• Aucun résultat trouvé

ANALYSIS OF SPALLATION TIME-OF-FLIGHT (TOF) NEUTRON DATA FROM A 2-D POSITION-SENSITIVE DETECTOR

N/A
N/A
Protected

Academic year: 2021

Partager "ANALYSIS OF SPALLATION TIME-OF-FLIGHT (TOF) NEUTRON DATA FROM A 2-D POSITION-SENSITIVE DETECTOR"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00225835

https://hal.archives-ouvertes.fr/jpa-00225835

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ANALYSIS OF SPALLATION TIME-OF-FLIGHT (TOF) NEUTRON DATA FROM A 2-D

POSITION-SENSITIVE DETECTOR

A. Schultz, P. Leung

To cite this version:

A. Schultz, P. Leung. ANALYSIS OF SPALLATION TIME-OF-FLIGHT (TOF) NEUTRON DATA

FROM A 2-D POSITION-SENSITIVE DETECTOR. Journal de Physique Colloques, 1986, 47 (C5),

pp.C5-137-C5-142. �10.1051/jphyscol:1986518�. �jpa-00225835�

(2)

ANALYSIS OF SPALLATION TIME-OF-FLIGHT (TOF) NEUTRON DATA FROM A 2-D POSITION-SENSITIVE DETECTOR

A.J.

SCHULTZ

and

P.C.W. LEUNG

Chemistry and Materials Science and Technology Divisions, Argonne National Laboratory, ArgOnne, Illinois 60439, U.S.A.

A b s t r a c t

-

The s i n g l e c r y s t a l d i f f r a c t o m e t e r a t t h e Argonne Intense Pulsed Neutron Source i s based on the t i m e - o f - f l i g h t (TOF) Laue technique and employs a 30 x 30 cm. p o s i t i o n - s e n s i t i v e s c i n t i l l a t i o n detector. The methods we use f o r producing r e c i p r o c a l space i n t e n s i t y p l o t s and f o r o b t a i n i n g i n t e g r a t e d s t r u c t u r e f a c t o r amp1 i t u d e s w i l l be described.

I

-

INTRODUCTION

At t h e Intense Pulsed Neutron Source (IPNS), a t a r g e t o f depleted uranium i s bombarded by h i g h energy protons t o produce i n t e n s e b u r s t s o f neutrons by

spa1 l a t i o n . / l , 2 / Surrounding t h e t a r g e t are f o u r moderators, each w i t h several bean l i n e s which d i r e c t neutrons t o t h e various instruments. At a d i s t a n c e

r

from t h e moderator, t h e wavelength X o f a neutron i s determined by t h e de B r o g l i e equation:

where h i s P l a n k ' s constant, m i s t h e neutron mass, and t i s t h e TOF f o r f l i g h t path

a.

The s i n g l e c r y s t a l d i f f r a c t o m e ~ (SCD) i s based on t h e TOF Laue technique./3/ I n t h i s paper, we w i l l describe some o f t h e procedures we'use t o analyze data obtained w i t h the SCD.

I 1

-

DATA COLLECTION

The SCD employs a p o s i t i o n - s e n s i t i v e 6Li-glass s c i n t i l l a t i o n detector/$/ which 7s t y p i c a l l y centered on t h e 90' s c a t t e r i n g angle d i r e c t i o n a t a distance o f 32 cm.

from t h e c r y s t a l (Fig. 1). The s c i n t i l l a t i o n glass i s 30 x 30 cm., b u t due t o edge e f f e c t s , t h e a c t i v e area i s reduced t o about 27 cm. i n each dimension f o r a c t u a l data col 1 ection. Each neutron i s c h a r a c t e r i z e d by t h r e e d i g i t i z e d coordinates representing position on t h e d e t e c t o r (X and Y) and TOF (T). For each s t a t i o n a r y c r y s t a l o r i e n t a t i o n , data are accumulated f o r 2-12 hours (depending on sample size, u n i t c e l l size, etc.) i n a histogram w i t h t y p i c a l channel dimensions o f 85 x 85 x 120 corresponding t o X, Y and T r e s p e c t i v e l y . A f u l l hemisphere o f data r e q u i r e s up t o 35 c r y s t a l s e t t i n g s , i.e., 35 histograms.

Conceptually, t h e histogram i s constructed o f a stack o f 120 two-dimensional

"time-slices." The t i m e - s l i c e s are u s u a l l y set up w i t h v a r i a b l e widths ( ~ t ) such t h a t ~ t / t = 0.015. With a sample-to-moderator distance o f 660 cm., a sample-to- d e t e c t o r distance o f 32 cm., and a nominal wavelength range o f 0.7 t o 4.2 A,

neutrons w i t h TOF's between 1.2 and 7.3 mi l l i s e c . a f t e r to ( t h e s t a r t o f t h e pulse) are histogrammed, and ~t v a r i e s from 18 t o 110 psec.

Associated w i t h each t i m e - s l i c e i s t h e f r a c t i o n a l dead-time l o s s f o r t h a t p a r t i c u l a r t i m e - s l i c e . These values are obtained d u r i n g data c o l l e c t i o n by e m p i r i c a l l y determining t h e percentage o f t e s t s i g n a l s which are r e j e c t e d because

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986518

(3)

JOURNAL D E PHYSIQUE

DETECTOR ACTIVE ARE

PULSED SOURCE

Fig. 1

-

A schematic r e p r e s e n t a t i o n o f t h e s i n g l e c r y s t a l d i f f r a c t o m e t e r a t t h e IPNS. Typical distances f o r a and a are 660 and 32 cm., r e s p e c t i v e l y . A low e f f i c i e n c y beam m o n i t o r (not shown) i$ l o c a t e d about 30 cm. from t h e c r y s t a l towards t h e source.

the d e t e c t o r and t h e d i g i t i z i n g e l e c t r o n i c s are busy. A recent upgrade o f t h e d e t e c t o r has reduced t h e dead-time from 12 ~ s e c . down t o 3, such t h a t t h e maximum dead-time losses are u s u a l l y n o t more than 5%.

Each histogram i s archived on h i g h d e n s i t y magnetic tape, which can h o l d up t o 50 histograms per r e e l . The data a r e analyzed o f f l i n e on a VAX11/780 computer, as described below.

I 1 1

-

PEAK SEARCH AND AUTO-INDEXING

Our peak search program, PEKSER, i s based on subroutine FRPEAK from t h e program FOURIER, w r i t t e n by R. J. Dellaca and W. T. Robinson a t t h e U n i v e r s i t y o f Canterbury (New Zealand), which i s d e r i v e d from A; Z a l k i n ' s FORDAP. The program outputs t h e l o c a t i o n s o f up t o 50 o f t h e most intense peaks i n a histogram. T y p i c a l l y , 5 t o 10 low order r e f l e c t i o n s can then be i n p u t i n t o t h e auto-indexing program BLIND,/5/

which was m o d i f i e d t o accept Laue data. By i n c l u d i n g a l l t h e s t r o n g r e f l e c t i o n s from a l l t h e histograms i n t h e least-squares program LSQRS, t h e accuracy o f t h e u n i t c e l l parameter and t h e o r i e n t a t i o n m a t r i x i s improved.

I V

-

RECIPROCAL SPACE PLOTS

A h i g h l y u s e f u l f e a t u r e o f t h e TOF Laue data obtained w i t h an area d e t e c t o r i s t h a t t h e histograms c o n t a i n i n t e n s i t y i n f o r m a t i o n f o r a s o l i d volume o f r e c i p r o c a l space i n c l u d i n g t h e regions between t h e fundamental Bragg r e f l e c t i o n s . This allows t h e user t o examine t h e histogram o f f l i n e f o r e x t r a Bragg o r d i f f u s e s c a t t e r i n g , which i s e s p e c i a l l y u s e f u l f o r searching f o r s t r u c t u r a l phase t r a n s i t i o n s a t low temperatures.16-81

The program RLPLN asks t h e user t o d e f i n e a plane i n r e c i p r o c a l space i n terms o f M i l l e r indices, which may be simply s e t t i n g h, k o r a t o a constant, o r p o s s i b l y r e q u i r i n g h = k f o r an hha p l o t . The user a l s o defines t h e range and t h e increments along each axis. I n t h e example i n F i g u r e 2, h = 4.93, k = -4.5 t o -1.5 i n steps

(4)

i n t e r p o l a t i n g i n three-dimensions using t h e formula:

where C i s t h e neutron count a t XYT normalized f o r i t s t i m e - s l i c e width, D i s t h e d i s t a n c e i n histogram coordinates between xyz and XYT, and t h e summations are over t h e nearest i n t e g e r l o c a t i o n t o xyz, (XYT),, and t h e surrounding 26 nearest neighbor l o c a t i o n s . Locations t h a t f a l l o u t s i d e t h e histogram l i m i t s are given i n t e n s i t y values o f zero. The a r r a y i s p l o t t e d as a 30 i n t e n s i t y p l o t w i t h a 100 x 100 g r i d u s i n g DISSPLA graphics r o u t i n e s (Fig. 2).

This program s t r a t e g y provides qua1 i t a t i v e o r s e m i - q u a n t i t a t i v e p l o t s which i n most cases are s u f f i c i e n t . / 6 - 8 / I f a more q u a n t i t a t i v e i n t e n s i t y p l o t i s required, c o r r e c t i o n s f o r t h e i n c i d e n t spectrum, t h e d e t e c t o r e f f i c i e n c y , dead-time losses and t h e Lorentz f a c t o r can be applied.

V

-

PEAK INTEGRATION AND REDUCTION

For a complete s t r u c t u r e analysis, i n t e g r a t e d Bragg i n t e n s i t i e s are obtained by c a l c u l a t i n g (using t h e o r i e n t a t i o n m a t r i x ) t h e l o c a t i o n s o f a1 1 p o s s i b l e r e f l e c t i o n s i n each histogram and i n t e g r a t i n g around t h e predicted histogram coordinates.

Because t h e wavelength r e s o l u t i o n from t h e source, AA/A, i s n e a r l y constant i n t h e thermal range, and since t h e t i m e - s l i c e widths vary such t h a t ~ t / t i s constant, t h e dimensions i n histogram coordinates o f a l l peaks are a l s o f a i r l y constant. The i n t e g r a t i o n l i m i t s i n terms o f histogram coordinates are d e f i n e d by t h e user a f t e r examination o f several r e f l e c t i o n s . Background p o i n t s a r e t h e histogram l o c a t i o n s surrounding t h e peak i n t e g r a t i o n r e c t a n g l e on each t i m e - s l i c e .

For each r e f l e c t i o n hka, the program checks t h e c d l c u l a t e d p o s i t i o n s o f i t s s i x nearest neighbors k1, k+l, a f l and t e s t s f o r p o s s i b l e overlap o f t h e i n t e g r a t i o n envelopes. I f t h e peak regions o f two r e f l e c t i o n s overlap, both r e f l e c t i o n s a r e rejected. I f t h e peak region o f one r e f l e c t i o n overlaps t h e background r e g i o n o f a second r e f l e c t i o n , then only those background p o i n t s which a r e a f f e c t e d are n o t i n c l u d e d i n t h e i n t e g r a t i o n . Each count used i n t h e i n t e g r a t i o n i s normalized f o r I t s t i m e - s l i c e width.

The conversion o f i n t e g r a t e d i n t e n s i t i e s t o s t r u c t u r e f a c t o r amplitudes i s based on t h e Laue formula:

where k i s a scale f a c t o r , T i s t h e normalized monitor count and FhkQ i s t h e s t r u c t u r e f a c t o r . The wavelength-dependent f a c t o r s are t h e dead-time l o s s c o r r e c t i o n T(x), t h e i n c i d e n t f l u x +(A), t h e d e t e c t o r e f f i c i e n c y e(A,r), t h e

absorption c o r r e c t i o n A(x), and t h e e x t i n c t i o n c o r r e c t i o n y ( x ) . Most o f t h e f a c t o r s i n equation (3) a r e f a i r l y s t r a i g h t f o r w a r d t o measure o r c a l c u l a t e , o r have been described p r e v i o u s l y 131. However, $ ( A ) and E ( x , ~ ) r e q u i r e some a d d i t i o n a l discussion.

Because t h e d e t e c t o r i s f l a t , n o t curved, t h e pathlength through t h e 6 L i - g l a s s o f .a neutron s c a t t e r e d from t h e c r y s t a l v a r i e s w i t h p o s i t i o n r on t h e detector, and

E i s not o n l y a f u n c t i o n o f wavelength A, but a l s o o f r. F i g u r e 3 shows t h e c a l c u l a t e d d e t e c t o r e f f i c i e n c i e s f o r a quadrant o f t h e d e t e c t o r based on t h e formula :

(5)

JOURNAL

DE

PHYSIQUE

Fig. 2

-

P l o t o f t h e i n t e n s i t y d i s t r i b u t i o n i n t h e h =-4,93 r e c i e r o c a l l a t t i c e plane o f ~ - ( E T ) 2 1 3 a t 20 K./7/ S a t e l l i t e peaks a t (5,2,3)-q, (5,2,1)-q and (5,?,0)- q a r e c l e a r l y observable, where q = (0.07,0.27,0.21). The (hka)+q s a t e l l i t e s are observed i n a p l o t o f t h e h = 5.07 plane (not shown).

where a(X) i s t h e l i n e a r absorption c o e f f i c i e n t i n t h e 6Li-loaded glass a t

wavelength

x

and e ( r ) i s t h e s l a n t path through t h e d e t e c t o r f o r neutrons s c a t t e r e d from t h e sample and e n t e r i n g t h e d e t e c t o r a t p o s i t i o n r. At longer wavelengths, a l l e f f i c i e n c i e s w i l l approach 100% such t h a t t h e dependence on p o s i t i o n w i l l be

n e g l i g i b l e , but a t t h e s h o r t e r wavelengths o f t h e thermal spectrum t h e d i f f e r e n c e s are s i g n i f i c a n t . An analogous map t o t h e one i n F i g u r e 3 i s c a l c u l a t e d f o r each t i m e - s l i c e o f a histogram and t h e Bragg data are i n d i v i d u a l l y c o r r e c t e d f o r E ( x , ~ ) based on t h e wavelength and d e t e c t o r p o s i t i o n a t which they were observed.

The i n c i d e n t spectrum t e r m $ ( a ) i s based on incoherent s c a t t e r i n g data from a 3 mm. sphere o f vanadium a l l o y e d w i t h 7 a t . % niobium t o g i v e zero coherent

s c a t t e r i n g . The vanadium data are a l s o c o r r e c t e d f o r E ( x , ~ ) , i n a d d i t i o n t o c o r r e c t i o n s f o r t h e vanadium sphere absorption and dead-time losses. The f i n a l values f o r t h e i n c i d e n t source spectrum are obtained a f t e r s u b t r a c t i n g a background spectrum (no sample i n t h e sample p o s i t i o n ) from the vanadium spectrum.

We have r e c e n t l y c o l l e c t e d data a t 20 K on a 2 mm3 c r y s t a l o f B-(ET) I Br (ET i s

bis(ethylenedithio)tetrathiafulvalene,

o r BEDT-TTF) which has one f o r m f i l i weight o f C S H I Br per u n i t c e l l . The c r y s t a l s a r e t r i c l i n i c , P1, w i t h a u n i t c e l l voluii8

hf

$ f o 2 i i 3 and w i t h 28 independent atoms. Data i n each o f t h e 35 histograms was accumulated f o r about 10 hours. O f t h e 5849 i n t e g r a t e d r e f l e c t i o n s , t h e 3285 w i t h F2> 5u(F2) were used t o r e f i n e 285 v a r i a b l e s which y i e l d e d R ( F ) = 0.053 and Rw(F2) 0.098. The standard d e v i a t i o n s a r e f0.002 A f o r C-C bonds and f0.004 A f o r C-H bonds.

(6)

14 95.2 95.2 95.2 95.2 95.3 95.3 95.4 95.5 95.5 95.6 95.7 9 5 . 8 9 5 . 9 96.0 96.2 96.3 13 95.0 95.0 95.0 95.1 95.1 95.2 95.2 95.3 95.4 95.5 95.6 95.7 95.8 95.9 96.0 96.2 12 94.9 94.9 94.9 94.9 95.0 95.0 95.1 95.2 95.2 95.3 95.4 95.6 95.7 95.8 95.9 96.1 11 94.7 94.7 ,94.7 94.8 94.8 94.9 94.9 95.0 95.1 95.2 95.3 95.4 95.6 95.7 95.8 96.0 10 94.6 94.6 94.6 94.6 94.7 94.7 94.8 94.9 95.0 95.1 95.2 95.3 95.4 95.6 95.7 95.9 9 94.4 94.4 94.5 94.5 94.5 94.6 94.7 94.8 94.9 95.0 95.1 95.2 95.3 95.5 95.6 95.8 8 91.3 94.3 94.3 94.4 94.4 94.5 94.6 94.7 94.8 94.9 95.0 95.1 95.2 95.4 95.5 95.7 7 94.2 94.2 94.2 94.3 94.3 94.4 94.5 94.6 94.7 94.8 94.9 95.0 95.2 95.3 95.5 95.6 6 94.1 94.1 94.1 94.2 94.2 94.3 94.4 94.5 94.6 96.7 94.8 94.9 95.1 95.2 95.4 95.5 5 94.0 94.0 94.0 94.1 94.1 94.2 94.3 94.4 94.5 94.6 94.7 94.9 95.0 95.2 95.3 95.5 4 93.9 93.9 94.0 94.0 94.1 94.1 94.2 94.3 94.4 94.5 94.7 94.8 95.0 95.1 95.3 95.4 3 93.9 93.9 93.9 94.0 94.0 94.1 94.2 9C.3 94.4 94.5 94.6 94.8 94.9 95.1 95.2 95.4 2 93.8 93.8 93.9 93.9 94.0 94.0 94.1 94.2 94.3 94.5 94.6 94.7 94.9 95.0 95.2 95.4 1 93.8 93.8 93.8 93.9 93.9 94.0 94.1 94.2 94.3 94.4 94.6 94.7 94.9 95.0 95.2 95.4 0 93.8 93.8 93.8 93.9 93.9 94.0 94.1 94.2 94.3 94.4 94.6 94.7 94.9 95.0 95.2 95.3

XCM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3

-

A reproduction o f one quadrant o f t h e d e t e c t o r e f f i c i e n c y map a t a

wavelength o f 0.78 A. The lower l e f t h a n d corner i s t h e center o f t h e d e t e c t o r which i s t h e c l o s e s t p o i n t t o t h e c r y s t a l (32 cm.). The 6Li-loaded glass i s 2 mm. t h i c k .

V I

-

CONCLUSIONS

As described above, s a t i s f a c t o r y r e s u l t s can be obtained w i t h t h e SCO, although they i n d i c a t e t h a t higher f l u x and b e t t e r r e s o l u t i o n a r e d e s i r a b l e f o r f u l l

s t r u c t u r a l analyses. I n a d d i t i o n , a technique f o r a c c u r a t e l y a b s t r a c t i n g t h e i n t e n s i t i e s o f weak r e f l e c t i o n s from t h e data would be useful. At t h e IPNS, a f a c t o r o f 3 i n f l u x may be achieved i n 1986 w i t h a new enriched uranium t a r g e t . At Los Alamos LANSCE and t h e Rutherford SNS s p a l l a t i o n sources, f l u x e s orders o f magnitude g r e a t e r than t h a t a t IPNS may be r e a l i z e d w i t h i n t h e coming years. Thus, t h e p o t e n t i a l o f t h e technique described i n t h i s paper may s t i l l l i e mostly i n t h e future.

For surveying r e c i p r o c a l space and studying s t r u c t u r a l phase t r a n s i t i o n s , we b e l i e v e t h e SCD has already proven t o be h i g h l y successful. We a r e i n t h e process o f p r o v i d i n g a d d i t i o n a l anci 1 la r y equipment f o r h i g h pressure, and lower and higher temperature studies. We a l s o plan t o increase t h e source-to-sample f l i g h t path t o p r o v i d e b e t t e r r e s o l u t i o n when t h e new t a r g e t i s i n s t a l l e d .

ACKNOWLEDGEMENTS

We wish t o g r a t e f u l l y acknowledge t h e c o n t r i b u t i o n s o f R. Brenner,

J. M. Carpenter, R. K. Crawford, R. A. Jacobson, S. W. Peterson, A. H. Reis, Jr., M. G. Strauss, R. G. T e l l e r , J. M. Williams and T. 6 . Worlton t o t n e development o f t h e instrument, software and data a n a l y s i s procedures associated w i t h t h e SCD. This work was supported by t h e O f f i c e o f Basic Energy Sciences, D i v i s i o n o f M a t e r i a l s Sciences, o f t h e U.S. Department o f Energy under c o n t r a c t W-31-109-Eng-38.

(7)

JOURNAL DE PHYSIQUE

REFERENCES

/I/ Carpenter, J. M., Lander, G. H. and Windsor, C. G., Rev. Sci. Instrum.

55

(1984) 1019.

/2/ Lander, G. H. and P r i c e , D. L., Phys. Today

38

(1985) 26.

/3/ Schultz, A. J., Srinivasan, K., T e l l e r , R. G., Williams, J. M. and Lukehart,

G.

M., J. Am. Chem. Soc.

106

(1984) 999.

/4/ Strauss, M. G., Brenner, R., Chou, H. P., Schultz, A. J. and Roche, C. T., P o s i t i o n - S e n s i t i v e D e t e c t i o n o f Thermal Neutrons, P. Convert and

J.

8. Forsyth ( E d i t o r s ) , Academic Press, London, 1983, p. 175.

/5/ Jacobson, R. A., J. Appl. C r y s t a l l o g r .

9

(1976) 115.

/6/ Leung, P. C. W., Schultz, A. J., Wang, H. H., Emge, T. J., B a l l , G. A., Cox, D. D. and Williams, J. M., Phys. Rev. B 30 (1984) 1615.

/7/ Emge, T. J., Leung, P. C. W., Beno, M. A., S c m t z , A. J., Wang, H. H., Sowa, L. M. and Williams, J. M., Phys. Rev. B

30

(1984) 6780.

181 Nelmes, R. J., Howard, C. J., Ryan, T. W., David, W. I. F., Schultz, A. J., Leung, P. C. W., J. Phys. C: S o l i d S t a t e Phys.

17

(1984) L861.

/ 9 / Schultz, A. J., Leung, P. C. W., Emge, T. J., Wang, H. H., and Williams, J. M.,

t o be published.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to