• Aucun résultat trouvé

Lire la thèse

N/A
N/A
Protected

Academic year: 2021

Partager "Lire la thèse"

Copied!
49
0
0

Texte intégral

(1)

Lire

(2)
(3)

Introduction

This document is an appendix to the submitted manuscript titled: Magnetic flux distor-tion in two-phase liquid metal flow. We have provided in this appendix, the difference emf time signals recorded in the Lockin amplifier and corresponding FFT spectra, at various values of U , ω and α. Even though each experiment was repeated six times, we only show the first two measurements in each case. All the time plots and FFT spectrum densities presented here, have been used in the submitted manuscript.

Notations

α Void volume fraction

ω Pulsation of AC current in primary coil of ECFM

U Velocity of ECFM

∆V Difference emf between secondary coils S1 and S2 I Current in primary coil

∆V|| Component of difference emf in-phase with I

∆VComponent of difference emf quadrature (π/2 out of phase) with I I|| Component of measured current in primary coil circuit, in-phase with I ||∆V ||2 Squared norm of difference emf

(4)
(5)

Contents

1 For α = 0% 7 2 For α = 0.3% 49 3 For α = 6.9% 93 4 For α = 2.0% 137 5 For α = 4.5% 171 6 For α = 0.06% 205 7 For α = 0.22% 241 8 For α = 0.54% 277 9 For α = 1.62% 313

(6)
(7)

Chapter 1

(8)

t (s) 0 1 2 3 4 " V || (V) -2 -1 0 t (s) 0 1 2 3 4 " V ? (V) -2 -1 0 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-6 0.5 1 1.5 2 t (s) 0 1 2 3 4 I || 0.44 0.45 0.46 0.47

Figure 1.1: ∆V and I vs t at U = 0 m s−1, ω = 1571 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-7 2 2.5 3 3.5 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-7 8.2 8.3 8.4 8.5 8.6 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 2.5 3 3.5 4

Figure 1.2: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 1571 rad s−1 and

(9)

t (s) 0 1 2 3 4 " V || (V) #10-4 -4 -3 -2 -1 0 t (s) 0 1 2 3 4 " V ? (V) #10-4 -5 -4 -3 -2 -1 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 0 1 2 3 4 I || 0.438 0.4385 0.439 0.4395 0.44

Figure 1.3: ∆V and I vs t at U = 0 m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-7 0.8 1 1.2 1.4 1.6 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-7 4.35 4.4 4.45 4.5 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -10 1.6 1.7 1.8 1.9

Figure 1.4: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 3142 rad s−1 and

(10)

t (s) 0 1 2 3 4 " V || (V) -3 -2.5 -2 t (s) 0 1 2 3 4 " V ? (V) -4 -3.5 -3 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-7 1 1.5 2 2.5 t (s) 0 1 2 3 4 I || 0.4238 0.424 0.4242 0.4244

Figure 1.5: ∆V and I vs t at U = 0 m s−1, ω = 4712 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-7 1.4 1.6 1.8 2 2.2 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-7 0 0.5 1 1.5 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -11 5 5.5 6 6.5

Figure 1.6: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 4712 rad s−1 and

(11)

t (s) 0 1 2 3 4 " V || (V) #10-4 -2.8 -2.6 -2.4 -2.2 t (s) 0 1 2 3 4 " V ? (V) #10-4 -4.4 -4.2 -4 -3.8 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-7 2 2.2 2.4 2.6 t (s) 0 1 2 3 4 I || 0.4093 0.4093 0.4094 0.4094 0.4095

Figure 1.7: ∆V and I vs t at U = 0 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-8 2.6 2.8 3 3.2 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-8 4 5 6 7 8 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -11 2 3 4 5

Figure 1.8: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 6283 rad s−1 and

(12)

t (s) 0 1 2 3 4 " V || (V) -2.8 -2.7 -2.6 t (s) 0 1 2 3 4 " V ? (V) -4.8 -4.7 -4.6 -4.5 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-7 2.6 2.7 2.8 2.9 3 t (s) 0 1 2 3 4 I || 0.3948 0.3948 0.3949 0.3949

Figure 1.9: ∆V and I vs t at U = 0 m s−1, ω = 7854 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-8 4 4.5 5 5.5 6 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-8 2 4 6 8 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -11 4 5 6 7 8

Figure 1.10: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 7854 rad s−1 and

(13)

t (s) 0 1 2 3 4 " V || (V) #10-4 -2.9 -2.8 -2.7 -2.6 t (s) 0 1 2 3 4 " V ? (V) #10-4 -5.3 -5.2 -5.1 -5 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-7 3.2 3.3 3.4 3.5 t (s) 0 1 2 3 4 I || 0.3803 0.3803 0.3803 0.3803 0.3803

Figure 1.11: ∆V and I vs t at U = 0 m s−1, ω = 9425 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-7 0.5 1 1.5 2 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-7 1.4 1.5 1.6 1.7 1.8 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -10 1.8 1.9 2 2.1 2.2

Figure 1.12: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 9425 rad s−1 and

(14)

t (s) 0 1 2 3 4 " V || (V) -3 -2.9 -2.8 t (s) 0 1 2 3 4 " V ? (V) -5.65 -5.6 -5.55 -5.5 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-7 3.7 3.8 3.9 4 t (s) 0 1 2 3 4 I || 0.3660 0.366 0.3660 0.3660 0.3661

Figure 1.13: ∆V and I vs t at U = 0 m s−1, ω = 10 996 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-7 1 1.5 2 2.5 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-7 2.9 3 3.1 3.2 3.3 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -10 2.5 2.6 2.7 2.8

Figure 1.14: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 10 996 rad s−1 and

(15)

t (s) 0 1 2 3 4 " V || (V) #10-4 -3 -2.95 -2.9 -2.85 -2.8 t (s) 0 1 2 3 4 " V ? (V) #10-4 -6.05 -6 -5.95 -5.9 -5.85 t (s) 0 1 2 3 4 || " V|| 2 (V 2 ) #10-7 4.2 4.3 4.4 4.5 t (s) 0 1 2 3 4 I || 0.3521 0.3521 0.3522 0.3522 0.3522

Figure 1.15: ∆V and I vs t at U = 0 m s−1, ω = 12 566 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-7 2.558 2.559 2.56 2.561 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-7 2.4 2.5 2.6 2.7 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -10 1 1.5 2 2.5

Figure 1.16: FFT spectral density of ∆V vs ωM at U = 0 m s−1, ω = 12 566 rad s−1 and

(16)

t (s) 7 8 9 10 11 12 " V || (V) -2.5 -2 -1.5 t (s) 7 8 9 10 11 12 " V ? (V) -2.2 -2 -1.8 -1.6 t (s) 7 8 9 10 11 12 || " V|| 2 (V 2 ) #10-8 4 6 8 10 t (s) 7 8 9 10 11 12 I || 0.4536 0.4536 0.4537 0.4537 0.4538

Figure 1.17: ∆V and I vs t at U = 0.1 m s−1, ω = 1571 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 0.5 1 1.5 2 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5

Figure 1.18: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 1571 rad s−1 and

(17)

t (s) 2 4 6 8 10 " V || (V) #10-4 -4 -3 -2 -1 0 t (s) 2 4 6 8 10 " V ? (V) #10-4 -6 -4 -2 0 t (s) 2 4 6 8 10 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 2 4 6 8 10 I || 0.437 0.438 0.439 0.44

Figure 1.19: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 0.5 1 1.5 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5 2

Figure 1.20: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and

(18)

t (s) 2 4 6 8 10 " V || (V) -3 -2.5 -2 t (s) 2 4 6 8 10 " V ? (V) -3.6 -3.4 -3.2 t (s) 2 4 6 8 10 || " V|| 2 (V 2 ) #10-7 1.55 1.6 1.65 1.7 t (s) 2 4 6 8 10 I || 0.4240 0.4240 0.424 0.4240 0.4240

Figure 1.21: ∆V and I vs t at U = 0.1 m s−1, ω = 4712 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 0.5 1 1.5 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3

Figure 1.22: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 4712 rad s−1 and

(19)

t (s) 3 4 5 6 7 8 " V || (V) #10-4 -3 -2.5 -2 t (s) 3 4 5 6 7 8 " V ? (V) #10-4 -4.5 -4 -3.5 t (s) 3 4 5 6 7 8 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 t (s) 3 4 5 6 7 8 I || 0.4091 0.4092 0.4093 0.4094

Figure 1.23: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3

Figure 1.24: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and

(20)

t (s) 5 6 7 8 9 10 " V || (V) -3 -2.8 -2.6 t (s) 5 6 7 8 9 10 " V ? (V) -4.8 -4.6 -4.4 t (s) 5 6 7 8 9 10 || " V|| 2 (V 2 ) #10-7 2.5 2.6 2.7 2.8 2.9 t (s) 5 6 7 8 9 10 I || 0.3946 0.3946 0.3947 0.3947 0.3947

Figure 1.25: ∆V and I vs t at U = 0.1 m s−1, ω = 7854 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3 4

Figure 1.26: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 7854 rad s−1 and

(21)

t (s) 5 6 7 8 9 10 " V || (V) #10-4 -3 -2.8 -2.6 -2.4 t (s) 5 6 7 8 9 10 " V ? (V) #10-4 -5.4 -5.2 -5 -4.8 -4.6 t (s) 5 6 7 8 9 10 || " V|| 2 (V 2 ) #10-7 3 3.1 3.2 3.3 3.4 t (s) 5 6 7 8 9 10 I || 0.3801 0.3802 0.3802 0.3802

Figure 1.27: ∆V and I vs t at U = 0.1 m s−1, ω = 9425 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 4 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6

Figure 1.28: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 9425 rad s−1 and

(22)

t (s) 5 6 7 8 9 10 " V || (V) -3.2 -3 -2.8 t (s) 5 6 7 8 9 10 " V ? (V) -5.8 -5.6 -5.4 -5.2 t (s) 5 6 7 8 9 10 || " V|| 2 (V 2 ) #10-7 3.4 3.6 3.8 4 t (s) 5 6 7 8 9 10 I || 0.3659 0.3659 0.366 0.3660 0.3661

Figure 1.29: ∆V and I vs t at U = 0.1 m s−1, ω = 10 996 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 1 2 3 4 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6

Figure 1.30: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 10 996 rad s−1

(23)

t (s) 4 6 8 10 " V || (V) #10-4 -3.2 -3 -2.8 -2.6 t (s) 4 6 8 10 " V ? (V) #10-4 -6 -5.8 -5.6 -5.4 t (s) 4 6 8 10 || " V|| 2 (V 2 ) #10-7 3.8 4 4.2 4.4 t (s) 4 6 8 10 I || 0.3520 0.3521 0.3521 0.3522 0.3522

Figure 1.31: ∆V and I vs t at U = 0.1 m s−1, ω = 12 566 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 1 2 3 4 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6

Figure 1.32: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 12 566 rad s−1

(24)

t (s) 5 6 7 8 9 " V || (V) -2 -1 0 1 t (s) 5 6 7 8 9 " V ? (V) -2 -1 0 1 t (s) 5 6 7 8 9 || " V|| 2 (V 2 ) #10-6 0 1 2 3 4 t (s) 5 6 7 8 9 I || 0.44 0.45 0.46 0.47

Figure 1.33: ∆V and I vs t at U = 1 m s−1, ω = 1571 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 2 4 6 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 1 2 3 4 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -8 0 2 4 6

Figure 1.34: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 1571 rad s−1 and

(25)

t (s) 2 4 6 8 10 " V || (V) #10-4 -10 -5 0 5 t (s) 2 4 6 8 10 " V ? (V) #10-4 -6 -4 -2 0 2 t (s) 2 4 6 8 10 || " V|| 2 (V 2 ) #10-7 0 2 4 6 t (s) 2 4 6 8 10 I || 0.4375 0.438 0.4385 0.439 0.4395

Figure 1.35: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 1 2 3 4 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 0.5 1 1.5 2 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -8 0 1 2 3

Figure 1.36: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and

(26)

t (s) 4.5 5 5.5 6 6.5 7 " V || (V) -6 -4 -2 0 t (s) 4.5 5 5.5 6 6.5 7 " V ? (V) -6 -4 -2 t (s) 4.5 5 5.5 6 6.5 7 || " V|| 2 (V 2 ) #10-7 1 2 3 4 t (s) 4.5 5 5.5 6 6.5 7 I || 0.4236 0.4238 0.424 0.4242

Figure 1.37: ∆V and I vs t at U = 1 m s−1, ω = 4712 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 1 2 3 4 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 1 2 3 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -8 0 0.5 1 1.5 2

Figure 1.38: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 4712 rad s−1 and

(27)

t (s) 4 5 6 7 " V || (V) #10-4 -6 -4 -2 0 t (s) 4 5 6 7 " V ? (V) #10-4 -6 -5 -4 -3 -2 t (s) 4 5 6 7 || " V|| 2 (V 2 ) #10-7 1.5 2 2.5 3 t (s) 4 5 6 7 I || 0.4092 0.4092 0.4093 0.4093 0.4094

Figure 1.39: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 2 4 6 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 1 2 3 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -8 0 0.5 1 1.5

Figure 1.40: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and

(28)

t (s) 4 5 6 7 8 " V || (V) -6 -4 -2 t (s) 4 5 6 7 8 " V ? (V) -6 -5 -4 t (s) 4 5 6 7 8 || " V|| 2 (V 2 ) #10-7 2 2.5 3 3.5 t (s) 4 5 6 7 8 I || 0.3945 0.3946 0.3946 0.3947 0.3947

Figure 1.41: ∆V and I vs t at U = 1 m s−1, ω = 7854 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 1 2 3 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 1 2 3 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6 8

Figure 1.42: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 7854 rad s−1 and

(29)

t (s) 4.5 5 5.5 6 6.5 7 " V || (V) #10-4 -5 -4 -3 -2 -1 t (s) 4.5 5 5.5 6 6.5 7 " V ? (V) #10-4 -7 -6 -5 -4 -3 t (s) 4.5 5 5.5 6 6.5 7 || " V|| 2 (V 2 ) #10-7 3 3.5 4 t (s) 4.5 5 5.5 6 6.5 7 I || 0.3801 0.3802 0.3802 0.3802 0.3803

Figure 1.43: ∆V and I vs t at U = 1 m s−1, ω = 9425 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 1 2 3 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 1 2 3 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6

Figure 1.44: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 9425 rad s−1 and

(30)

t (s) 3.5 4 4.5 5 5.5 6 " V || (V) -5 -4 -3 -2 t (s) 3.5 4 4.5 5 5.5 6 " V ? (V) -7 -6 -5 t (s) 3.5 4 4.5 5 5.5 6 || " V|| 2 (V 2 ) #10-7 3 3.5 4 4.5 t (s) 3.5 4 4.5 5 5.5 6 I || 0.3659 0.366 0.3661 0.3662

Figure 1.45: ∆V and I vs t at U = 1 m s−1, ω = 10 996 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 1 2 3 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 1 2 3 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6

Figure 1.46: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 10 996 rad s−1 and

(31)

t (s) 4 5 6 7 " V || (V) #10-4 -5 -4 -3 -2 -1 t (s) 4 5 6 7 " V ? (V) #10-4 -7 -6 -5 -4 t (s) 4 5 6 7 || " V|| 2 (V 2 ) #10-7 3.5 4 4.5 5 t (s) 4 5 6 7 I || 0.3521 0.3522 0.3523 0.3524

Figure 1.47: ∆V and I vs t at U = 1 m s−1, ω = 12 566 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-5 0 1 2 3 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-5 0 1 2 3 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6

Figure 1.48: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 12 566 rad s−1 and

(32)

t (s) 0 100 200 300 400 " V || (V) -4 -3 -2 -1 t (s) 0 100 200 300 400 " V ? (V) -6 -4 -2 t (s) 0 100 200 300 400 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 0 100 200 300 400 I || 0.438 0.4385 0.439 0.4395 0.44

Figure 1.49: ∆V and I vs t at U = 10−3m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-6 0 0.5 1 1.5 2 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5 2

Figure 1.50: FFT spectral density of ∆V vs ωM at U = 10−3m s−1, ω = 3142 rad s−1

(33)

t (s) 0 100 200 300 400 " V || (V) #10-4 -2.8 -2.6 -2.4 -2.2 t (s) 0 100 200 300 400 " V ? (V) #10-4 -4.4 -4.2 -4 -3.8 -3.6 t (s) 0 100 200 300 400 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 2.6 t (s) 0 100 200 300 400 I || 0.4093 0.4094 0.4095 0.4096 0.4097

Figure 1.51: ∆V and I vs t at U = 10−3m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 0.2 0.4 0.6 0.8 1 " V ? (V) #10-6 0 1 2 3 4 ! M (rad/s) 0 0.2 0.4 0.6 0.8 1 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3 4

Figure 1.52: FFT spectral density of ∆V vs ωM at U = 10−3m s−1, ω = 6283 rad s−1

(34)

t (s) 0 50 100 150 " V || (V) -4 -3 -2 -1 t (s) 0 50 100 150 " V ? (V) -6 -4 -2 t (s) 0 50 100 150 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 0 50 100 150 I || 0.437 0.438 0.439 0.44

Figure 1.53: ∆V and I vs t at U = 3 × 10−3m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 1 2 3 " V || (V) #10-7 0 2 4 6 8 !M (rad/s) 0 1 2 3 " V ? (V) #10-6 0 0.5 1 ! M (rad/s) 0 1 2 3 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -10 0 2 4 6 8

Figure 1.54: FFT spectral density of ∆V vs ωM at U = 3 × 10−3m s−1, ω = 3142 rad s−1

(35)

t (s) 20 40 60 80 100 120 " V || (V) #10-4 -2.8 -2.6 -2.4 -2.2 t (s) 20 40 60 80 100 120 " V ? (V) #10-4 -4.2 -4 -3.8 -3.6 t (s) 20 40 60 80 100 120 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 t (s) 20 40 60 80 100 120 I || 0.4093 0.4094 0.4095 0.4096

Figure 1.55: ∆V and I vs t at U = 3 × 10−3m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 1 2 3 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 1 2 3 " V ? (V) #10-6 0 1 2 3 4 ! M (rad/s) 0 1 2 3 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3 4

Figure 1.56: FFT spectral density of ∆V vs ωM at U = 3 × 10−3m s−1, ω = 6283 rad s−1

(36)

t (s) 10 15 20 25 30 35 " V || (V) -4 -3 -2 -1 t (s) 10 15 20 25 30 35 " V ? (V) -6 -4 -2 t (s) 10 15 20 25 30 35 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 10 15 20 25 30 35 I || 0.437 0.438 0.439 0.44

Figure 1.57: ∆V and I vs t at U = 10−2m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 2 4 6 8 10 " V || (V) #10-6 0 0.5 1 1.5 2 !M (rad/s) 0 2 4 6 8 10 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 2 4 6 8 10 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5 2

Figure 1.58: FFT spectral density of ∆V vs ωM at U = 10−2m s−1, ω = 3142 rad s−1

(37)

t (s) 10 20 30 40 " V || (V) #10-4 -2.8 -2.6 -2.4 -2.2 t (s) 10 20 30 40 " V ? (V) #10-4 -4.2 -4 -3.8 -3.6 t (s) 10 20 30 40 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 t (s) 10 20 30 40 I || 0.4091 0.4092 0.4093 0.4094

Figure 1.59: ∆V and I vs t at U = 10−2m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 2 4 6 8 10 " V || (V) #10-6 0 0.5 1 1.5 !M (rad/s) 0 2 4 6 8 10 " V ? (V) #10-6 0 0.5 1 1.5 ! M (rad/s) 0 2 4 6 8 10 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5 2

Figure 1.60: FFT spectral density of ∆V vs ωM at U = 10−2m s−1, ω = 6283 rad s−1

(38)

t (s) 5 10 15 20 " V || (V) -4 -3 -2 -1 t (s) 5 10 15 20 " V ? (V) -6 -4 -2 t (s) 5 10 15 20 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 5 10 15 20 I || 0.437 0.438 0.439 0.44

Figure 1.61: ∆V and I vs t at U = 3 × 10−2m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 10 20 30 " V || (V) #10-6 0 0.5 1 !M (rad/s) 0 10 20 30 " V ? (V) #10-6 0 0.5 1 ! M (rad/s) 0 10 20 30 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -10 0 2 4 6 8

Figure 1.62: FFT spectral density of ∆V vs ωM at U = 3 × 10−2m s−1, ω = 3142 rad s−1

(39)

t (s) 0 5 10 15 20 " V || (V) #10-4 -2.8 -2.6 -2.4 -2.2 t (s) 0 5 10 15 20 " V ? (V) #10-4 -4.4 -4.2 -4 -3.8 -3.6 t (s) 0 5 10 15 20 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 t (s) 0 5 10 15 20 I || 0.4093 0.4093 0.4094 0.4094 0.4095

Figure 1.63: ∆V and I vs t at U = 3 × 10−2m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 10 20 30 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 10 20 30 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 10 20 30 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3 4

Figure 1.64: FFT spectral density of ∆V vs ωM at U = 3 × 10−2m s−1, ω = 6283 rad s−1

(40)

t (s) 2 4 6 8 10 " V || (V) -4 -3 -2 -1 t (s) 2 4 6 8 10 " V ? (V) -6 -4 -2 t (s) 2 4 6 8 10 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 2 4 6 8 10 I || 0.437 0.438 0.439 0.44

Figure 1.65: ∆V and I vs t at U = 0.1 m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 0.5 1 1.5 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5 2

Figure 1.66: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 3142 rad s−1 and

(41)

t (s) 3 4 5 6 7 8 " V || (V) #10-4 -3 -2.5 -2 t (s) 3 4 5 6 7 8 " V ? (V) #10-4 -4.5 -4 -3.5 t (s) 3 4 5 6 7 8 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 t (s) 3 4 5 6 7 8 I || 0.4091 0.4092 0.4093 0.4094

Figure 1.67: ∆V and I vs t at U = 0.1 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 20 40 60 80 100 " V || (V) #10-6 0 0.5 1 1.5 2 !M (rad/s) 0 20 40 60 80 100 " V ? (V) #10-6 0 2 4 6 ! M (rad/s) 0 20 40 60 80 100 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3 4

Figure 1.68: FFT spectral density of ∆V vs ωM at U = 0.1 m s−1, ω = 6283 rad s−1 and

(42)

t (s) 4 5 6 7 8 " V || (V) -6 -4 -2 0 t (s) 4 5 6 7 8 " V ? (V) -6 -4 -2 t (s) 4 5 6 7 8 || " V|| 2 (V 2 ) #10-7 0 1 2 3 t (s) 4 5 6 7 8 I || 0.4375 0.438 0.4385 0.439 0.4395

Figure 1.69: ∆V and I vs t at U = 0.25 m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 50 100 150 200 250 " V || (V) #10-6 0 0.5 1 1.5 2 !M (rad/s) 0 50 100 150 200 250 " V ? (V) #10-6 0 0.5 1 1.5 2 ! M (rad/s) 0 50 100 150 200 250 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5

Figure 1.70: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 3142 rad s−1

(43)

t (s) 3 4 5 6 7 " V || (V) #10-4 -3.5 -3 -2.5 -2 -1.5 t (s) 3 4 5 6 7 " V ? (V) #10-4 -4.5 -4 -3.5 -3 t (s) 3 4 5 6 7 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 2.6 t (s) 3 4 5 6 7 I || 0.4092 0.4092 0.4093 0.4093 0.4094

Figure 1.71: ∆V and I vs t at U = 0.25 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 50 100 150 200 250 " V || (V) #10-6 0 0.5 1 1.5 !M (rad/s) 0 50 100 150 200 250 " V ? (V) #10-6 0 0.5 1 1.5 2 ! M (rad/s) 0 50 100 150 200 250 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 0.5 1 1.5 2

Figure 1.72: FFT spectral density of ∆V vs ωM at U = 0.25 m s−1, ω = 6283 rad s−1

(44)

t (s) 4 5 6 7 " V || (V) -4 -3 -2 t (s) 4 5 6 7 " V ? (V) -5 -4.5 -4 -3.5 t (s) 4 5 6 7 || " V|| 2 (V 2 ) #10-7 1.8 2 2.2 2.4 2.6 t (s) 4 5 6 7 I || 0.4092 0.4092 0.4093 0.4093 0.4094

Figure 1.73: ∆V and I vs t at U = 0.5 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 100 200 300 400 500 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 100 200 300 400 500 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 100 200 300 400 500 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3

Figure 1.74: FFT spectral density of ∆V vs ωM at U = 0.5 m s−1, ω = 6283 rad s−1 and

(45)

t (s) 4 5 6 7 " V || (V) #10-4 -6 -4 -2 0 2 t (s) 4 5 6 7 " V ? (V) #10-4 -6 -4 -2 0 2 t (s) 4 5 6 7 || " V|| 2 (V 2 ) #10-7 0 1 2 3 4 t (s) 4 5 6 7 I || 0.4375 0.438 0.4385 0.439 0.4395

Figure 1.75: ∆V and I vs t at U = 0.75 m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 200 400 600 800 " V ? (V) #10-6 0 2 4 6 ! M (rad/s) 0 200 400 600 800 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3

Figure 1.76: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 3142 rad s−1

(46)

t (s) 3 4 5 6 7 8 " V || (V) -6 -4 -2 t (s) 3 4 5 6 7 8 " V ? (V) -6 -5 -4 -3 t (s) 3 4 5 6 7 8 || " V|| 2 (V 2 ) #10-7 1.5 2 2.5 3 t (s) 3 4 5 6 7 8 I || 0.4091 0.4092 0.4092 0.4093 0.4093

Figure 1.77: ∆V and I vs t at U = 0.75 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 " V || (V) #10-6 0 1 2 3 !M (rad/s) 0 200 400 600 800 " V ? (V) #10-6 0 1 2 3 4 ! M (rad/s) 0 200 400 600 800 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3 4

Figure 1.78: FFT spectral density of ∆V vs ωM at U = 0.75 m s−1, ω = 6283 rad s−1

(47)

t (s) 2 4 6 8 10 " V || (V) #10-4 -10 -5 0 5 t (s) 2 4 6 8 10 " V ? (V) #10-4 -6 -4 -2 0 2 t (s) 2 4 6 8 10 || " V|| 2 (V 2 ) #10-7 0 2 4 6 t (s) 2 4 6 8 10 I || 0.4375 0.438 0.4385 0.439 0.4395

Figure 1.79: ∆V and I vs t at U = 1 m s−1, ω = 3142 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-6 0 2 4 6 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-6 0 2 4 6 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 2 4 6

Figure 1.80: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 3142 rad s−1 and

(48)

t (s) 4 5 6 7 " V || (V) -6 -4 -2 t (s) 4 5 6 7 " V ? (V) -6 -5 -4 -3 t (s) 4 5 6 7 || " V|| 2 (V 2 ) #10-7 1.5 2 2.5 3 t (s) 4 5 6 7 I || 0.4092 0.4092 0.4093 0.4093 0.4094

Figure 1.81: ∆V and I vs t at U = 1 m s−1, ω = 6283 rad s−1 and α = 0 %.

!M (rad/s) 0 200 400 600 800 1000 " V || (V) #10-6 0 2 4 6 !M (rad/s) 0 200 400 600 800 1000 " V ? (V) #10-6 0 1 2 3 ! M (rad/s) 0 200 400 600 800 1000 || " V|| 2 -h || " V|| 2 i (V 2 ) #10 -9 0 1 2 3 4

Figure 1.82: FFT spectral density of ∆V vs ωM at U = 1 m s−1, ω = 6283 rad s−1 and

(49)

Lire

Figure

Figure 1.8: FFT spectral density of ∆V vs ω M at U = 0 m s −1 , ω = 6283 rad s −1 and α = 0 %.
Figure 1.10: FFT spectral density of ∆V vs ω M at U = 0 m s −1 , ω = 7854 rad s −1 and α = 0 %.
Figure 1.12: FFT spectral density of ∆V vs ω M at U = 0 m s −1 , ω = 9425 rad s −1 and α = 0 %.
Figure 1.16: FFT spectral density of ∆V vs ω M at U = 0 m s −1 , ω = 12 566 rad s −1 and α = 0 %.
+7

Références

Documents relatifs

Dans le troisième chapitre, nous présentons la réalisation d'un traceur des caractéristiques courant- tension an d'identier les paramètres qui représentent un module

Sechs Punktquadrupel einer zweizagigen Ca, deren Tangentialpunkte die Ecken eines vollstandigen Vierseits sind, bilden eine Cf. Es kann leicht gezeigt werden, dass

Pour une valeur fixée U de la tension alternative d’alimentation du circuit primaire, déterminez la valeur de la résistance de charge R 2 du circuit secondaire afin que la

Ce sont les nombres de la forme 2 n−1 (2 n −1), où n est un entier naturel non nul tel que 2 n − 1 soit un nombre premier.. Donner les trois premiers nombres parfaits que cette

Déterminer les coordonnées du point D tel que ABCD soit un parallélogramme2. Faire une figure que l’on complètera au fur et

Quelles sont les coordon- nées de son extremum?. Est-ce un minimum ou un

c) Comme l'intensité mesurée est positive, les électrons (qui ont un sens de parcours opposé au sens conventionnel du courant) partent donc de l'armature supérieure pour arriver

- Les candidats doivent respecter les notations de l'énoncé et préciser, dans chaque cas, la numérotation de la question. - On accordera la plus grande attention à la clarté de