• Aucun résultat trouvé

MACROSCOPIC ROTORS AND GRAVITATIONAL EFFECTS

N/A
N/A
Protected

Academic year: 2021

Partager "MACROSCOPIC ROTORS AND GRAVITATIONAL EFFECTS"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: jpa-00221745

https://hal.archives-ouvertes.fr/jpa-00221745

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MACROSCOPIC ROTORS AND GRAVITATIONAL EFFECTS

R. Ritter

To cite this version:

R. Ritter. MACROSCOPIC ROTORS AND GRAVITATIONAL EFFECTS. Journal de Physique Colloques, 1981, 42 (C8), pp.C8-429-C8-440. �10.1051/jphyscol:1981849�. �jpa-00221745�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C8, suppZ6ment au n012, Tome 42, dgcembre 1981 page C8-429

MACROSCOPIC ROTORS AND GRAVITATIONAL EFFECTS

R.C. R i t t e r

Department o f Physics, U n i v e r s i t y of V i r g i n i a , charZottesvi ZZe, VA 22901, U. S. A.

Abstract.-Astronomical bodies have, i n t h e p a s t , provided e s s e n t i a l l y t h e only macroscopic b a s i s f o r s t u d i e s of g r a v i t a t i o n by means of r o t a t i o n s . Now new technology p r o v i d e s t h e p o s s i b i l i t y t h a t l a b o r a t o r y r o t o r s may b e made more p r e c i s e than a s t r o n o m i c a l ones. This a r t i c l e surveys t h e p r o p e r t i e s of some of b o t h t y p e s of r o t o r s and d e s c r i b e s s e v e r a l l a b o r a t o r y experiments f o r t e s t s of General R e l a t i v i t y .

Introduction.-Except f o r a s t r o n o m i c a l b o d i e s , we seldom t h i n k of p r e c i s i o n r o t o r s a s t o o l s f o r s t u d y i n g g r a v i t a t i o n . Three e x c e p t i o n s can be mentioned. 1 ) The Hughes-Drever e x p e r i m e n t s l r 2 with p a r t i c l e s a s p r e c i s i o n r o t o r s took advantage of

t h e p r i v i l e d g e d s t a t u s of t h e s e r o t o r s a s n o n i n e r t i a l frames i n o r d e r t o t e s t f o r t h e p o s s i b l e a n i s o t r o ~ y of s p a c e . 3 , 4 2) The S t a n f o r d R e l a t i v i t y Gyroscope w i l l provide a t e s t of General R e l a t i v i t y p r e d i c t i o n s of s p i n - o r b i t and s p i n - s p i n coupling of t h e gyro t o t h e e a r t h ' s r o t a t i o n i n a s a t e l l i t e o r b i t . 5 Here t h e gyroscopic p r o p e r t i e s , n o t p u r e r o t a t i o n , a r e what is of i n t e r e s t . 3) ~ r e m e r e ~ 6 used t h e decay of a s p i n n i n g r o t o r i n an experiment aimed a t t e s t i n g what i s now known t o be a n i n v a l i d theory7 of g r a v i t a t i o n a l r a d i a t i o n .

This l a s t t e s t i s c l o s e s t i n experimental method t o t h o s e t o b e d i s c u s s e d h e r e , although t h e s e w i l l have r a d i c a l l y d i f f e r e n t o b j e c t i v e s from t h a t one.

The o b j e c t i v e s of concern h e r e a r e , i n s t e a d , mostly r e l a t e d t o a s e r i e s of Machian concepts which r e a c h beyond E i n s t e i n ' s General R e l a t i v i t y . This i n c l u d e s t e s t s f o r changes i n t h e Newtonian g r a v i t a t i o n a l number, G, and t h e r e l a t e d q u e s t i o n of spontaneous, cosmological m a t t e r c r e a t i o n . We a l s o w i l l d i s c u s s a t e s t f o r non-metric r e l a t i v i t y .

The temporal and s p a t i a l s c a l e s of t h e s e '%lachian" phenomena a r e huge, and Earthbound schemes must u s e u l t r a p r e c i s i o n t o cope w i t h t h e narrow spans a v a i l - a b l e t o us l o c a l l y . The f i r s t two p a r t s of t h i s a r t i c l e w i l l c o n s i d e r such a q u e s t i o n , and d i s c u s s i n what ways i t makes any s e n s e t o compete i n t h e ' l a b o r a t o r y a g a i n s t t h e reaches of astronomy.

I n succeeding s e c t i o n s we w i l l d e s c r i b e t h r e e experiments which u s e p r e c i s i o n l a b o r a t o r y r o t o r s t o measure g r a v i t a t i o n a l effects--two of them i n p r o g r e s s . Astronomical and Laboratory R o t o r s . - ~ i c k e ~ , and s u b s e q u e n t l y ~ u l l e r ~ , have used a n c i e n t o b s e r v a t i o n s of e c l i p s e s , e t c . to provide a long temporal b a s e l i n e f o r measuring t h e t i d a l d e f i c i t i n t h e s e c u l a r decay of t h e l u n a r o r b i t a l motion a s a p o s s i b l e means of e s t i m a t i n g 6. P r e c i s i o n of t h e e a r t h ' s r o t a t i o n a l and o r b i t a l motion i s of much concern i n t h e time-keeping asDects of such c a l c u l a t i o n s .

Van ~ 1 a n d e r n l O h a s used l u n a r o c c u l t a t i o n s is combination w i t h atomic-clock timing of t h e s e c u l a r decay of t h e l u n a r o r b i t f o r t h e same reason. This does n o t i n v o l v e c o n s i d e r a t i o n s of p r e c i s i o n of r o t a t i o n a l m o t i o n , b u t i t does i n d i c a t e t h e d i r e c t i o n i n which modern s t u d i e s of such e f f e c t s a r e going. A p a r t i c u l a r example i s t h e way t h e p r e c i s i o n of t h e atomic c l o c k makes up f o r t h e s h o r t temporal b a s e l i n e a v a i l a b l e i n t h e time span s i n c e i t s i n v e n t i o n and u s e . I n a d d i t i o n , t h e s e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981849

(3)

C8-430 JOURNAL DE PHYSIQUE

experiments e x p l o i t t h e new way of c o n s i d e r i n g ~ i r a c ' s l ~ i d e a s about changing G . I n p a r t i c u l a r , h i s u s e of two m e t r i c s , atomic and cosmological, make comparison of t h e c l o c k time and l u n a r o r b i t time ( c o r r e c t e d f o r t i d a l e f f e c t s ) a d i r e c t t e s t of t h i s v e r s i o n of p r e d i c t i o n s f o r changing G.

Reference 1 3 l i s t s a number of o t h e r such t e s t s , t h e b a s i s of which w i l l be d i s c u s s e d i n t h e f o l l o w i n g s e c t i o n .

Although even galaxy c l u s t e r s 1 4 have been involved i n c o n s i d e r a t i o n s of 6,

we w i l l u s e t h e e a r t h a s a more t a n g i b l e p r e c i s i o n s p h e r i c a l r o t o r f o r comparison with a l a b o r a t o r y r o t o r (of 5 cm r a d i u s ) . Table I l i s t s some of t h e p e r t i n e n t mechanical p r o p e r t i e s of t h e s e two r o t o r s .

Table I. Mechanical p r o p e r t i e s of a s t r o n o m i c a l and l a b o r a t o r y r o t o r s of i n t e r e s t .

Property E a r t h Laboratory Rotor

Radius (cm) 6.4 x lo8 5

Density (gmlcmL) 5.5 8

Surrounding atmosphere*

a ) Gas d e n s i t y lo2-lo3 1 . 9 x 1 0 10

(molecules/cm3) ( a t 10-8 Torr)

b ) Temperature (OK) l o 3 3

Momenta of i n e r t i a

-A

We a r b i t r a r i l y choose a p o i n t - 500 km above t h e e a r t h ' s s u r f a c e . For purposes of g a s drag i l l u s t r a t i o n t h i s rough c h o i c e w i l l b e adequate and i n f a c t t h e n o t i o n of o r d i n a r y gas drag i s q u i t e crude i n t h i s c a s e .

The behavior of t h e s e o b j e c t s r e l e v a n t t o p r e c i s i o n r o t a t i o n s i s t h a t con- cerned w i t h t h e i r s e c u l a r spindown and t h e i r f l u c t u a t i o n s . The s e c u l a r p a r t i s assumed t o be e x p o n e n t i a l . That i s , t h e a n g u l a r v e l o c i t y i s

where T* i s a time c o n s t a n t c o n t a i n i n g a l l forms of d r a g s ,

Here I i s t h e r o t o r moment of i n e r t i a and a i s an e f f e c t i v e o v e r a l l d r a g c o e f f i - c i e n t , a s i n t h e f o l l o w i n g d i f f e r e n t i a l e q u a t i o n of a " f r e e " r o t o r ,

For p r e s e n t purposes we can t a k e a t o b e composed of two p a r t s , t h e gas d r a g a g and t h e b e a r i n g d r a g , ab. I n t h e c a s e of a n a s t r o n o m i c a l body t h e "bearing drag" w i l l c o n s i s t of nonconservative e f f e c t s i n coupling t o o t h e r b o d i e s . For t h e e a r t h t h i s i s p r i m a r i l y t i d a l coupling t o t h e moon and sun.

Other d i s t u r b a n c e s l e a d t o both s e c u l a r and f l u c t u a t i o n a l v a r i a t i o n s i n r o t o r motions. The "ponderomotive e f f e c t " d i s c u s s e d by ~ r a g i n s k y l s i s one such

(4)

F i g u r e 1. C y l i n d r i c a l l a b o r a t o r y t e s t r o t o r i n suspension.

Actual r o t o r s a r e of Zerodur glass-ceramic u l t r a - h i g h s t a b i l i t y m a t e r i a l . Typical r o t o r mass = 250 g , moment of i n e r t i a = 1100 g-cm2.

mechanism. The d i f f e r e n t i a l h e a t i n g of a r o t o r i n a uniform u n i d i r e c t i o n a l f l u x of e l e c t r o m a g n e t i c r a d i a t i o n ( t h e sun) l e a d s t o an i n c r e a s e i n a n g u l a r v e l o c i t y . (This i s l i s t e d a s a n e g a t i v e time c o n s t a n t i n Table 11, below.)

F l u c t u a t i o n s i n r o t o r a n g u l a r v e l o c i t y a c t u a l l y occur a s a spectrum. For purposes h e r e , we l i s t only f l u c t u a t i o n s a t t h e fundamental r o t a t i o n a l frequency f o r t h e e a r t h : t h e l e n g t h of day ( l o d ) v a r i a t i o n . 1 6

Table I1 l i s t s t h e r o t a t i o n a l p r o p e r t i e s of t h e e a r t h and l a b o r a t o r y r o t o r s . I n t h e l a t t e r c a s e , small s p h e r e s l 7 . 1 8 , 1 t o 3 mm diameter, a t h i g h s p e e d s ,

l o 4 t o l o 5 H z , a r e used f o r comparison although experiments t o b e d i s c u s s e d i n following s e c t i o n s use l o n g e r , slower r o t o r s .

E a r t h r o t a f i o n s a c t u a l l y s e r v e a s poor measurements f o r modern g r a v i t a t i o n a l q u e s t i o n s . For G, t h e e a r t h r o t a t i o n s a r e used only i n d i r e c t l y , a s measurements of s e c u l a r l u n a r o r b i t a l decay. The l a r g e observed f l u c t u a t i o n s 1 6 and v a r y i n g s e c u l a r decay17 of t h e e a r t h ' s r o t a t i o n i n t e r f e r e g r e a t l y w i t h t h e u s e of such d a t a . A s f o r d i r e c t measurement of 6, t h e e a r t h r o t a t i o n s would be i n e f f i c i e n t . The e a r t h a c t s as 10 t o 17% of a r i g i d r 0 t o r ~ 0 . 2 ~ . That is, i t ' s moment of i n e r t i a would r e a c t t o G only 10 t o 17% a s much a s an a g g r e g a t e of f r e e l y o r b i t i n g b o d i e s , because although i t is g r a v i t a t i o n a l l y bound, i t s bulk c o m p r e s s i b i l i t y i s dominated by e l e c t r i c a l f o r c e s of r e p u l s i o n .

C a l c u l a t i o n s of t h e g a s drag depend on t h e r e l a t i o n v e r i f i e d by ~eams",

(5)

JOURNAL DE PHYSIQUE

Table 11. R o t a t i o n a l p r o p e r t i e s of a s t r o n o m i c a l and l a b o r a t o r y r o t o r s of i n t e r e s t .

P r o p e r t y E a r t h Laboratory r o t o r

T * - ~ e c a ~ c o n s t a n t from g a s drag ( s e c )

~ ~ * - ~ e c a ~ c o n s t a n t from %lo12

b e a r i n g d r a g ( s e c ) ( r e f . 16) ( r e f . 6) -T *-spin up time c o n s t a n t ,

pondromotive e f f e c t 1 5 ( s e c ) %6 x 1017

T*-observed ( s e c ) % 1 0 17

% 1 0 10

( r e f . 16) ( r e f . 17,18)

Observed r o t a t i o n a l

Q = w.r* %7 X 10 12 10 -10 14 15

Observed f r a c t i o n a l %3 x lo-8

f l u c t u a t i o n s ( r e f . 16) Not observed

This can b e put i n d i f f e r e n t u n i t s , 13,22

* = - = I

a g (413 a4; -)-'I, (5)

* 3

where k i s t h e g a s d e n s i t y , i n molecules/cm , p i s t h e mass of t h e molecule, i n gm, and T i s t h e g a s temperature, OK. Thus f o r s c a l i n g of T ~ * ,

T " ( e a r t h ) *

g RE PE kL TL %

T * ( l a b r o t o r ) = ( ) (T) (T/ '

g % " L E E

i s t h e r e l e v a n t r a t i o . For parameters i n t h e t a b l e s , t h i s t a k e s t h e v a l u e -10 15 .

I n summary, both b e a r i n g drag and g a s d r a g of t h e e a r t h a r e much l e s s t h a n f o r t h e l a b o r a t o r y r o t o r s of t h e p a s t , a l t h o u g h o t h e r v a r i a t i o n s a l s o render t h e e a r t h a r a t h e r i n e f f e c t i v e p r e c i s i o n r o t o r .

Improved Laboratory Rotors.-The r o t o r s of Beams and Fremerey had t h r e e major f a u l t s : t h e e x c e s s i v e gas f r i c t i o n , e x c e s s i v e b e a r i n g f r i c t i o n , and high-speed s t r e s s - r e l a t e d i n s t a b i l i t i e s .

From E q . (5) i t i s seen t h a t a vacuum of 10-18 t o r r would be needed t o achieve T*-1018 s e c f o r r o t o r s of a few cm s i z e . This i s e s s e n t i a l l y impossible, and a new scheme must b e found t o remove t h i s l i m i t a t i o n .

The method used i n our experiments was f i r s t conceived by ~ e a m s ~ ~ , although a t t h a t time h e lacked i n s t r u m e n t a t i o n t o develope and t e s t i t . I n t h i s method t h e gas i s f o r c e d t o r o t a t e along w i t h t h e r o t o r by means of an o u t e r , c o r o t a t i n g chamber. I f t h e p r e s s u r e i s i n t h e f r e e molecule regime one can expect t h e g a s drag on t h e i n n e r r o t o r t o approach z e r o a s t h e r o t o r s approach t h e same speed.

(6)

Two means have been used t o keep t h e i n n e r and o u t e r r o t o r s t o g e t h e r . 1 3 I n Method I t h e o u t e r c y l i n d e r r o t a t e s a t c o n s t a n t v e l o c i t y , locked t o a cesium beam c l o c k . The t i n y decay of t h e i n n e r r o t o r i s such t h a t an a p p r e c i a b l e d i f f e r e n c e i n a n g u l a r v e l o c i t y does n o t develope d u r i n g t h e l i f e t i m e of any doable experiment.

I n Method I1 a servomechanism s e n s e s slowdown of t h e o u t e r r o t o r and d r i v e s i t t o keep i t i n phase w i t h t h e i n n e r one.

These " c o r o t a t i o n p r o t e c t i o n " methods i n p r i n c i p l e and i n p r a c t i c e p r o v i d e a huge amount of g a s d r a g r e d u c t i o n . They do, however, p r e s e n t a new s e r i e s of problems r e l a t e d t o coupling i n t h e r o t a t i n g r e f e r e n c e frame, and t h e i r develop- ment has proving a c o n s i d e r a b l e t a s k .

The f e r r o m a g n e t i c suspensions which served a s b e a r i n g s f o r Beams and Fremerey e x h i b i t e d l i m i t i n g time c o n s t a n t s a t about T;* % 1012 s e c . This a r i s e s from t h e r o t o r s p i n coupling t o t h e e a r t h ' s s p i n , a " C o r i o l i s torquet118 which causes a r o t o r i n t h e n o r t h e r n hemisphere t o hang o f f m i c r o r a d i a n s toward t h e North. The n o n c o l i n e a r i t y of s p i n and suspension axes demands compensating eddy c u r r e n t s which have a t i n y component i n a d i r e c t i o n such a s t o c r e a t e drag.

S u r p r i s i n g l y t h i s e f f e c t i s v i r t u a l l y independent of a n g u l a r v e l o c i t y .

Even i f compensating schemes f o r t h e C o r i o l i s t o r q u e could b e d e v i s e d , i t i s n o t c l e a r t h a t t h e f e r r o m a g n e t i c suspension i s s u i t a b l e f o r g r a v i t a t i o n a l e x p e r i - ments. I t i s h a r d t o imagine how t h e a c t i v e s e r v o p r o c e s s of such suspensions c a n f a i l t o , through some form of mode coupling, remove o r add energy t o t h e r o t o r a t t h e minute l e v e l s of i n t e r e s t . I n one s e r i e s of experiments22 we have ob- s e r v e d some r o t o r s t o never l o s e speed, even i n a 10-6 t o r r non-corotating gas atmosphere. I n some c a s e s t h i s would correspond t o a d d i t i o n of %10-l5 w a t t s i n t h e r o t a t i o n a l mode, presumably pumped i n by a p a r a m e t r i c mode coupling from t h e suspension. 22

Diamagnetic s u s p e n s i o n s have been developed f o r superconducting ~ ~ h e r e s . 2 ~ The i n t e r e s t was f o r gyro work and t o our knowledge t h e " l o s s l e s s " r o t a t i o n a l

p o s s i b i l i t y of such r o t o r s was never pursued. It i s i n t h i s d i r e c t i o n t h a t t h e work o f o u r l a b o r a t o r y almost s u r e l y must u l t i m a t e l y go. A t t h e p r e s e n t , however, we a r e s t u d y i n g t h e problems of c o r o t a t i o n i n t h e more h o s p i t a b l e circumstances

of t h e ferromagnetic suspension.

F i n a l l y , t h e s t r e s s and thermal i n s t a b i l i t i e s of t h e r o t o r s of Beams were a d i r e c t r e s u l t of t h e h i g h speeds o f t h e r o t o r s . Lower speed r o t o r s , ~ $ 1 t o 10 r a d l s e c , of a few cm s i z e can avoid t h e s e problems. A t t h e same time, t h e moment of i n e r t i a goes up f a s t e r t h a n t h e drag, a n o t h e r improvement.

Laboratory Measurement of ;.-A r o t a t i n g Cavendish ~ a l a n c e ~ ~ can avoid t h e one major l i m i t a t i o n f o r G measurement, t h a t of a v a r i a k l e g r a v i t y g r a d i e n t a t t h e balance.

Since t h e d e s i r e d s e n s i t i v i t y is b e t t e r t h a n G / G = -1010 y r - l , g r a d i e n t s a t t h i s l e v e l would b e v i r t u a l l y impossible t o avoid otherwise. This has been d i s c u s s e d a t l e n g t h . 2 5 I n essence t h e r o t a t i o n s , d r i v e n by an u l t r a - p r e c i s e t u r n t a b l e , average o u t t h e t o r q u e s imposed on t h e b a l a n c e by non-rotating l o c a l g r a v i t y g r a d i e n t s .

To s e e t h e s e n s i t i v i t y needed and t h e c h a r a c t e r of t h e s e experiments t h e b a s i s f o r i n t e r e s t i n a p o s s i b l e v a r i a t i o n of G w i l l b e b r i e f l y d i s c u s s e d h e r e .

~ i r a c ' l developed h i s " l a r g e numbers hypothesis" along t h e l i n e s of a two- m e t r i c concept of g r a v i t a t i o n . 2 6 An "atomic" o r "quantum" m e t r i c a p p l i e s t o atomic e v e n t s such a s t h e t i c k i n g of a n atomic clock. An " E i n s t e i n " o r "cosmolo- g i c a l " m e t r i c a p p l i e s t o l a r g e s c a l e e v e n t s . I n t h i s way t h e General Theory of R e l a t i v i t y can s t i l l remain v a l i d , applying t o t h e l a r g e s c a l e e v e n t s , even though i t does n o t o t h e r w i s e p e r m i t v a r i a b l e G, which comes o u t of t h e development.

That is, v a r i a b l e G only a p p e a r s i n atomic-measured e v e n t s . This disengagement of t h e two m e t r i c s i s a s t r a n g e , b u t n o t new, concept.

(7)

C8-434 JOURNAL DE PHYSIQUE

Viewed i n t h i s way, t h e l a r g e numbers appear a s dimensionless r a t i o s , f o r example, of t h e l a r g e s t (cosmological) p h y s i c a l l y d e f i n e d d i s t a n c e t o t h e s m a l l e s t (quantum) d i s t a n c e : t h e "radius" of t h e u n i v e r s e t o t h e r a d i u s of a n elementary p a r t i c l e . Since t h e r a d i u s i n c r e a s e s w i t h time f o r our expanding u n i v e r s e t h i s l a r g e number h a s a temporary P r e s e n t v a l u e , about A t one e a r l y time i t could have been u n i t y .

By i t s e l f t h e above number i s i n t e r e s t i n g only i n i t s l a r g e s i z e . Most dimensionless r a t i o s i n n a t u r e a r e only s e v e r a l o r d e r s of magnitude from u n i t y . But a n o t h e r dimensionless r a t i o , t h i s one of f o r c e s , has a n e a r l y e q u a l v a l u e of about 1040. This is t h e r a t i o of t h e e l e c t r i c a l (quantum?) t o g r a v i t a t i o n a l

(cosmological?) f o r c e s between a p a i r of e l e c t r o n s .

D i r a c assumed t h e s e numbers were e q u a l and were l a r g e n o t by a c c i d e n t but by growth. An a l t e r n a t e view could u s e t h e maximum s i z e of an o s c i l l a t i n g u n i v e r s e i n t h e f i r s t r a t i o and thereby c o n s i d e r i t a c o n s t a n t r a t h e r t h a n growing r a t i o .

Taking D i r a c ' s view, t h e n , t h e g r a v i t a t i o n a l f o r c e , lo4' times weaker, i s diminishing when measured by atomic e v e n t s . O r , t h e e l e c t r i c a l f o r c e i s i n c r e a s - i n g when measured by cosmological events. Such a n i d e a h a s been c a r r i e d f u r t h e r by ~ i r a c ~ ~ i n p o s t u l a t i n g t h a t t h e number of baryons i n t h e o b s e r v a b l e u n i v e r s e , about 1080, i s t h e n growing a s t 2 when measured by atomic events. He h a s since27 devised a n o t h e r v e r s i o n of t h e concept i n which, i n an a p p r o p r i a t e r e f e r e n c e frame, m a t t e r i s n o t b e i n g c r e a t e d . These i d e a s have been c a r r i e d f u r t h e r by ~ a n u t o l 2 i n h i s s c a l e - c o v a r i e n t theory.

The a t t r a c t i v e n e s s i n such i d e a s l i e s p a r t l y i n t h e i r Machian connection.13 They do l e a d t o Sciama's s t a t e m e n t of Mach's ~ r i n c i ~ l e . 2 8 A ~ o t h e r a t t r a c t i o n i s i n t h e h i n t of a connection t o grand u n i f i c a t i o n . I f a t v e r y e a r l y times when p r e s s u r e s and temperatures were v e r y g r e a t , and i n t h e u n i v e r s e a l l f o r c e s were of n e a r l y e q u a l s t r e n g t h , a n e v o l v i n g r a t i o of e l e c t r i c a l t o g r a v i t a t i o n a l would not b e a n u n t e n a b l e n o t i o n . Development of t h e electro-weak u n i f i c a t i o n , 29 grand u n i f i c a t i o n , and t h e r e l a t e d p r e d i c t i o n of a decaying proton30 have a growing e d i f i c e of t h e o r e t i c a l i n t e r e s t about them w i t h s i m i l a r i m p l i c a t i o n .

Thus t h e s c a l e of growth of t h e l a r g e number r a t i o s i s given d i r e c t l y by t h e Hubble expansion r a t e of t h e universe31, ~ ~ - 1 ?. 2 x 1010 y r . Consequently

k / ~ ?. Hg 2 5 x 10-l1 yr-l. This i s t h e " t a r g e t r a t e " f o r o b s e r v a t i o n of a non- zero change i n G. I t should be noted t h a t d i f f e r e n t v e r s i o n s of t h e concept l e a d t o d i f f e r e n t connections between b / ~ and t h e r e l a t e d changes i n p e r i o d s of o r b i t s , o r o t h e r p o t e n t i a l observables. T h i s i s d i s c u s s e d , e.g. i n Ref. 13.

The t o r q u e change i n one y e a r i n a modest-sized 6 experiment25 would be 3 x 10-l3 dyne-cm. T h i s i s 2000 times s m a l l e r t h a n a s i g n a l t o r q u e a t t h e l i m i t of Dicke's e q u i v a l e n c e p r i n c i p l e m e a ~ u r e m e n t . 3 ~ And, i t i s lo6-10 times s m a l l e r than t h e t o r q u e f o r t h e b e s t Cavendish balance measurements of G. The t r a d e - o f f of a b s o l u t e accuracy j n metrology of t h o s e experiments f o r t h e extreme s e n s i t i v i t y and s t a b i l i t y of t h e G experiment would o f f e r hope of r e a c h i n g t h e n e c e s s a r y l e v e l .

The experiment devised i s complex. It i s a r o t a t i n g , superconducting, symme- t r i z e d , fedback Cavendish balance. While l i m i t s of n a t u r e , i n p r i n c i p l e , do n o t appear t o b e s u r p a s s e d a t t h e r e q u i s i t e l e v e l of s e n s i t i v i t y and s t a b i l i t y , t h e p o s s i b i l i t y f o r d i f f i c u l t , p r a c t i c a l problems seems enormous.

Matter C r e a t i o n Experiment.-As broueht o u t stove, t h e l a r g e number h y p o t h e s i s a l s o p r e d i c t s m a t t e r c r e a t i o n a t a r a t e M/M = -2 G/G

.

10-lo p e r y e a r . I f M i s taken

t o b e t h e mass of a l l baryons i n t h e u n i v e r s e , and new ones a r e c r e a t e d uniformly throughout space, i t i s c a l l e d " a d d i t i v e c r e a t i o n " , and would be a r a t e s o low a s t o a f f e c t r o t a t i o n s i n an unobservable way. On t h e o t h e r hand, i f m a t t e r i s c r e a t e d where i t a l r e a d y e x i s t s , each macroscopic body would i n c r e a s e i n mass a t t h e above r a t e . This i s c a l l e d " m u l t i p l i c a t i v e c r e a t i o n " by ~ i r a c . 2 6

(8)

F i g u r e 2. Method I c o r o t a t i o n experiment f o r p r e l i m i n a r y measurement of m a t t e r c r e a t i o n . System r e s t s on

3600 kg s t o n e , below p i c t u r e . T o t a l h e i g h t

-

2.3 m.

I f t h e m a t t e r i s c r e a t e d i n t h e s i m p l e s t conceivable Machian f a s h i o n , i . e . i n response t o a l l t h e o t h e r m a t t e r i n t h e u n i v e r s e , i t would be i n a s t a t e of r e s t f o r t h e frame of t h e average of a l l m a t t e r . I n t h i s c a s e a r o t o r i n a n earthbound l a b o r a t o r y would i n c r e a s e i n moment of i n e r t i a due t o t h e added m a t t e r , and i f s u f f i c i e n t l y p r o t e c t e d , would slow down a t a measurable r a t e . We c a l l t h i s a dynamic measurement of m a t t e r creation.33 The p a r t i c l e s c r e a t e d would, under t h e above assumption, a c t a s a "wind" a c r o s s t h e r o t o r o f no o b s e r v a b l e consequence. (On t h e o t h e r hand, i f m a t t e r was c r e a t e d i n t h e s t a t e of motion of t h e l o c a l m a t t e r r a t h e r t h a n t h e s i m p l e r Machian i d e a , i t would n o t slow down t h e r o t o r . ) An advantage of t h e dynamic method of measurement i s t h a t i t i s inde- pendent of t h e form of t h e c r e a t i o n (long a m a t t e r of d i s c u s s i o n ) a s l o n g a s i t s t a y s i n p l a c e once c r e a t e d i n t h e r o t o r .

A r o t o r s i m i l a r t o t h a t of F i g u r e 1, b u t of Zerodur, weighing 250 gm and having moment of i n e r t i a I = 1100 gm cm2, i s spun up t o 'bl r a d . / s e c i n a Method I c o r o t a t i o n system. The primary apparatus13334 f o r t h i s f i r s t , room temperature dynamic t e s t of m a t t e r c r e a t i o n i s ~ i c t u r e d i n F i g u r e 2.

A p r e c i s i o n t u r n t a b l e d r i v e s t h e o u t e r , q u a r t z c y l i n d e r a t c o n s t a n t speed.

A s p e c i a l magnetic-averaging motor34, phase-locked t o a cesium beam c l o c k , pro- v i d e s adequate speed constancy. A r o t a t i n g e l e c t r o n i c pump e v a c u a t e s t h e chamber t o 10-6 Torr. O p t i c a l systems observe mirrored s u r f a c e s on b o t h t h e i n n e r and o u t e r r o t o r s and p r o v i d e timing of each p e r i o d t o a b o u t 10-7 s e c . Averaging over 104 p e r i o d measurements i s done through a computer-operated timing system which r e s u l t s i n ~ 1 0 - l 1 sec. accuracy f o r t h e lo4 s e c (2.78 hour) b l o c k s . This i s s u f f i c i e n t f o r p r e s e n t system t e s t i n g .

(9)

C8-436 JOURNAL DE PHYSIQUE

F i n a l r u n s , a t t h e above " t a r g e t r a t e " f o r m a t t e r c r e a t i o n would have t o be months long i f t h e above p e r i o d averages were t h e only means of o b s e r v a t i o n . However, an i n t e g r a t e d phase l a g o f t h e i n n e r r o t o r 1 3 of 2 x r a d i a n s would occur every 106 s e c (%I2 days) and would be e a s i e r t o measure.

A t such high l e v e l s of s e n s i t i v i t y , of c o u r s e , a l a r g e number of o r d i n a r y d i s t u r b a n c e s must be e i t h e r removed o r known and accounted f o r (e.g. averaged).

For example, a 3600 kg g r a n i t e block on Weber i s o l a t o r s , followed by a 270 kg block on damped pneumatic s p r i n g s p r o v i d e s a two-stage mechanical i s o l a t i o n system.

A s p e c i a l s e t of problems a r i s e from c o r o t a t i o n . Coupling w i t h i n t h e r o t a t i n g r e f e r e n c e frame a p p l i e s s e c u l a r and o s c i l l a t i n g t o r q u e s t o t h e i n n e r r o t o r . 1 3 The " s i g n a l torque" which slows t h e r o t o r i s about 10-l3 dyne-cm a t M 1 0r . I m p e r f e c t i o n s i n symmetry, w i t h s t a n d a r d p r e c i s i o n machining, would l e a d t o g r a v i t a t i o n a l coupling on t h e r o t o r w i t h a t o r q u e of about 10-l7 t o 10-I* dyne-cm. For r e f e r e n c e , thermal n o i s e c o n t r i b u t e s a f l u c t u a t i n g t o r q u e of a b o u t 10-l6 dyne-cm on such a r o t o r a t room temperature f o r averaging times of 104 s e c .

Thus f a r our experiments have l a r g e l y been aimed a t a s s e s s i n g t h e e f f e c t s of unwanted coupling. S e r i o u s e f f o r t s have n o t y e t been made t o reduce f e r r o - magnetic s u p p o r t b e a r i n g f r i c t i o n . (The s u p p o r t p o l e p i e c e cannot r o t a t e a s i t developes a "cranking" mode on t h e r o t o r . 3 4 )

More o r d i n a r y coupling i n t h e r o t a t i n g frame c o n s i s t s of e l e c t r i c a l and mag- n e t i c e f f e c t s which a r e j u s t now b e i n g s t u d i e d . I n one i n t e r e s t i n g e x ~ e r i m e n t 3 5 , t h e r e s i d u a l magnetism i n a "nonmagnetic" clamp screw on t h e r o t o r coupled t o t h e assymmetry of t h e s m a l l s t r a y f i e l d (< $ g a u s s ) of t h e e l e c t r o n i c pump t o produce o s c i l l a t i o n s about t h e synchronous r o z a t i o n p o s i t i o n . These had p e r i o d s of 10 t o 30 min. and amplitudes of about 300. They decayed a t a r a t e of about 10-14 w a t t s .

I n o t h e r experiments we have p u t a p a i r of copper f o i l p l a t e s around t h e o u t e r c y l i n d e r and a p p l i e d a few kV p o t e n t i a l t o t e s t e l e c t r i c a l c o u p l i n g . Remarkably s t r o n g coupling o c c u r s , and confirms t h e need f o r conducting c o a t i n g s on a l l s u r f a c e s .

I n e r t i a l Clock Experiment.-A s u f f i c i e n t l y p r o t e c t e d and a p p r o p r i a t e l y i n t e r r o g a t e d r o t o r s h o u l d be a good clock. I f m a t t e r c r e a t i o n e x i s t s , such a c l o c k would

keep a p a r t i c u l a r kind of time, b u t t h i s would presumably b e smooth and p r e d i c t a b l e . There could b e many u s e s f o r such a clock, i f i t were made s u f f i c i e n t l y pre- c i s e and r e l i a b l e . One u s e would b e t o t a k e advantage of i t s p a r t i c u l a r n a t u r e from a fundamental p o i n t of view and a t t e m p t t o s e a r c h f o r nonmetric p r o p e r t i e s of R e l a t i v i t y .

W i l l and ~ o r d v e d t ~ ~ have suggested a measurement of d i f f e r e n t i a l time- keeping of two d i f f e r e n t types of c l o c k s , s e t s i d e by s i d e , a s they p r o g r e s s around t h e a x i s on t h e s u r f a c e of t h e e a r t h i n i t s r o t a t i o n . There i s a s i n u s o i d a l d a i l y v a r i a t i o n of t h e g r a v i t a t i o n a l p o t e n t i a l t h e y e x p e r i e n c e a s t h e y move c l o s e r , then f u r t h e r from t h e sun. I f non-metric e f f e c t s apply, t h e s e might c a u s e a d i f f e r e n t i a l red s h i f t between c l o c k s each of which obeys,

where g i s t h e mean g r a v i t a t i o n a l f i e l d of t h e sun a t t h e i r p o s i t i o n , h i s t h e i r h e i g h t v a r i a t i o n , and terms i n t h e b r a c k e t a r e t h e Lightman-Lee expansion i n t h e s o - c a l l e d TH&v formalism.37 I n e s s e n c e , t h e expansion h a s c o e f f i c i e n t s Oi of t h e o r d e r u n i t y which depend on t h e n a t u r e of t h e c l o c k s . A "magnetic clock",

t h e hydrogen maser, would have one s e t . The " e l e c t r o s t a t i c clock", e.g. our

(10)

Figure 3. Primary a p p a r a t u s f o r i n e r t i a l c l o c k . The main chamber, about 30 cm d i a m e t e r , houses t h e shroud and minor r o t o r s , s e e n through t h e h o l e i n f r o n t . Arms a t t o p house e l e c t r o n i c s f o r magnetic s u p p o r t and timing.

Tube a t lower l e f t connects t o vacuum pump.

i n e r t i a l clock, woyJd have another.38 The v a l u e of gh/c2 f o r d i u r n a l v a r i a t i o n would be a b o u t 10- .

Such a n experiment has a l r e a d y been performed by S t e i n and ~ u r n e a u r e ~ ' , comparing t h e hydrogen maser and t h e Superconducting Cavity S t a b i l i z e d O s c i l l a t o r (SCSO). A s y e t they have n o t had c o n c l u s i v e r e s u l t s .

F i g u r e 3 shows our i n e r t i a l c l o c k e x ~ e r i m e n t ~ ~ , and F i g u r e 4 show& one v e r s i o n of t h e i n n e r r o t o r f o r i t , i n suspension. The Method I1 c o r o t a t i o n p r o t e c t i o n i s used and t h e experiment i s a t room temperature. Double magnetic suspension23 i s used f o r t h e two b e a r i n g s . Gas b e a r i n g s have shown c o n s i d e r a b l e r 0 u ~ h n e s s 3 ~ , and i t i s e a s i e r t o o b t a i n smooth s e r v o p r o p e r t i e s w i t h t h e o u t e r

"shroud r o t o r " b e a r i n g being magnetic a l s o . The development of t h i s was a c o n s i d e r a b l e t a s k , b u t i t i s now f u n c t i o n a l .

Thus f a r only room temperature t e s t s have been c a r r i e d o u t , and n o t under vacuum. The exaggerated v i s c o u s c o u p l i n g s between r o t o r s , and between t h e shroud r o t o r and chamber have been u s e f u l i n t e s t i n g t h e behavior and corn a r i s o n w i t h t h e s e t s of coupled d i f f e r e n t i a l e q u a t i o n s which t h e system obeys. EO

The r o t a t i o n a l s e r v o i s an i n t e r e s t i n g example of c o n t r o l . A t p r e s e n t , t h e p e r i o d s of t h e two r o t o r s , shroud and i n n e r , a r e measured s e p a r a t e l y and compared i n a microcomputer.^^ The d i f f e r e n c e i s converted t o an analog s i g n a l which o p e r a t e s a n eddy-current d r i v e t o speed up o r slow down t h e shroud r o t o r , a s needed

(11)

C8-438 JOURNAL DE PHYSIQUE

F i g u r e 4. Lower r o t o r of i n e r t i a l c l o c k i n suspension w i t h shroud removed. P o s i t i o n - s e n s i n g c o i l i s immediately below r o t o r , and mounted on p o l e of p o s i t i o n - c o r r e c t i n g c o i l .

t o keep i t w i t h t h e i n n e r . This w i l l be recognized a s p u r e d e r i v a t i v e feedback, and i t p e r m i t s wandering of t h e b a s e l i n e . A new algorythm i s being prepared t o provide p r o p o r t i o n a l , and p o s s i b l y i n t e g r a l , feedback t o remove t h i s d i f f i c i e n c y .

I n t h e f i n a l c l o c k of t h i s t y p e ( a t low temperature) t h e u l t i m a t e s t a b i l i t y and p r e c i s i o n w i l l r e s t on t h e i s o l a t i o n from s t a n d a r d d i s t u r b a n c e s a s w e l l a s t h o s e which come from i n t e r r o g a t i o n of t h e i n n e r r o t o r . Disturbances and undesired i n t e r r o t o r c o u p l i n g s c o n s t i t u t e "leaks" a c r o s s t h e s e r v o c o n t r o l and a r e t h e m a t t e r of our most s e r i o u s study. A t r e s e n t t h e r e appear t o b e no l i m i t a t i o n s , & p r i n c i p l e , t o a c h i e v i n g Q % loP5 o r h i g h e r .

Conclusion.-Laboratory p r e c i s i o n r o t a t i o n s a r e a new f i e l d which p r e s e n t s i n t e r - e s t i n g new p o s s i b i l i t i e s f o r g r a v i t a t i o n a l experiments, s e v e r a l of which have been d e s c r i b e d . A t t h e same time, problems of new k i n d s appear, p a r t i c u l a r l y i n

i n t e r r o t o r c o u p l i n g s f o r t h e needed c o r o t a t i o n g a s drag e l i m i n a t i o n . Room tempera- t u r e experiments t o d a t e have shown some of t h e s e problems b u t have n o t e x h i b i t e d evidence f o r p r o h i b i t i v e l i m i t a t i o n s i n t h e main concepts. The v i r t u e s of high p r e c i s i o n timing c a p a b i l i t i e s f o r r o t a t i o n a l motion, p a r t i c u l a r l y w i t h averaging, have shown t h e p o t e n t i a l f o r a s t o n i s h i n g measurement s e n s i t i v i t y i n such r e s e a r c h .

We wish t o acknowledge s u p p o r t from t h e N a t i o n a l Science Foundation, g r a n t s PHY78-3208 and PHY80-07948 and t h e N a t i o n a l Bureau of S t a n d a r d s g r a n t G8-9025.

Also, t h e c o n t r i b u t i o n s of many people i n our l a b o r a t o r y , i n c l u d i n g George T.

G i l l i e s , Stephen T. Cheung, George R. Jones, C a r l Leyh and Bruce Bernard, have been c e n t r a l i n t h i s r e s e a r c h .

(12)

R e f e r ences. -

HUGHES V., ROBINSON H., AND BELTRAN-LOPEZ V., Phys. Rev. L e t t . 5 (1960) 342.

DREVER R., P h i l . Mag. & (1961) 633.

COCCONI G., and SALP'PTER E., IJuovo Cimento 10(1958) 646.

EPSTEIN S . , Nuovo Cimento 16 (1960) 587;

DICKE R.H., Phys. Rev. L e t t . 1 (1961) 359.

EVERITT C.W .F . , i n Proc.on G e n e r a l

R e l a t i v i t y , T r i e s t e 1975, ed. R u f f i n i R. (N. Holland, 1977) p. 595.

FREMEREY J.K., Phys. Rev. L e t t . 30 (1973) 753.

KEITH J.C., J. Math. Phys. (N.Y.) 2 (1973) 248;

BIRKHOFF G.D., P r o c . Nat. Acad. S c i . 30, No. 1 0 (1944) 324.

DICKE R.H., i n The Earth-Moon System, e d s Marsden B.G., and Cameron A.G.W.

(Plenum P r e s s , New York, 1966) p. 98.

MULLER P.M., i n On t h e ~ e a s u r e m e n t of Cosmological V a r i a t i o n s of t h e G r a v i t a - t i o n a l C o n s t a n t , ed. Halpern L. (Univ. P r e s s e s o f F l o r i d a , G a i n e s v i l l e , 1978) p. 91.

VAN FLANDERN, i n P r o c . o f P r e c i s i o n Measurements and Fundamental C o n s t a n t s , 11, G a i t h e r s b u r g 1981, ed. T a y l o r B. and P h i l l i p s W., (N.B.S. P u b l i c a t i o n ) i n p r e s s .

DIRAC P.A.M., N a t u r e 139 (1937) 323;

DIRAC P.A.M., Proc. Roy. Soc. A165 (1938) 199.

DIRAC P.A.M., i n P r o c . o f 2nd M a r c e l Grossman Meeting o n G e n e r a l R e l a t i v i t y , T r i e s t e 1979, ed. R u f f i n i B.(N. H o l l a n d ) i n p r e s s ;

i b i d , CANUTO V, I b i d , RITTER R.C .

DEARBORN D.S. and SCHRAMM D.N., N a t u r e 247 (1974) 441.

BRAGINShT V.B., JETP L e t t e r s 11 (1970) 213.

MUNK M.H. and MACDONALD G.J.F., R o t a t i o n of t h e E a r t h , (Cambridge Univ. P r e s s , Cambridge, 1960).

BEAMS J.W., SPITZER D.M. and WADE J.P., Rev. S c i . Instrum. 2 (1962) 151.

FREMEREY P.K., Rev. S c i , Instrum. fi2 (1972) 1413.

MORRISON L.V., N a t u r e 241 (1973) 519.

NORDVEDT K. and WILL C.M., App. J. 177 (1972) 790.

LYTTLETON R.A. and FITCH J.P., Astrophys. J. 221 (1978) 412.

JONES G.R., Jr., "Decay Time S t u d i e s o f M a g n e t i c a l l y Suspended P r e c i s i o n Rotors", M.S. T h e s i s , Univ. of V i r g i n i a , 1981.

BEAMS J.W., Rev. S c i . Instrum. 24 (1963) 1071.

HARDING J.T., i n I n t e r n a t i o n a l Advances i n Cryogenic E n g i n e e r i n g , e d . Timmerhaus K.K. (Plenum P r e s s , New York 1965) p. 137.

RITTER R.C. and BEAMS J . W . , i n On t h e Measurement of Cosmological V a r i a t i o n s of t h e G r a v i t a t i o n a l C o n s t a n t , ed. H a l p e r n L. (Univ. P r e s s e s of F l o r i d a , G a i n e s v i l l e 1978) p. 29.

DIRAC P.A.M., Proc. Roy. Soc. Lond. A338 (1974) 439.

DIRAC P.A.M., Proc. Roy. Soc. Lond. A365 (1979) 19.

SCIAMA D.W., Mon. Not. Roy. Astronom. Soc. 113 (1953) 34;

CHEUNG S., "Experimental I m p l i c a t i o n s of ~ a c h ' s P r i n c i p l e " , M.S. T h e s i s , U n i v e r s i t y o f V i r g i n i a , 1978.

WEINBERG S., The F i r s t Three Minutes, ( B a s i c Books, Inc., New York, 1977) Ch. 7.

See, e.g., GEORGI H. and GLASHOW S.L., P h y s i c s Today (1980) 30.

SANDAGE A. and TAMMANN G.A., Astrophys. J. 210 (1976) 7.

ROLL P.G., KROTKOV R. and DICKE R.H., Annals of Phys. 3 (1964) 442.

RITTER R.C., e t a l . , N a t u r e 271 (1978) 228.

GILLIES G.T., "The Development of High Q , P r e c i s i o n Mechanical R o t o r s f o r Use i n a Dynamic Measurement o f M a t t e r C r e a t i o n " ) Ph.D. D i s s e r t a t i o n , U n i v e r s i t y of V i r g i n i a , 1 9 8 0 .

GILLIES G.T. and RITTER R.C., i n Proc. o f P r e c i s i o n Measurements and Fundamen- t a l C o n s t a n t s , 11, G a i t h e r s b u r g , 1981, ed. T a y l o r B. and P h i l l i p s N . ,

(N.B.S. P u b l i c a t i o n ) , i n p r e s s . WILL C.M., Phys. Rev. I)10 (1974) 2330;

(13)

JOURNAL DE PHYSIQUE

R e f e r e n c e s . ( c o n t i n u e d ) 36. ( c o n t i n u e d )

NORDVEDT K., Jr., Phys. Rev. (1975) 245;

WILL C.M., M e t r o l o g i a 2 (1977) 95.

37. LIGHTMAN A.P. and LEE D.L., Phys. Rev. (1973) 364.

38. WILL C.M., p r i v a t e communication.

39. STEIN S.R. and TURNEAURE J.P., i n F u t u r e Trends i n S u p e r c o n d u c t i v e E l e c t r o n i c s , e d . Deaver B.S. (A.I.P. Conf. P r o c e e d i n g s , No. 44, New York, 1978) p . 192.

40. CHNNG W.S., "Servo-Driven ~ o r o t a t i o n : - ~ e v e l o ~ m e n t of a n ~ n e r t i a l - C l o c k " , Ph.D. D i s s e r t a t i o n , U n i v e r s i t y o f V i r g i n i a , 1982;

CHEUNG W.S. and RITTER R.C., i n P r o c . of P r e c i s i o n Measurements &

Fundamental C o n s t a n t s . 11, G a i t h e r s b u r g , 1981, ed. T a y l o r B and P h i l l i p s , W.

(NBS P u b l i c a t i o n ) i n p r e s s .

41. BEAMS J.W., Rev. S c i . Instrum. 2 (1963) 1071.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to