownandpreventsreliablemetalli itymeasurements

and estimates of the total hydrogen ontent inthese systems. Nevertheless,these

quasarabsorptionlinesareapowerfuldiagnosti toolforinvestigatingthe hemi al

ompositionof highredshiftgalaxies.

Fe abundan e isoftenused to measurestellar metalli itiesandit wouldbe

(26)

Fig. 6.| 3C 273 spe trum showing Ly 1216 

A absorptionline dueto the MilkyWay.

Thisillustratesthe ommonnatureofhigh olumndensityinterveningabsorbers(Bah all

et al.,1991).

Fig. 7.| Quasarabsorbers ross-se tionsshowing theimpa tparameters at whi h

(27)

advantagethat they exhibitarange of rest wavelengths and soareoften dete ted

(Savaglio& et al.,2000). However, the problem withstudying metal abundan es

is the ompli ation of dust depletion, the pro ess by whi h parti les are removed

from the gas phase via ondensation onto grains. Although the abundan es of

Zn and Fe tra k ea h other losely down to metalli ities of < 0:01Z

(where Z

refers to the solar abundan e) inGala ti stars, in the lo al inter-stellar medium

anoverabundan eof Znrelative toFeisoftenobserved. Thisisdueto di erential

depletion onto grains, su h that whilst Fe is usually heavily depleted, very little

Zn is seen to be in orporated into dust (Pettini et al., 1997). For these reasons,

Zn (as well as Cr) are usually adopted as the metalli ity indi ator of hoi e for

quasar absorbers metal abundan es. It therefore follows that the relative

abun-dan es of [Zn/Cr℄ and [Zn/Fe℄ will provide an estimate of the fra tions of these

refra toryelementswhi haremissingfrom thegas-phase. Su h studiesshowthat

at z abs

> 1:5, DLAs are generally metal poor, typi ally 1/10 of solar, with small

amountsof dustdepletion. Theselow abundan esseemto persistforall redshifts

observed, withno sign of metalli ityevolution when olumn density weightedZn

abundan esare onsidered.

DLA star formationhistories an thusbe derived from metal studies. -elements

(O, Si, S, Ar) are believed to be produ ed in Type II supernovae (SN II) after a

relativelyshortlifetimeof10 7

years. MostoftheFe-peakelements(Fe,Zn) ome

fromthelonger-lived(10 9

years)progenitorsofTypeIasupernovae(SNIa). The

di erent lifetimes of supernovae progenitors means that an over-abundan e of

is observed relative to Fe at low [Fe/H℄. More re ently, mole ules have also been

observed in DLAs. Measuring mole ules at high-redshift is important be ause

they dominate the ooling fun tion of neutral metal-poor gas. Petitjean et al.

(2000) have dete tedmole ularhydrogen(H 2

) in11 absorbersand usethese data

to dedu e that most of the DLA systems arise in warm and di use neutral gas.

Thesemeasurementsallowinvestigationof thepro essesof dustformationaswell

as oolingand photodisso iationfrom the rst stars(Levshakovet al., 2000).

2. Lyman-limit Systems (hereafter LLS) have hydrogen olumn densities N(HI)

>1:610 17

atoms m 2

andareopti allythi kat theLymanlimitduetotheHI

photo-ionisation: H o + !H + +e (1.1)

where the photon energy, 13.6 eV, orresponds to 912 

A rest wavelength. These

absorbers areeasily identi ableby theirdistin tive breaksignaturein the quasar

(28)

Fig. 8.|Abundan esexpe tedforthelightnu lei 4 He,D, 3 Heand 7 Li(toptobottom)

al ulated in standard Big Bang Nu leosynthesis. The 95% on den e intervals are

shown by the verti al widths of the abundan e predi tions. The horizontal s ale is

expressed inunits of thebaryon densityor riti al density fora Hubble onstant of 65

(29)

where  is the HI photo-ionisation ross-se tion 6:810 18 m 2 . For  912 = 1

(opti ally thi k), N(HI) has to be = 1:610 17

atoms m

2

. The opti al depth

below 912  A is proportional to  912 (=912) 3 . For example, if a LLS lies at z =3

with a olumn density N(HI) = 10 18

atoms m

2

, the ontinuum rea hes zero

( 912

= 6) at 3648 

A and the ux only re overs at around 2000 

A ( = 1). The

dete tion of these systemsis thusfairlyeasy, even inmediumresolutionspe tra.

\Grey"LLShaveopti aldepth <1andthusprodu eapartialbreakinthequasar

spe trum. Be ause of theirrelativelysmall olumndensity, they provide some of

the best andidates for measurement of the primordial abundan e of deuterium

(see Figure 8 and Molaro et al., 1999; Levshakov et al., 2000; O'Meara et al.,

2001, and referen esherein). The rst synthesis of light elements (D, He and Li)

took pla e in the early Universe and heavier elements have then been produ ed

through stellarnu leosynthesis. High-resolution observations of quasar absorbers

anbeusedto determinetheprimordialabundan esofelementsformedintheBig

Bang, whi h provides a fundamental tool for testing the Big Bang theory and a

unique measure of the baryoni density of the Universe, b

h 2

. Note that it has

beendemonstrated re ently(D'Odori o et al., 2001; Pettini &Bowen, 2001)that

DLAs and sub-DLAs an also be used for D measurements. Pettini & Bowen

(2001) omputed theweighted mean of the6 D measurements urrentlyavailable

at high-redshiftand found:

D=H =(2:20:2)10 5

(1.3)

The ionisationstate of LLSs an be onstrainedbymeasuringthe olumn density

of the same ion in di erent ionising states (i.e. Fe +

and Fe ++

) and omparing

theCLOUDYsoftwarepa kage (Pro haska,1999). Inaddition,LLSprovide

infor-mation on the ionisingphotons of theintergala ti medium. The exa t nature of

LLSis not known but, at z<1, they are probablyasso iatedwith gala ti halos

(Steidelet al.,1994).

3. Finally, the Lyman- Forest is omposed of manylow olumn density systems

rangingfromN(HI)=10 12

to1:610 17

atoms m 2

. It is urrentlybelievedthat

theabsorption intheLy forest is ausednot by individual, on ned louds, but

byagraduallyvaryingdensity eld hara terizedbyoverdensesheetsand laments

and extensive, underdensevoids whi h evolve with time(Carswell& Rees, 1987),

as shown in Figure 9. Rau h (1998) provides an ex ellent review of our urrent

knowledge of theLy forest.

Theobservationofmultiplelinesofsighthasbeensu essfulindeterminingthesize

of the Ly louds(see x1.1.2). Inparti ular, D'Odori o et al. (1998) analysedall

thedataavailableatthetimeand on ludedthatLy forest loudshaveatypi al

size of  350h 1

kp for a spheri al geometry or to  400h 1

(30)

PG1634+706

z=3.63

z=1.33

Q1422+2309

z=3

z=1

Fig. 9.|Illustrationofstru tureevolutionofintergala ti gasfromhightolowredshift.

Theupper spe trumof a z=3:6 quasaris a Ke k/HIRES observation,whilethe lower

spe trumisaFOS/HSTobservationsofaz=1:3quasar. Higherredshiftquasarsshowa

mu hthi kerforestofLyman- lines. Sli es throughN{body/hydrodynami simulation

resultsat the two epo hs z =3 and z = 1 are shown inthe right{hand panels. Three

ontour levelsare shown: 10 11 m 2 (dottedlines),10 12 m 2

(solid lines)and 10 13

m 2

(31)

geometry. Line ofsight lusteringdistributionanalysis isalsopossiblewitha

two-point orrelation fun tion. Thereareseveral ontradi toryresultsintheliterature

but the onsensus is for weak lustering on small s ales, with little eviden e for

orrelationsoverlarger (v>300 km s 1

) s ales.

At rst, the Ly forest was thought to ontain pristine material, but tra es of

metals were dete ted later on (Meyer & York, 1987). Ellison et al. (2000), have

used two di erent methods to dete t CIV in the forest: in the rst approa h, a

highsignal-to-noiseratiosta ked spe trumprodu edby ombiningthedataoftwo

quasarsleadstonodete tionofsigni antmetalsandinthese ondapproa h,

mea-surementsof individualpixel opti al depthsshow thatthere are indeedCIV lines

in the Ly forest. This work illustrates the diÆ ulties en ountered in dete ting

metals inthe Ly forest. These observationsmake possiblethestudyof hemi al

enri hment in the inter-gala ti medium and hen e the epo h at whi h the rst

generationsofstarsformedandthendistributedtheirmetalsintothesurrounding

environment (Ferraraet al.,2000).

Gunn-Peterson E e t

ObservingtheLy forestathigh-redshiftsgivesusdire tindi ationsofthe

ionisa-tion state oftheearly Universe. We see some ontinuumbluewardofthe quasar's

Ly emission ontrary to what one would expe t from a neutral medium (Gunn

& Peterson, 1965). This indi ates that the inter-gala ti medium (IGM) is

pre-dominantlyionised hydrogeneveninthehighest-redshiftquasars,althoughre ent

observationsatz6showtheabsen eof uxintheforestoveralargeregion

(Fig-ure10 Be ker et al.,2001;Djorgovski et al.,2001). Sin e thehighenergyphotons

requiredtofullyioniseheliumaremu hrarerthanthose apableofre-ionising

hy-drogen,aGunn-PetersonHe troughispredi tedto bepresent atlowerwavelength

thanthe orresponding Hfeature (Outram, 1999). Gunn-Peterson absorptionhas

been dete ted for the He II Ly ( rest

= 303:7822 

A) at z  3 (Jakobsen et al.,

1994;Reimersetal.,1997). Similarly,ifweweretoobservethespe trumofaquasar

before there-ionisation of theUniverse, the ux blueward of thequasar emission

isexpe tedtobealmostfullyabsorbedleadingtotheso- alled\Lyman- prairie"

(Loeb, 1999).

Proximity E e t

Anotherobservational hara teristi oftheLy forestisthede reasinglinedensity

at theimmedidatevi inityofthe quasar rstdis overed byCarswellet al.(1982).

ThisisprobablyduetothequasarLyman ontinuumradiationboostingthe

meta-gala ti ionising eld J 

. Measurements of the so- alled \proximity e e t" have

beenused to inferthe uxof the ionisingba kground, J 

'10 21

(Bajtlik et al.,

1988;Willigeret al.,1994). ThesemeasurementsofJ 

suggestthatknownquasars

(32)

Fig. 10.|Opti aland near-IR spe trumof SDSS1030+0524, thehighest-redshift(z

6:28) quasar urrently known dis overed as part of the Sloan Digital Sky Survey (Fan

etal.,2001b). AKe kspe trumof theobje t(Be ker etal.,2001) showstheabsen eof

uxoveralargeregion,bluewardofthelyman- emissionline. Thissuggests apossible

rstdete tion ofthe ompleteGunn-Petersone e t ( ausedbyneutralhydrogeninthe

(33)

DETERMINING THE REIONIZATION REDSHIFT

HI

HII

Spectrum

SOURCE

λ

α

(1+ zreion

)

Lyα forest

Lyβ

Prarie

)

(1+ zs

λ

β

Ly

α Prarie

Ly

α

λ (1+

α

zs

)

1+ zreion

1+ zs

1 <

<

λ

α

λ

β

= 1.18

Fig. 11.| Expe ted quasar spe trum at z

em

slightly above the redshift of the

(34)

II) z abs

>z em

Fewer absorption lines are observed at wavelengths longward of the quasar

emissionfeature. These arenot dueto neutral hydrogen but areasso iatedwith metal

systems. C, N,O, Si, Fe, Al, Mg, butalso Ni, Zn, Cr,S and more re entlyCo (Ellison

et al.,2001a) are dete ted. These areoften multiplesystems orresponding to di erent

loud omponents whi h an be resolved in high-resolution data. Magnesium II and

Carbon IV are hara teristi doublets and are easily dete table even in low resolution

quasarspe tra:

1. CIV doublet (restframe 1548



A and 1551



A):Simulationshave shownthat

theobservedCIVkinemati stru tureand olumndensities anbewellreprodu ed

by merging of proto-gala ti lumps (Haehnelt et al., 1996). Compa t halos of

hot gas with temperatures lose to  10 5

K seem to su essfully a ount for the

observed multi- omponent nature of the CIV absorbers. Based upon the number

densityof absorbers, dN=dz, whi h gives the average number of systems perunit

redshift path, the sky-proje ted ross se tions an be al ulated for an assumed

galaxy luminosity fun tion. The CIV absorption-sele ted systems (to rest-frame

dete tion sensitivity of 0.4 

A) are thus inferred to have a 70 kp diameter (see

Figure 7). The methodsusedto studytheproperties of CIV systems an be split

intotwodi erentapproa hes. The rstapproa h onsistsofobservingCIVinhigh

signal-to-noise ratio, high-resolution spe tra and determining its olumn density

down to log N(CIV)  11:5 atom m

2

. This allows (i) detailedkinemati s and

temperature studies (Rau h et al., 1996) whi h shows that CIV omponents may

be the building blo ks of future normal galaxies; (ii) the determination of the

lowend of the CIV olumndensity distribution(see Ly forest se tion); (iii)the

study of velo ity stru ture within the halos (Petitjean & Bergeron, 1994; Crotts

et al., 1997), but is limited to a few lines of sight. The se ond approa h onsists

of studying a statisti ally signi ant sample of absorbers by onstru ting a large

homogenous sample(Sargent etal.,1988;Steidel,1990a). Thismethodhasproved

su essful at des ribing the number density and lustering properties of metals,

but previousstudies were restri ted to therange z < 

3:5 (Sargent et al., 1988)or

were inhomogenous (Quashno k et al., 1996). The data presented in this thesis

provide a sample of 80 CIV absorbers in the redshift range 3:0 < z < 4:5 whi h

ould beused to studythe hara teristi sand evolution ofthe gala ti halos.

Along with the CIV doublet, another very important transition is the CII line.

The temperature of the Cosmologi al Ba kground Radiation, T CMB

an also be

measured using the abundan e ratio of ex ited states of CII. This puts a dire t

onstraintontheBigBang,theoryalthoughonlyonemeasurementhasbeenmade

so far: Srianand et al. (2000) have derived 6:0< T CMB

<14 K at z  2:3 when

9.1 Kisexpe ted intheHotBig Bang osmology.

2. MgII doublet (rest frame 2796



A and 2803



(35)

have been dete ted in emission at z 0:6 (Bergeron & Boisse, 1991). The most

extensive MgII surveys have been ondu ted by Lanzetta et al. (1987); Sargent

etal.(1988);Petitjean&Bergeron(1990);Steidel&Sargent(1992);Chur hilletal.

(2000a,b). Usingsimilarassumptionsasinthepreviousparagraph(numberdensity

of absorbersand S he tergalaxy luminosityfun tion),MgII systems arefoundto

be40kp indiameter(dete tionsensitivityof0.3 

A)or60kp (dete tionsensitivity

of0.02 

A).The MgIIabsorbinggalaxiesappeartobe onsistent witha normal0.7

L 

Sbgalaxy havinga roughly onstant star formationrate sin ez1. The data

presentedinthisthesisprovideasampleof48MgIIabsorbersintheredshiftrange

1:3<z<2:2. An ex ellent review of our urrent knowledge on thetopi of MgII

absorbers ompiled by ChrisChur hill(1999) is available on-line at the following

address: http://www.astro.psu.edu./users/ w /qsogroup/mgii-over.html

III)z abs

z em

Asso iated systems are, by de nition, at the same redshift as the quasar.

They ould beexplained by(Petitjean, 1999):

 galaxies whi hare partof thequasar luster

 gasfrom thegalaxy withinwhi h thea tive gala ti nu lei(AGN) is embedded

 gaseje ted bythequasar itself

Be ausetheyare loseto thequasar,these systemsareoftenmoreionisedthan

other metallines andhave higherheavy element abundan es(Petitjeanet al.,1994).

IV) Broad Absorption Lines

Broad Absorption Lines (hereafter BALs) are observed in about 10% of

all quasars (Weymann et al., 1991). They are hara terised by troughs with out ow

velo itiesupto 60,000 kms 1

bluewardofthe quasaremission redshift. Theyare often

highlyionisedandhavehighmetalli itiessuggestingthatBALs haveare onne tedwith

the nu lear region of the quasar (the a tive gala ti nu lei). Although some of these

absorption lines may belong to external galaxies lose in velo ity spa e to the quasar,

there is dire t eviden e from time-variabilityof the linestrength (Hamannet al.,1995;

Barlow et al., 1997; Vilkoviskij & Irwin, 2001) or partial overage of the ba kground

sour e (Ganguly et al., 1999) that many of these lines are physi ally asso iated with

the quasar. BALs have previously been thought notto o ur inradio-loud quasars but

re ent dis overies byBe keret al. (2000) indi atethatthisis notalwaysthe ase. This

nding is problemati for simpleuni ed models in whi h BAL quasars are a subset of

quasars seen nearlyedge-on and thusraises further questionsaboutthenature of these

(36)

Absorption Line Pro le

The spe tral uxintensity, F(), an be expressedinterms ofthe unabsorbed

ontinuumintensity, F 0

(),and thefrequen y:

F()=F 0

()e ()

(1.4)

where(),theopti al depth,is expressedasa fun tionof numberdensityof atoms, n

(ornumberofatomspersurfa earea, i.e. olumn densityN) and ross-se tion ():

()= Z

+1

0

n()ds=N() (1.5)

Two di erent pro esses lead to the line broadening that gives absorption

fea-turestheir hara teristi pro le:

Lorentzian Pro le

Natural (damping) broadening of an absorptionlineis due to the intrinsi

un-dertainty E in the energyof the upperatomi level as expressed bythe Un ertainty

Prin iple: Eth. Thisleadsto a Lorentz pro le:

 L ()= e 2 m e ! f os =4 2 (  0 ) 2 +( =4) 2 (1.6) where m e

and e are the mass and harge of an ele tron respe tively, is the

speedof light, f os

is the transition os illator strength,  0

is the entral frequen y and

is the total damping onstant, i.e. the re ipro al of the mean lifetime of the upper

energystate.

Gaussian Pro le

Within the loud that we are observing via quasar absorbers, the ions may

have a hara teristi radialvelo ityrelativetotheobserver,resultinginaDoppler-shift.

Theseinternalmotions an be hara terisedasa Gaussianvelo itydistribution:

P(v)= 1 b p  e (v=b) 2 (1.7)

wheretheDopplerwidth,b,isdetermined by ontributionsfrom boththermal

andturbulent motionswithinthe absorbing loud:

b= q b 2 thermal +b 2 turbul ent = s 2kT m ion +b 2 turbul ent (1.8)

(37)

V2

V1

V2

The Gaussian function is centered at V=0

The Lorentziean functions are centered

at the velocity of the absorbing atom

V1

Absorption at V1

Atoms 1 dominate -> lorentzian shape

Absorption at V2

1 2

1

2

1: gauss(0)*lorentz(V1)

2: gauss(V1)*lorentz(0)

---Atoms 2 dominate -> gaussian shape

1: gauss(0)*lorentz(V2)

2: gauss(V2)*lorentz(0)

---Fig. 12.| Formationof Voigtpro les fromthe onvolution ofGaussian andLorentzian

fun tions. At V1,theLorentzianfun tionfallso moreslowlyatlarge thanthe

Gaus-sianpro lethatdes ribesDopplerbroadening. Itisthusthelatterwhi hdominatesthe

absorptionpro le. However, at V2,theprominentdampingwings ompletelydominate

the outer parts of the line pro le leading to a Lorentzian shape. This orresponds to

(38)

Voigt Pro le

Convolvingthenatural (Lorentz pro le,see equation 1.6)and Doppler (Gauss

pro le,see equation1.7) broadening produ esa Voigt pro lewithan opti aldepth,:

()= p e 2 m e Nf os b H(a;u) (1.9) where: H(a;u)= a  Z +1 1 e y 2 dy (u y) 2 +a 2 (1.10) and: a= 4 ; u= (  0 )  0 b ; y =v=b (1.11)

The ore of the Voigt fun tion is thus Gaussian, while the extended wings

of the pro le are Lorentzian. This is illustrated by Figure 12: at V1, the Lorentzian

fun tionfallso moreslowlyatlarge thantheGaussianpro lethatdes ribesDoppler

broadening. It is thus the latter whi h dominates the absorption pro le. However, at

V2,theprominentdampingwings ompletelydominatetheouterpartsofthelinepro le

leadingtoa Lorentzian shape. This orrespondsto veryhigh olumndensityabsorbers,

theso- alledDamped Lyman- systems.

The opti aldepth at theline entreis thengiven by:

( 0 )= p e 2 m e Nf os  0 b =1:49710 15 N( m 2 )f os  0 (  A ) b(kms 1 ) (1.12)

Absorption linesin quasar spe tra are ommonly tted withtheoreti al Voigt

pro les,althoughthisse tionshowsthatthisisbasedontheassumptionthatthevelo ity

distributionofthe atomsisdes ribed bya Gaussianfun tion.

The Curve of Growth

Atmediumspe tralresolution,itisnotalwayspossibleto taVoigt pro leto

theabsorption feature. In that ase, we make use of the urve of growth whi h relates

theequivalent width of theabsorbers with its olumn density N (the equivalent width

istraditionallyusedalthoughmeasuringtheFullWidthHalf Maximum, FWHM,ofthe

linewouldbemoreappropriateasitislessdependentuponthe ontinuumposition). In

general, theequivalentwidth ofan absorptionline, W(),isde nedas:

W obs ()= Z F 0 F() F 0 d obs = Z (1 e () )d obs (1.13)

wheretheobserved equivalent widthis:

W ()=W

rest

(39)

-200 -150 -100 -50

0

50 100 150 200

0

.5

1

-100 -50

0

50 100

.4

.6

.8

1

1.2

-300

-200

-100

0

100

200

300

0

.5

1

12 13 14 15 16 17 18 19 20 21

-2

-1

0

1

Fig. 13.| Illustrationofthedi erentregimesof the urve ofgrowth. Themiddlepanel

shows the urve ofgrowth fortheHI Lyman- transition,relatingtheequivalentwidth,

W(),oftheabsorptionpro leits olumndensity,N(HI).Thedi erent urvesrepresent

four di erent values of the Doppler parameter: b = 13, 23, 53, and 93 kms 1

. The

upper panel shows absorption pro les with Doppler parameter b = 23 kms 1

for the

seriesofneutralhydrogen olumndensities N(HI)=10 12 {10 20 atoms m 2 . Thethi k

(thin) urves orrespondtothe lled(open)pointsontheb=23 kms 1

urveofgrowth

(middle panel), starting at N(HI) = 10 12 atoms m 2 . For N(HI) <10 13 atoms m 2 ,

known as the linear part of the urve of growth, theequivalent width does notdepend

on b. Thelowerleftpanelshowsthat, at xedN(HI), thedepthofthepro leissmaller

forlargeDopplerparameter, b,su hthattheequivalentwidthremains onstant. Onthe

atpartofthe urveofgrowth,pro lesaresaturated andtheequivalentwidthin reases

withbfor onstantN(HI).ForN(HI) > 10

19:5

atoms m 2

,thepro ledevelopsdamping

(40)

The equivalent widthof an absorptionlineis thusindependent of thespe tral

resolutionsin eitisanintegralover. TheHILy urveofgrowthisshowninFigure13.

Therearethree distin tregimes:

1. The Linear Part. The lines in this regime are unsaturated and orrespond to

absorbers with small olumn densities (N(HI) <10 13

atoms m

2

). Be ause the

feature is opti ally thin, the equivalenth width is not dependent on the Doppler

parameter b: N =1:1310 20 W()  2 0 f os (1.15)

2. The Flat Part. The lines in this regime are saturated and dominated by the

Doppler ontribution (see Se tion 1.3.2 above). Their olumndensity, N, depend

on theDoppler parameterb at agiven equivalenth widthW():

W() 2b 0 s ln   0:5 e 2 N 0 f os m e b  (1.16)

In order to reliably determine the olumn density of su h absorption systems,

higher-order Lyman series lines whi h have smaller os illator strength, f, (and

thuslieon thelinear partof the urve ofgrowth)arerequired.

3. The Damping Part. The lines in this regime are saturated and dominated

by the Lorentzian damping wings (see Se tion 1.3.2 above). They orrespond to

high olumn densities (N(HI) >  10

19

atoms m

2

) and their equivalent width is

proportionalto the olumndensityindependentlyof b-value:

N(HI)=1:8810 18 W 2 0 (  A ) m 2 : (1.17) 1.4 S ienti Motivation 1.4.1 Thesis Motivation

Oneofthefundamentalphenomenastillpoorlyunderstoodin osmologyisthe

detailed pro ess of the origin of stru ture formation. Signi ant theoreti al progress

hasbeenre entlya hieved withthedevelopmentofSmoothParti leHydrodynami and

Semi-Analyti alsimulations. ButobservationallyprobingtheearlyUniverseis ru ially

dependentuponnew methodsto over omethenatural hallengesofhigh-redshift(z4)

observations and upon the advan ement of teles ope-related te hnologies. In re ent

years, an extremely su essful method to observationally study early stages of galaxy

formationhasbeenprovidedbythe studyofquasar absorbers.

(41)

statisti-by the apparent de it of high olumn density systems in the early Universe

(Storrie-Lombardiet al.,1996a;Storrie-Lombardi&Wolfe,2000). Inparti ularwe aimto study

in more detail the evolution with redshift of the olumn density distribution, number

density, and omovingmassdensityofhigh olumndensityHI absorptionsystems. The

aim of our new survey for quasar absorbers is to better understand the high-redshift

endof the massdensityof neutral hydrogen by signi antlyimprovingthestatisti s at

z >

3:5. Severalfundamentalquestionsremainin luding: lo atingtheepo hofDLA

as-sembly; larifyingtherelationshipbetweenLymanlimitsystems and dampedabsorbers

via a detailedstudyofthe olumndensitydistributionof quasarabsorbers andits

evo-lution with redshift; and measuring the total amount of neutral hydrogen ontained in

quasarabsorbersand studyinghowthisvarieswithredshift. Thisthesisemphasizes the

impa t ofournew surveyon these issues.

1.4.2 Thesis Outline

Thisthesis is organisedas follows. In Chapter 2,we providethedetailsof the

set-up for ea h observational run, des ribe the data redu tion and present the quasar

spe tra together with redshift and magnitude measurements. Chapter 3 presents

on-tinuum ttingand ontinuumdepressionmeasurementsofallourquasarspe tra. These

measurements are then ompared with the most re ent simulations. The sample of

Lyman-limitsystems isintrodu edinChapter4 whi halso in ludesan analysisof their

numberdensityand olumndensitydistribution. DampedLy- absorbersarepresented

inChapter 5 togetherwith astudy oftheirproperties. Metal absorbersdete ted inthe

quasar spe tra are also listed. The osmologi al neutral gas mass evolution and

impli- ations of our results for theories of stru ture formation are detailedin Chapter 6. In

Chapter 7, the on lusions of this thesis are summarised and a brief dis ussion of the

extensionof thiswork to on-goingand future proje tsis given.

Thiswork assumesH 0 =65kms 1 Mp 1 , M =0:3 and  =0:7, although

(42)

pre-Chapter 2

The z

>

 4 Quasar Sample

`La sou ran e estdans la solitude qui l'a ompagne'

AndreMalraux

This Chapter details the observations of the 66 z >

 4 quasar studied in this

thesiswhi hwereundertakeninfourdi erentruns. Alltheobservationswere arriedout

duringtwoobserving runsat the 4.2mWilliam Hers helteles ope (WHT) of theIsaa

NewtonGroupofteles opesintheCanaryIslands(Se tion2.2.1)andtwoobservingruns

at the Blan o 4 m teles ope at the Cerro Tololo Inter-Ameri an Observatory (CTIO)

in Chile (Se tion 2.2.2). Se tion 2.3.1 gives details on the data redu tion pro ess and

theredu edspe tra arepresentedinSe tion 2.3.2. The redshiftand magnitudeof ea h

obje t have been measured and are tabulated in Se tion 2.4.2 and 2.4.3, respe tively.

Se tion2.5givesdetailson individualquasarspe tra.

2.1 Introdu tion

This hapter presentsthehigh signal-to-noise,5 

Aresolution (FWHM) spe tra of 66

z >

 4 bright quasars obtained with the 4 m Cerro Tololo Inter-Ameri an Observatory

and 4.2mWilliam Hershel teles opes 1

. The primary goalof these observations wasto

undertake a new survey for intervening absorption systems dete ted in the spe tra of

ba kgroundquasars. We lookforbothLyman-LimitSystems ( olumn densities N HI  1:610 17 atoms m 2

- see Chapter 4) and Damped Ly Systems ( olumn densities

N HI 210 20 atoms m 2

-seeChapter 5). Ten ofthequasarspresentedhereexhibit

intrinsi broadabsorptionlines (BAL).

1

ThissampleisbasedonobservationsobtainedattheWilliamHers helTeles opewhi hisoperated

onthe island of La Palma by the Isaa Newton Groupinthe Spanish Observatorio delRoque de los

Mu ha hosoftheInstitutodeAstro si a deCanarias,onobservationsmadeattheCerroTololo

Intra-Ameri anObservatorywhi hisoperatedby theAsso iationofUniversities forResear hinAstronomy,

undera ooperative agreement withthe National S ien eFoundationas part of the NationalOpti al

AstronomyObservatoriesandondataobtainedatthe W.M.Ke kObservatory,whi hisoperatedasa

s ienti partnershipamongtheCaliforniaInstituteofTe hnology,theUniversityofCaliforniaandthe

(43)

30 CHAPTER2. THE Z 4QUASAR SAMPLE

Any survey for quasar absorbers begins with a sear h for bright quasars and

so onstitutesan ambitiousobservationalprogram. Weobservedsixty-sixz >

4quasars

dis overed by various groups (Fan et al., 1999; Warren et al., 1991; Kenne k et al.,

1995a; Storrie-Lombardi et al., 1996 ; Zi kgraf et al., 1997; Kenne k et al., 1995b;

Henry et al., 1994; Hook, prep; Hall et al., 1996) almost all of whi h have not been

previouslystudied at su h resolution( 5 

A)and signal-to-noise(ranging from 10{30).

We obtained opti al spe tra at the 4.2 m William Hers hel Teles ope for the

north-ern quasars and at the 4 m Cerro TololoInter-Ameri an Observatory for the southern

obje ts. More information about z >

 4 quasars is available at the following URL:

http://www.ast. am.a .uk/quasars.

2.2 Observations

Highsignal-to-noiseopti alspe trophotometrywasobtained overing

approxi-mately3500 

A to 9000 

A, theexa t range dependingon whi h instrumentwas usedfor

theobservations. A journalofthe observationsispresentedinTable 2.2.1.

2.2.1 WHT Runs

Thirty-one(in ludingthemis lassi edz=1.90quasarPSSJ0052+2405)quasars

wereobservedattheWHTduring1998September22-24and1999Mar h18-19. The

in-tegrationtimesweretypi ally1800{3600se onds. WeusedtheISISdouble-spe trograph

whi h onsistsof two independent armsfed via adi hroi allowingforblue and red

ob-servationstobe arriedoutsimultaneously. Gratingswith158linesmm 1

andadi hroi

to splitthelight at5700 

A wereused. Thisgivesadispersionof 2.89  A pixel

1 inthe

red arm and 1.62  A pixel

1

in the blue. The gratings were arranged so that the blue

partof thespe trumwas entered on 4500 

Awhiletheredwas entered on 7000 

A.On

thebluearm athinned oatedEnglishEle tri Valve(EEV)20484096 CCDwith13.5

mpixelswasusedasdete tor. Ontheredarm athinned oatedTektronix10241024

CCD with 24 m pixels was used. All the narrow-slit observations were taken with a

slitwidthof 1.2{1.5ar se whilethewide-slit observationswere arried outwitha slit

widthof 5{ 7ar se . Blind-o settingfrom bright15{17 th

magnitudestellar du ials

wasusedto positionthequasarsintheslitpartlytosavea quisitiontimeandpartly

(44)

Table 1: JournalofObservations

Quasar Teles ope Observing Exp. Time Wide Ref

Name Date B/R

a

(se s) Slit

PSSJ0003+2730 WHT 1998 Sep22 3600/3600 yes 1

BRJ0006 6208 CTIO 1998 O t 14 3600 yes 3

BRJ0030 5129 CTIO 1998 O t 15 3600 yes 3

PSSJ0034+1639 WHT 1998 Sep22 3600/3600 yes 1

SDSSJ0035+0040 CTIO 1999 O t 10 8100 yes 4

PSSJ0052+2405 WHT 1998 Sep23 3600/3600 yes 2

QJ0054 2742 CTIO 1999 O t 12 2700 yes 5

PSSJ0106+2601 WHT 1998 Sep24 3600/3600 yes 1 PSSJ0131+0633 CTIO 1999 O t 12 3600 no 2 PSSJ0133+0400 CTIO 1999 O t 12 3600 no 2 PSSJ0134+3307 WHT 1998 Sep22 3600/3600 yes 1 PSSJ0137+2837 WHT 1998 Sep24 5200/3600 yes 1 PSSJ0152+0735 WHT 1998 Sep24 3600/3600 yes 1 PSSJ0207+0940 CTIO 1999 O t 12 3600 no 2 PSSJ0209+0517 CTIO 1999 O t 12 2400 no 2 SDSSJ0211 0009 CTIO 1999 O t 10 8100 no 4

BRJ0234 1806 CTIO 1999 O t 09 5400 yes 3

PSSJ0248+1802 WHT 1998 Sep22 3600/3600 yes 6

BRJ0301 5537 CTIO 1998 O t 16 3600 yes 3

BRJ0307 4945 CTIO 1998 O t 14 5400 yes 3

SDSSJ0310 0014 CTIO 1999 O t 9 9900 no 4

BRJ0311 1722 CTIO 1999 O t 11 3600 yes 3

PSSJ0320+0208 CTIO 1999 O t 12 3600 no 2

BRJ0324 2918 CTIO 1999 O t 11 3600 yes 3

BRJ0334 1612 WHT 1998 Sep23 2740/1650 no 3

SDSSJ0338+0021 Ke k 1999 Feb 17 3000/3600 no 4

BRJ0355 3811 CTIO 1998 O t 15 3600 yes 3

BRJ0403 1703 WHT 1999 Sep19 1800/1800 no 7

BRJ0415 4357 CTIO 1998 O t 16 5400 yes 3

BRJ0419 5716 CTIO 1998 O t 14 3600 yes 3

BRJ0426 2202 CTIO 1999 O t 11 3000 yes 3

PMNJ0525 3343 CTIO 1998 O t 15 3600 yes 3

BRJ0529 3526 CTIO 1998 O t 14 5400 yes 3

BRJ0529 3552 CTIO 1998 O t 15 3600 yes 3

BRJ0714 6455 CTIO 1998 O t 15 3600 yes 3

PSSJ0747+4434 WHT 1998 Sep22 1800/1800 no 1 RXJ1028 0844 WHT 1999 Mar 19 2700/2700 yes 8 PSSJ1048+4407 WHT 1999 Mar 19 2700/2700 yes 9 PSSJ1057+4555 WHT 1999 Mar 19 1800/1800 yes 9 PSSJ1159+1337 WHT 1999 Mar 18 2700/2700 yes 1 PSSJ1253 0228 WHT 1999 Mar 18 2700/1800 yes 2 BRJ1310 1740 WHT 1999 Mar 19 2700/2700 yes 3 BRJ1330 2522 WHT 1999 Mar 19 2700/2700 yes 3

(45)

32 CHAPTER2. THE Z 4QUASAR SAMPLE PSSJ1438+2538 WHT 1999 Mar18 2700/2700 yes 9 PSSJ1456+2007 WHT 1999 Mar18 2700/2700 yes 1 BRJ1603+0721 WHT 1999 Mar19 2700/2700 yes 3 PSSJ1618+4125 WHT 1999 Mar19 2700/2700 yes 1 PSSJ1633+1411 WHT 1999 Mar19 1800/1800 yes 2 PSSJ1646+5514 WHT 1998 Sep23 3600/3600 yes 1 PSSJ1721+3256 WHT 1998 Sep24 1800/3600 yes 1

RX J1759+6638 WHT 99/98 Mar 19/Sep23 6300/6300 yes 10

PSSJ1802+5616 WHT 1999 Sep14 1800 no 2

BRJ2017 4019 CTIO 1998 O t14 3600 no 3

PSSJ2122 0014 WHT 1998 Sep22 3600/3600 no 1

BRJ2131 4429 CTIO 1998 O t16 1800 no 3

PMN J2134 0419 CTIO 1999 O t12 5400 yes 11

PSSJ2154+0335 WHT 1999 Sep14 1800 no 2

PSSJ2155+1358 CTIO 1999 O t10 3600 yes 2

BRJ2216 6714 CTIO 1999 O t09 3600 yes 3

PSSJ2241+1352 CTIO 1999 O t11 3600 yes 2

DMSB2247 0209 WHT 1998 Sep24 5400/3600 yes 12

PSSJ2315+0921 CTIO 1999 O t11 3600 yes 2

BRJ2317 4345 CTIO 1998 O t14 3600 yes 3

BRJ2328 4513 CTIO 1998 O t15 3600 yes 3

PSSJ2344+0342 CTIO 1999 O t11 3600 yes 2

BRJ2349 3712 CTIO 1999 O t09 3600 yes 3

a

For thequasars observed at the WHT the B/R designationsgive theexposure times

throughtheblue andred armsofthe ISISspe trograph.

Notes:

The quasarpre xes indi ationthefollowingorigin: BR= APMsurveyobje ts sele ted

byB J

-R olorex ess; PSS=Se ond PalomarSky Survey; PMN = Parkes-MIT-NRAO

radio-sele ted obje ts; RX = X-ray sele ted; SDSS = Sloan Digital Sky Survey; and

DMS=Deep Multi olor Survey.

Referen es:

(1)Stern et al. 2000;

(2)G. Djorgovski's wwwpageat http://www.astro. alte h.edu/george/z4.qsos;

(3)Storrie-Lombardiet al.2000;

(4)Fanet al.1999;

(5)Warren,Hewett, &Osmer1991;

(6)Kenne ket al. 1995a;

(7)Storrie-Lombardiet al.1996a;

(8)Zi kgraf et al. 1997;

(9)Kenne ket al. 1995b;

(10) Henryet al. 1994;

(46)

2.2.2 CTIO Runs

Thirty- ve quasars were observed at CTIO during1998 O tober14 { 16, and

1999O tober9{12. Thetypi alexposuretimewas3600se ondsforthebrighterobje ts

(R18{19

th

mag) butsubstantiallylongertimes wereusedforthefainterSloanDigital

Sky Survey quasars. We used the R-C spe trograph with the 316 lines mm 1

grating,

entered at 6050 

A and overing the range 3000 

A 9100



A. This set-up resulted in a

dispersionof 1.98  A pixel

1

. Thedete tor usedwasa Loral30721024 CCDdete tor.

Thenarrowandwideslitobservationsweretakenwith1{1.5ar se and5ar se widths,

respe tively. Be ause of the substantial wavelength overage available with thisset-up

we used a WG345 blo king lter (with 50 % transmission at 3450 

A) to minimize the

se ond order ontamination from thestandard stars above 7000 

A. The ontamination

isnegligibleforthe quasarsasmosthave no ux below4500 

A buta e tsthestandard

stars that have substantial ux at 3500 

A. Appropriate measures, as dis ussed in the

data redu tion se tion, have been taken so that this set-up does not modify the ux

alibration at the red end of the spe tra. Using two instrumental set-ups in order to

ompletely remove the se ond order ontamination problem would have resulted in a

60{80 %in reaseintherequiredobserving time.

2.2.3 Ke k Observation

The observations of SDSS J0338+0022 were taken at the Ke k Observatory

withtheLowResolutionImagingSpe trometer(LRIS)on10February1999 witha1".0

wideslit and 400`/mmgrating blazedat 8500 

A (spe tral resolution 8.1 

A),and on 17

February 1999 with a 1".5 wide slit,with boththe 400`/mm grating blazedat 8500  A

(spe tral resolution 12.3 

A), and withthe 300`/mm gratingblazed at 5000 

A (spe tral

resolution17.3 

A). Seeingwas0".7 0".9 FWHMon the rstnight,and 0".7 1".0 on

the se ond night; observations were made under dark, photometri onditions in ea h

instan e. Asequen eof threeexposures,shiftedby10 00

alongtheslit,wastaken inea h

on gurationwiththepositionangleoftheslitsettotheparalla ti angleforthemiddle

exposure. This yielded net integrations of 3600 s (5542{9350  A; 8.1  A resolution; 1".0 slit),3600 s (5799{9609  A; 12.4 

A resolution;1".5 slit), and 3000 s (3673{8708  A; 17.3



Aresolution;1".5slit). A GG495blo king lterwasusedto suppressse ondorder blue

light. Moreobservational detailsaregiven inSongailaet al. (1999).

2.3 The Data

2.3.1 Data Redu tion

Thedataredu tionwasundertakenusingtheIRAF 2

softwarepa kage. Be ause

2

IRAFisdistributedbytheNationalOpti alAstronomyObservatories,whi hareoperatedbythe

Figure

Fig. 2.| F rational look-bak time as a funtion of redshift.  M = 1:0,   = 0:0 (solid line),  M = 0:0 and
Fig. 8.| Abundanes expeted for the light nulei 4 He, D, 3 He and 7 Li (top to bottom)
Fig. 13.| Illustration of the dierent regimes of the urve of growth. The middle panel
Fig. 2.| The top panel shows a B-star ux standard with atmospheri absorption
+7

Références

Documents relatifs

A ce ciel grisé par le brouillard d’automne ; Une tornade de feuilles s’envole au gré du vent, Pour accorer une douce valse, à ma plume

fonctionnelles + Thérapie dans l’eau : schémas de PNF : positions maintenues pendant 10sec, 5 séries de 10 mouvements T° eau 32-34°C Profondeur 100cm 30min 5 jours/semaines

Los impactos del cambio climático se dan desde el nivel global (todo el planeta) a nivel regional (América Latina, Europa, África, etc.) y a nivel de los países, como Perú.

The Single-aperture Double-clad Fiber (SA-DCF) TSEE probe combines illumination, visualization, and laser therapy into a common optical aperture, resulting in an endoscope

He correctly deduced that expansions on aging were caused by the decomposition of retained austenite and that contractions were caused by the tempering of

Dans ce travail, un modèle poromécanique permet la prise en compte de la fissuration anisotrope, qu’elle soit localisée (structurelle) ou diffuse (issue de

Robotic assembly of discrete cellular lattices at super-hertz (&gt;1Hz) assembly rates is shown to be possible by integrating the design of a modular robotic

Indeed, digital media and associated enabling technologies have begun to blur the ways in which institutions can work together to advance a scholarly research agenda1. In