• Aucun résultat trouvé

The genotype-phenotype relationship across different scales

N/A
N/A
Protected

Academic year: 2021

Partager "The genotype-phenotype relationship across different scales"

Copied!
289
0
0

Texte intégral

(1)

HAL Id: tel-02438077

https://tel.archives-ouvertes.fr/tel-02438077

Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The genotype-phenotype relationship across different scales

Henry Kemble

To cite this version:

Henry Kemble. The genotype-phenotype relationship across different scales. Molecular biology. Uni-

versité Sorbonne Paris Cité, 2018. English. �NNT : 2018USPCC178�. �tel-02438077�

(2)

(3)

β

β

(4)
(5)
(6)

1

(7)

2

α β

(8)

3

(9)

4

(10)

5

(11)

6

β

(12)

7

(13)

8

(14)

9

(15)

10

genotype genotype genotype

phenotype phenotype phenotype Development

Heredity

Generation n n + 1 n + 2

(16)

11

(17)

12

(18)

13 AUGCGAUGCUAG Met-Arg-Cys

DNA RNA Protein

TACGCTACGATC ATGCGATGCTAG

Transcription Translation

Replication

(19)

14

(20)

15

(21)

16

(22)

17

(23)

18

(24)

19

(25)

20

(26)

21

(27)

22

(28)

23

(29)

24

(30)

25

KEGG PATHWAY

(31)

26

(32)

27

(33)

28

(34)

29

(35)

30

(36)

31

(37)

32

Phage display library Bind

and wash

Immobilised surface

Elute and amplify

Sequence

(38)

33

(39)

34

(40)

35

FACS

Deep-sequence

Cell library Fluorescence bins

(41)

36

Illumina flow cell

Illumina-sequence;

Strip and re-synthesise second-strand with unmodifieddNTPs

Flow low concentration of fluorescently-tagged DNA-binding protein;

Image

Flow higher concentration of fluorescently-tagged

DNA-binding protein;

Image

(42)

37

(43)

38 Propagate Propagate

Deep- sequence

Deep-

sequence

(44)

39

(45)

40

(46)

41

(47)

42

(48)

43

-6 -4 -2 0 2 4 6

0.20.40.60.81.00.0

ΔG

[Nati v el y f ol de d protei n] Mutant dens ity

Wildtype stability

[Natively folded protein] relative to wildtype

Mutant f requenc y

0.0 0.2 0.4 0.6 0.8 1.0

0.00.10.20.30.4

Δ 𝑃 𝑛𝑎𝑡 =

1 1+ 𝑒 𝛥𝐺/𝑘𝑏𝑇

Δ Δ

Δ

Δ

Δ

(49)

44

(50)

45

(51)

46

(52)

47

(53)

48

(54)

49

(55)

50 e = 0

e < 0 e > 0

magnitude

magnitude simple

sign

reciprocal sign reciprocal

sign none

Log phenotype

P

B

P

A

P

A

+ P

B

0

A

+

B

+

WT A

B

AB

A

-

B

-

A

+

B

-

simple sign

e < 0 e = 0 e > 0

(56)

51

(57)

52

(58)

53

Lo g ph en oty pe E pi s tas is

ΔG

-6 -4 -2 0 2 4 6

-2 -1 0 1 2

Δ

Δ

Δ

Δ Δ

(59)

54

(60)

55

(61)

56

(62)

57

(63)

58

(64)

59

(65)

60

(66)

61

(67)

62

(68)

63

Encapsulate single cells in droplets;

Ligate barcodes with

mutated regions Deep-sequence

Selection experiment

Deep-sequence

(69)

64

(70)

65

(71)

66

Γ

(72)

67

Γ

(73)

68

0 0,2

0,4

0,6 0,8 1

Rela tiv e f itn e ss

(74)

69

(75)

70

(76)

71

(77)

72

(78)

73 β

α

(79)

74

(80)

75

(81)

76

(82)

77

(83)

78

(84)

79

(85)

80

(86)

81

(87)

82

(88)

83

(89)

84

(90)

85

0.00 0.25 0.50 0.75

Growth rate (doub/hr)

crp-[pBC-crp+] crp-[pBC-crp-]

0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75

- cAMP - NaCl + cAMP - NaCl - cAMP + NaCl + cAMP + NaCl

Growth rate (doub/hr) Growth rate (doub/hr)

- NaCl + NaCl

[cAMP] (mM)

A B

C

(91)

86

(92)

87

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 2 4 6 8 10 12

Occu rr e n ce s (x 1 0

4

)

log

10

counts at t

0

log

10

counts at t

0

Occu rr e n ce s (x 1 0

2

)

0 1 2 3 4 5 6

0 2 4 6 8 10 12

WT

0 1 2 3 4 5

0 2 4 6 8 10 12 14 Occu rr e n ce s (x 1 0

2

)

log

10

# barcodes/genotype WT

A B C

(93)

88

(94)

89

(95)

90

(96)

91

(97)

92

(98)

93

(99)

94

(100)

95

(101)

96

(102)

97

(103)

98

(104)

99

(105)

100

(106)

101

(107)

102

(108)

103

(109)

104

(110)

105

(111)

106

(112)

107

(113)

108

(114)

109

β

(115)

110

α

(116)

111

(117)

112

(118)

113

(119)

114

μ

(120)

115

α

(121)

116

μ

(122)

117

α

(123)

118

(124)

119

(125)

120

(126)

121

(127)

122

(128)

123

(129)

124

(130)

125

(131)

126

𝑃(𝑐𝑜𝑢𝑛𝑡𝑠 𝑡 1 | 𝑐𝑜𝑢𝑛𝑡𝑠 𝑡 2 , 𝜆)

(132)

127

𝑃(𝑐𝑜𝑢𝑛𝑡𝑠 𝑡 2 | 𝑐𝑜𝑢𝑛𝑡𝑠 𝑡 1 , 𝜆) 𝜆

(133)

128

γ

λ

β

(134)

129

(135)

130

(136)

131

(137)

132

(138)

133

(139)

134

(140)

135

(141)

136

(142)

137

(143)

138

α

β

(144)

139

(145)

140

(146)

141

(147)

142

(148)

143

(149)

144

(150)

145

(151)

146

∆ ∆∆

𝑃𝑛𝑎𝑡 = 1+𝑒 ∆𝐺0+∆∆𝐺 1

𝑙𝑜𝑔( 𝑊0 𝑊 ) = 𝑙𝑜𝑔(1 + 𝑒 ∆𝐺 0 ) − 𝑙𝑜𝑔(1 + 𝑒 ∆𝐺 0 +∆∆𝐺 ) ∆∆

∆∆

∆∆

(152)

147

∆∆

(153)

148

∆∆

(154)

149

(155)

150

(156)

151

∆∆

(157)

152 α

λ

(158)

153

λ

(159)

154

α

(160)

155

(161)

156

(162)

157

(163)

158

(164)

159

(165)

160

(166)

161

(167)

162

(168)

163 𝐾 𝑗 = ( ∑ 𝐵𝐶 𝑊𝑡 𝑖 1 𝑖𝑗 1 𝑊𝑡 0

∑ 𝐵𝐶 𝑖 𝑖𝑗 0 ) 𝐵𝐶 𝑖𝑗 1 𝑊𝑡 1

𝐵𝐶 𝑖𝑗 0

𝐾 𝑖𝑗 = ( 𝐵𝐶 𝑖𝑗 1 𝑊𝑡 1

𝑊𝑡 0

𝐵𝐶 𝑖𝑗 0 ) = 𝐾 𝑗 .

𝐵𝐶 𝑖𝑗 1 ∑ 𝐵𝐶 𝑖 𝑖𝑗 1

∑ 𝐵𝐶 𝑖 𝑖𝑗 0 𝐵𝐶 𝑖𝑗 0

(169)

164

𝐺

𝑖𝑡

𝑊𝑡

𝑡

= 𝐺

𝑖0

𝑊𝑡

0

(𝑓 𝑖 ) 𝑡 𝑙𝑜𝑔 ( 𝑊𝑡 𝐺 𝑖 𝑡 𝑡 ) = 𝑡 𝐹 𝑖 + 𝑙𝑜𝑔 ( 𝑊𝑡 𝐺 𝑖 0 0 ) 𝐹 𝑖 = log(𝑓 𝑖 ).

𝐺 𝑖 𝑡 𝑊𝑡 𝑡

𝑛𝑏𝑝 𝑖 =

𝑐𝑒𝑖𝑙𝑖𝑛𝑔 ( 5

1+ 𝑉𝑖 (𝑀𝑖) 2

)

𝐺 𝑖 𝑡 𝑊𝑡 𝑡

𝐺 𝑖 𝑡

𝑊𝑡 𝑡

(170)

165 𝑀 ≈ 𝑋/5

𝑉 ≈ 𝑋 5 2𝑋 25 2 = 4𝑋 25 2 𝑛𝑏𝑝 𝑖 = 5

1+ 𝑉𝑖 (𝑀𝑖) 2

= 1

5 1+ 𝑉𝑖

(𝑀𝑖) 2

> 1 𝑛𝑏𝑝 𝑖 = 2.

𝑀 ≈ 𝑋 𝑉 = 0 𝑛𝑏𝑝 𝑖 = 5.

(171)

166 𝑀𝐼𝐶 𝑖 = 6

1+

𝑉𝑖

(𝑀𝑖)2

.

(172)

167

(173)

168

(174)

169

∆∆

∆ ∆

∆∆

∆∆

∆∆

∆∆

(175)

170

∆∆

∆∆

∆∆

∆∆

𝐹 𝑖 = 𝐿𝑜𝑔 ( 1 + 𝑒 ∆𝐺 𝑅𝑇 0 1 + 𝑒 ∆𝐺 0 𝑅𝑇 +∆∆𝐺 𝑖

) = 𝑔(∆∆𝐺 𝑖 )

(176)

171 𝐹 𝑖𝑗 = 𝐿𝑜𝑔 ( 1 + 𝑒 ∆𝐺 𝑅𝑇 0

1 + 𝑒 ∆𝐺 0 +∆∆𝐺 𝑅𝑇 𝑖 +∆∆𝐺 𝑗

) = 𝑔(∆∆𝐺 𝑖 + ∆∆𝐺 𝑗 ).

𝐹 𝑖 = ℎ 𝑖 + 𝐿𝑜𝑔 ( 1 + 𝑒 ∆𝐺 𝑅𝑇 0 1 + 𝑒 ∆𝐺 0 𝑅𝑇 +∆∆𝐺 𝑖

) = ℎ 𝑖 + 𝑔(∆∆𝐺 𝑖 )

𝐹 𝑖𝑗 = ℎ 𝑖 + ℎ 𝑗 + 𝐿𝑜𝑔 ( 1 + 𝑒 ∆𝐺 𝑅𝑇 0 1 + 𝑒 ∆𝐺 0 +∆∆𝐺 𝑅𝑇 𝑖 +∆∆𝐺 𝑗

) = ℎ 𝑖 + ℎ 𝑗 + 𝑔(∆∆𝐺 𝑖 + ∆∆𝐺 𝑗 ).

∆∆

∆∆

𝐹 𝑗 𝐹 𝑖𝑗 − 𝐹 𝑗 − ℎ 𝑖 𝐹 𝑖𝑗 − 𝐹 𝑗

𝐹 𝑖 − ℎ 𝑖 𝐹 𝑖𝑗 − 𝐹 𝑗 − ℎ 𝑖

(177)

172

∆∆

𝜎 𝑖𝑗

𝐿𝑜𝑔(𝐿𝑘(𝜎 𝑚 ))~ − ∑ 𝐿𝑜𝑔(𝜎 𝑖𝑗 2 + 𝜎 𝑚 2 )

𝑖,𝑗,𝑖≠𝑗

− ∑ (𝐹 𝑖𝑗 − 𝑔(∆∆𝐺 𝑖 + ∆∆𝐺 𝑗 )) 2 𝜎 𝑖𝑗 2 + 𝜎 𝑚 2 .

𝑖,𝑗,𝑖≠𝑗

𝐿𝑜𝑔(𝐿𝑘(𝜎 𝑚𝑝, 𝜎 𝑚𝑑 ))~ − ∑ 𝑖,𝑗,𝑖≠𝑗 𝐿𝑜𝑔(𝜎 𝑖𝑗 2 + 𝜎 𝑚𝑝 2 𝛿 𝑖𝑗 + 𝜎 𝑚𝑑 2 (1 − 𝛿 𝑖𝑗 )) − ∑ (𝐹

𝑖𝑗

−𝑔(∆∆𝐺

𝑖

+∆∆𝐺

𝑗

))

2

𝜎

𝑖𝑗2

+𝜎

𝑚𝑝2

𝛿

𝑖𝑗

+𝜎

𝑚𝑑2

(1−𝛿

𝑖𝑗

)

𝑖,𝑗,𝑖≠𝑗 ,

𝛿 𝑖𝑗 = 1

(178)

173

(179)

174

(180)

175

(181)

176

(182)

177

(183)

178

(184)

179

β

Log araAexpression

Log araB expression

Env2

[aTc]2, [IPTG]2

Env3 [aTc]3, [IPTG]2

AraA AraB

L-arabinose L-ribulose L-ribulose-5-P

Growth

PPP

A

B C

aTc IPTG DaraBA

PLtetO-1

PLlacO-1

…AATTGACATTGTGATCGGATAACAAGATACTGA…

…GATTGACATCCCTATCAGTGATAGAGATACTGA…

-35 -10

Env1 [aTc]1, [IPTG]1

D

ATP ADP

H+

e = 0 e < 0 e > 0

magnitude

magnitude simple

sign reciprocal

sign reciprocal

sign none

ln fitness

FrelaB FrelAb FrelAb+ FrelaB

0

A+B+

ab Ab

aB AB

A-B- A+B-

simple sign

e < 0 e = 0 e > 0

(185)

180

(186)

181

(187)

182

(188)

183

(189)

184

(190)

185 𝐹 = (𝜔 + 𝑢𝜑 − 1/𝜂−𝜑 𝑣 ) (1 – 𝜃 𝐴 𝐴 – 𝜃 𝐵 𝐵) 𝜔

𝜑 θ

𝜑 = 1/𝐴+1/𝐵+𝜂 1

(191)

186

(192)

187

(193)

188

(194)

189

(195)

190

(196)

191

(197)

192

α

(198)

193

(199)

194

(200)

195

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to