• Aucun résultat trouvé

Exploring the nature and kinetic of establishment of molecular interactions in aqueous solution: the example of polysaccharide systems

N/A
N/A
Protected

Academic year: 2021

Partager "Exploring the nature and kinetic of establishment of molecular interactions in aqueous solution: the example of polysaccharide systems"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02331886

https://hal-normandie-univ.archives-ouvertes.fr/hal-02331886

Submitted on 24 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exploring the nature and kinetic of establishment of molecular interactions in aqueous solution: the example

of polysaccharide systems

Alexandre Cordinier, Nicolas Hucher, Michel Grisel

To cite this version:

Alexandre Cordinier, Nicolas Hucher, Michel Grisel. Exploring the nature and kinetic of establishment of molecular interactions in aqueous solution: the example of polysaccharide systems. ESC 2019 European Student Colloid Conference, Jun 2019, VARNA, Bulgaria. �hal-02331886�

(2)

Exploring the nature and kinetic of establishment of molecular interactions in aqueous solution: the example of polysaccharide systems

Unité de Recherche en Chimie Organique et Macromoléculaire

Normandie Univ, UNIHAVRE, FR 3038 CNRS, URCOM, 76600 Le Havre, France

Alexandre Cordinier a , Nicolas Hucher a and Michel Grisel a Alexandre.cordinier@univ-lehavre.fr

References

0 3 6 9 12

0 10 20 30 40 50

G' (Pa)

Time (h)

Evolution of the viscoélastique properties of a X/LBG mixture 40/60 (0.2% w/w)*

1. Daas, P. J. H.; Meyer-Hansen, K.; Schols, H. A.; De Ruiter, G. A.; Voragen, A. G. J. Carbohydr. Res. 1999, 318 (1–4), 135–145.

2. Daas, P. J. H.; Schols, H. A.; de Jongh, H. H. J. Carbohydr. Res. 2000, 329 (3), 609–619.

3. R. O. Mannion, C. D. Melia, B. Launay, G. Cuvelier, S. E. Hill, S. E. Harding, J. R. Mitchell, Carbohydr. Polym. 1992, 19, 91–97.

4. S. Secouard, C. Malhiac, M. Grisel, B. Decroix, Food Chem. 2003, 82, 227–234.

5. J. A. Casas, F. García-Ochoa, J. Sci. Food Agric. 1999, 79, 25–31.

6 I. C. M. Dea, E. R. Morris, D. A. Rees, E. J. Welsh, H. A. Barnes, J. Price, Carbohydr. Res. 1977, 57, 249–272 7. M. Tako, A. Asato, S. Nakamura, Agric. Biol. Chem. 1984, 48, 2995–3000.

8. P. Cairns, M. J. Miles, V. J. Morris, G. J. Brownsey, Carbohydr. Res. 1987, 160, 411–423.

9. A. Kato, S. Nakai, Biochim. Biophys. Acta BBA - Protein Struct. 1980, 624, 13–20.

10. M. D. Bilokin’, V. V. Shvadchak, D. A. Yushchenko, G. Duportail, Y. Mély, V. G. Pivovarenko, J. Fluoresc. 2009, 19, 545–553.

11. P. B. Fernandes, J. Food Eng. 1995, 24, 269–283.

Pyruvate group

Acetate group

Context

Xanthane (X)

Galactomannans (GM)

Galactose

 Synthesized by bacteria

 Used as rheological modifier and stabilizer

Helix

(Ordered form) Rigid chain

Random coil

(Disordered form) Flexible chain pH

Ionic strength

Conformational transion temperature (Tm)

Chemical variability:

Structural variability:

 Fermentation conditions => Variability of degrees of

substitution of pyruvate (DS

Py

) and acetate (DS

Ac

) groups

 Extracted from plant seeds

 Used mainly as rheological modifier

 Main chain = Mannose units (M) substituted by galactose residues (G)

≠ varieties of seeds:

 Variation of the M/G ratio

 Distribution of G:

 Degree of blockiness

1,2

(DB)

Ordered Random Blockwise

Structural variability:

Synergy X/GM

 Mixed in specific conditions  POSITIVE SYNERGY between X and GM

 Over the past 50 years, several interaction models have been proposed:

 Dea & Morris’ model

6

based on polarimetric measurements

 Tako’s model

7

based on rheological measurements

 Cairns’ model

8

based on X-ray diffraction measurements

X/GM ratio3

G’ or G’’ (Pa)

Objectives

The aim of this project is to characterize the interactions at the molecular scale between polymers in solution

Shear rate (s-1)5

Viscosity (kg/ms)

X/G

X G

 Develop an universal analytical tool to study the interactions at the molecular level

On the ground of the observations done at the macroscopic scale, why one model would be

more accurate than another ?

3 ≠ models based on 3 ≠ techniques

≠ Conformations or ≠ chemical structures of X

 Check what happen at microscopic scale !

Arome relative Release (%)

X/GM (%)4;  X/LBG  X/GG

Conclusions

≠ type of GM:

- Locust Bean Gum (LBG) - Guar Gum (GG)

- Tara Gum (TG) - etc…

Characterization of interactions at the molecular scale ? FLUORESCENCE SPECTROSCOPY

0 50 100 150 200 250 300

350 400 450 500 550 600

EI ( a.u .)

λ (nm)

3HQ-Bf spectra in X/LBG mixture (1:1; 0.2% w/w)

Corrected and normalized spectra at 700 nm

1N* 2N*

T*

λ

1N*

λ

2N*

λ

T*

0 50 100 150 200 250

440 540 640 740

IE ( a.u .)

λ (nm)

ANS spectra in X/LBG mixture (1:1; 0.2% w/w)

Corrected and normalized at 740 nm

λ

IEmax

IE

max

Results

At the macroscopique scale At the molecular scale

X/GM mixing phase

 Use of 2 molecular specific probes

 Same mixing process between X and GM as at the macroscopic scale

 Injection of 1 of the 2 selected fluorescence probes: 8-anilino-1-naphtalen sulfonic acid (ANS) or 2-benzofuryl-3-hydroxy-4(1H)-quinolone (3HQ-Bf) in small quantities

 The 3HQ-Bf probe is sensitive to H-Bonds

10

in its close environment

 3HQ-Bf is not available commercially, it has to be synthesized

 3HQ-Bf is a ratiometric probe

 Ratio EI

N*

/EI

T*

≈ Strength of the H-bond network

 The ANS probe is sensitive to Hydrophobic interactions

9

(EI)

H

2

O is a quencher to the fluorescence of ANS probe

 The ANS probe is also sensitive to the polarity of the medium (λ)

 ANS is t available commercially

 X/GM mixtures at 0.2% (w/w)

 Use of a phosphate buffer at pH 7.4

 X/GM mixture stirred during ~ ½ h +

H

2

O H

2

O

H

2

O H

2

O

H

2

O

H

2

O H

2

O

X

G

Magnetic Stirrer

Buffer Buffer

Buffer Buffer

X/GM mixtures preparation

Use of a Discovery Hybrid Rheometer to follow viscoelastic properties of our X/GM mixtures with time High shear rates !

 Stabilization of viscoelastic propoerties is not happening suddenly

2 ≠ phases:

1  Structuration phase

2  Stabilized system

 The period of the structuration phase is depending on the composition of X/GM mixture

 The period of the structuration phase is depending also of the mixture preparation conditions

 Few studies have been made about this structuration step

11,5

1 2

1 2 1 2

2 ≠ phases:

1  Structuration phase

2  Stabilized interactions

Interaction strucuration depends on the composition of X/GM mixture

*For reasons of clarity only the stock modulus G’ was represented

**For reasons of clarity standard deviations were not represented

***Dotted lines only help to read the graphs

 Before any stabilization of X/GM mixtures, both molecular interactions (hydrophobic interactions and H-bonds) need a period of time which depend on the preparation conditions and of the composition of the X/GM mixture

 Structuration phases can be observed at both scales, macroscopic and molecular

 Structuration phases are strongly dependent of the composition of X/GM mixtures and dependent of the preparation conditions

2 2,1 2,2 2,3 2,4 2,5 2,6

-1,2 -1 -0,8 -0,6 -0,4 -0,2 0

Log(EI)

Log(t)

Kinetic of structuration of hydrophobic interactions at short times

0/100 30/70 40/60 50/50 70/30 100/0

Representation « log-log » Representation « log-log »

0 50 100 150 200 250 300 350

0 5 10 15 20 25 30

EI (a.u.)

Time (h)

Evolution of hydrophobic interactions in X/LBG mixtures

(0.2% w/w)**

Corrected and normalized spectra at 740 nm

0/100

30/70

40/60

50/50

70/30

100/0

-0,4 -0,3 -0,2 -0,1 0 0,1 0,2

-1,2 -1 -0,8 -0,6 -0,4 -0,2 0

Log[EI(2N*) /EI(T*)]

Log(t)

Kinetic of structuration of the H-bond network at short times***

0/100 30/70 40/60 50/50 70/30 100/0 Theoritical curve for 50/50a

Theoritical curve for 50/50b

0 0,5 1 1,5 2 2,5

0 5 10 15 20 25 30

Ratio EI(2N*)/EI(T*)

Time (h)

Evolution of the H-Bond network with time in X/LBG mixtures (0.2% w/w)**

0/100 30/70 40/60 50/50 70/30 100/0

a Calculated as follow: EI50/50theo=0.5xEI100/0exp+0.5xEI0/100exp

b Calculated as follow: [EI(2N*)/EI(T*)]50/50theo= 0.5x[EI(2N*)/EI(T*)]100/0 + 0.5x[EI(2N*)/EI(T*)]0/100

Références

Documents relatifs

To identify the nature of plasma modes that carry the energy cascade from the energy-containing to the sub-ion scales, we use the magnetic compressibility C B given by the ratio

influence of the symmetry of the magnetic interaction and its connection with the Mermin-Wagner theorem, and (ii) the singularity which the surface magneti- zation

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

On trouve déjà en cette attente, au moins partiellement, le schéma de cette allégorie qu’est le désert des Tartares :en général elle a lieu dans un espace clos, salle ou

Using the exact one-particle Green’s function in the BSE approach within the static GW approximation also leads to a number of additional excitations, all of them being spurious

The aim of the present study was to analyze the modifications of redox state in the liver of heterozygous cystathionine beta synthase- deficient mice, a murine model

Parmi les rares entités spatiales capables de sortir de cette condition primitive, moins d'une dizaine dans tout l'univers, deux espèces sont déjà intervenues dans le passé

Durant plus de six mois, il m’avait forcé à faire un enfant avec lui mais jamais je ne les souhaité car je voulais qu’il cesse de me frapper.. Il m’en voulait pour cela et