• Aucun résultat trouvé

EXCITATION OF GIANT RESONANCES IN PION INELASTIC SCATTERING

N/A
N/A
Protected

Academic year: 2021

Partager "EXCITATION OF GIANT RESONANCES IN PION INELASTIC SCATTERING"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00224091

https://hal.archives-ouvertes.fr/jpa-00224091

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

EXCITATION OF GIANT RESONANCES IN PION INELASTIC SCATTERING

C. Morris, S. Seestrom-Morris, L. Bland

To cite this version:

C. Morris, S. Seestrom-Morris, L. Bland. EXCITATION OF GIANT RESONANCES IN PION INELASTIC SCATTERING. Journal de Physique Colloques, 1984, 45 (C4), pp.C4-327-C4-336.

�10.1051/jphyscol:1984425�. �jpa-00224091�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, suppigment au n03, Tome 45, m a r s 1984 page C4-327

EXCITATION OF GIANT RESONANCES IN PION INELASTIC SCATTERING

*+ **++

C.L. Morris*, S.J. Seestrom-Morris and L.C. Bland

: ~ o s AZamos N a t i o n a l L a b o r a t o r y , L o s Alamos, NM 87544, U.S.A.

U n i v e r s i t y o f M i n n e s o t a , M i n n e a p o Z i s , MN 55455, U.S.A.

** + + U n i v e r s i t y o f T e x a s , A u s t i n , TX 7 8 7 1 2 , U.S.A.

U n i v e r s i t y of P e n n s y Z v a n i a , P h i Z a d e l p h i a , PA 1 9 1 0 4 , U.S. A.

RQsum6 - On pr6sente les r6sultats obtenus recemment par diffusion in6lastique de pions

2

116nergie de la rbsonance, sur la r6gion des r6sonances g6antes des noyaux. Les nouveaux r6sultats incluent l'observation de candidats pour l a r6- sonance dipolaire avec spin-flip dans et ''~i et l'observation

d e

grandes asym6tries des sections efficaces

K + , T -

pour

la

rbgion du continuum de *Ospb.

A b s t r a c t - We p r e s e n t some r e c e n t l y o b t a i n e d d a t a f o r resonance energy i n e l a s t i c p i o n s c a t t e r i n g t o t h e g i a n t resonance r e g i o n of n u c l e i . New r e s u l t s include t h e o b s e r v a t i o n of c a n d i d a t e s f o r spin-dipole resonances i n 1 2 c and Zasi, and t h e o b s e r v a t i o n of l a r g e

II+,W-

c r o s s s e c t i o n asymmetries f o r t h e continuum r e g i o n i n 2Oapb.

I - INTRODUCTION

Both hadronic and e l e c t r o m a g n e t i c probes have been used t o e x c i t e g i a n t resonances i n i n e l a s t i c s c a t t e r i n g . Although t h e s e s t u d i e s have c o n t r i b u t e d much t o our understanding of t h e n u c l e a r response, t h e r e s u l t s have not always been c o n s i s t e n t among t h e d i f f e r e n t probes. Pion i n e l a s t i c s c a t t e r i n g provides a new hadronic probe which, because of i t s unique s p i n - i s o s p i n couplings, may both e x c i t e new modes and provide new i n f o r m a t i o n about p r e v i o u s l y observed resonances t o h e l p r e s o l v e e x i s t i n g d i s c r e p a n c i e s .

Published s t u d i e s of pion i n e l a s t i c s c a t t e r i n g t o t h e giant-resonance r e g i o n s of 40ca[1],

8 9 ~

[ 2 ] , 1 2 ~ 131, and 1188, [ 4 ] have shown some i n t e r e s t i n g r e s u l t s . I n t h e t h r e e h e a v i e r n u c l e i t h e g i a n t quadrupole resonance (GQR) was s t r o n g l y e x c i t e d . Although i n a l l t h r e e n u c l e i t h e deduced sum-rule f r a c t i o n was g e n e r a l l y c o n s i s t e n t w i t h t h a t e x t r a c t e d w i t h o t h e r probes, i n 18sn t h e e n e r y-weighted sum-rule f r a c t i o n observed i n

II-

s c a t t e r i n g was twice t h a t observed i n nf s c a t t e r i n g . I n 1 2 ~ l i t t l e o r no quadrupole s t r e n g t h was seen. However, a s t r o n g s i g n a t u r e of t h e g i a n t d i p o l e resonance was observed. I n a d d i t i o n evidence f o r t h e s p i n - f l i p d i p o l e modes expected from t h e g e n e r a l i z e d [5] Goldhaber-Teller model was observed.

One common f e a t u r e of these s t u d i e s was the l i m i t e d forward a n g u l a r range of t h e d a t a . Recently, t h e EPICS channel and s p e c t r o m e t e r 161 a t LAMPF have bCen modified t o allow d a t a t o be taken a t f a r forward a n g l e s . I n t h e p r e s e n t t a l k we d e s c r i b e t h e s e m o d i f i c a t i o n s and p r e s e n t some new d a t a o b t a i n e d w i t h t h i s system.

I1 - SMALL ANGLE MODIFICATIONS

Small-angle measurements of pion i n e l a s t i c s c a t t e r i n g a r e d i f f i c u l t because of high counting r a t e s and l a r g e muon backgrounds a r i s i n g from i n - f l i g h t decays of both beam and e l a s t i c a l l y s c a t t e r e d pions. S e v e r a l m o d i f i c a t i o n s t o t h e s t a n d a r d EPICS system were made t o allow forward-angle d a t a t o be obtained. These m o d i f i c a t i o n s a r e shown i n t h e schematic drawings of the pion channel and s p e c t r o m e t e r (Fig. 1) and a r e d i s c u s s e d below.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984425

(3)

C4-328 JOURNAL DE PHYSIQUE

The p r o t o n f l u x through t h e EPICS channel i s approximately 10 times l a r g e r t h e the p i o n f l u x . A t a n g l e s l a r g e r t h a n 20° t h e s e p r o t o n s cause no problems i n normal d a t a t a k i n g . Forward of t h i s a n g l e t h e l a r g e energy-loss s i g n a l s produced by e l a s t i c a l l y s c a t t e r e d p r o t o n s i n the f r o n t spectrometer chambers cause r e d u c t i o n i n e f f i c i e n c y due t o space-charge e f f e c t s . I n o r d e r t o remove t h e s e protons from t h e i n c i d e n t

SEWRATOR

SCATTERING

- - - _ _

-

-:.+

..

.-.-- - - -

PRODUCTION SCATTERING

TARGET EM0 l TARCET

B M 0 4

Fig. 1 - L e f t ) Schematic view of the EPICS pion channel and Right) t h e EPICS spectrometer.

beam, a 250mg/cm2 a b s o r b e r was placed i n t h e channel a t t h e f o c u s between t h e l a s t two channel d i p o l e magnets, BM03 and BM04 ( s e e Fig. 1) The magnetic f i e l d i n BM04 was a d j u s t e d t o compensate f o r energy l o s s of t h e p i o n s i n passing through t h e absorber. Protons s u f f e r e d a much l a r g e r energy l o s s i n t h e a b s o r b e r and were b e n t o u t of t h e beam by BM04. Measurements made w i t h and w i t h o u t t h e absorber i n t h e beam showed t h a t t h e only d e t e c t a b l e e f f e c t of the a b s o r b e r on t h e pion beam was d e g r a d a t i o n of t h e energy r e s o l u t i o n from 150 keV (FWHM) t o 200 keV (FWHM).

Remaining problems were due t o muon backgrounds. Counting r a t e s w i t h the f u l l channel acceptance (--2x10~ n+/sec) were t o o l a r g e t o handle. The channel acceptance was reduced i n momentum from f1.0% t o between +0.15% and ?0.07%, with t h e s m a l l e r acceptance used a t t h e most forward s p e c t r o m e t e r a n g l e s , u s i n g t h e c o l l i m a t o r FJ04.

This r e s u l t e d i n a reduced v e r t i c a l beam s p o t s i z e of between 6 and 3 cm. To f i r s t o r d e r , t h e beam s p o t i s imaged on t h e f r o n t chambers ((21-4) w i t h a m a g n i f i c a t i o n of minus one. A l e a d c o l l i m a t o r w i t h an o ~ e n i n g of 5.1 cm was placed i n f r o n t of Cl-4 i n o r d e r t o reduce the acceptance f o r muons (which r e s u l t i n a l a r g e r image than s c a t t e r e d p i o n s ) r e l a t i v e t o t h a t f o r pions. The l o c a t i o n of t h i s c o l l i m a t o r is shown i n F i g u r e 1.

A s c i n t i l l a t o r ( S l ) 3.8 cm h i g h by 3 mm t h i c k was placed i n the c e n t e r of the c o l l i m a t o r opening t o e l i m i n a t e e v e n t s corresponding t o s l i t - e d g e s c a t t e r i n g from t h e hardware t r i g g e r and t o provide a s t a r t s i g n a l f o r measuring time of f l i g h t (TOF) through t h e s p e c t r o m e t e r d i p o l e magnets. A s t h e s e TOF s i g n a l s were n o t c o r r e c t e d f o r path-length v a r i a t i o n s , only about 80% of muon e v e n t s could be r e j e c t e d from t h e hardware t r i g g e r u s i n g S1 without b i a s i n g t h e acceptance f o r pions. Path-length c o r r e c t i o n s were made t o t h e TOF on an event-by-event b a s i s i n t h e software. The r e s u l t i n g time r e s o l u t i o n of 700 ps (FWHM) enabled c l e a n s e p a r a t i o n of pions and muons, a s shown i n t h e TOF s p e c t r a p r e s e n t e d i n Fig. 2.

At the most forward a n g l e s the muon r e j e c t i o n provided by TOF was i n s u f f i c i e n t t o

d e f i n e a t r i g g e r c l e a n enough t o o b t a i n i n e l a s t i c d a t a . Another l e v e l of muon

r e j e c t i o n was provided by p l a c i n g a carbon wedge backed by a s c i n t i l l a t o r i n t h e

s p e c t r o m e t e r f o c a l p l a n e , a s shown i n Fig. 1. The t h i c k n e s s of t h e wedge was s e t t o

b e - c l o s e t o t h e pion range a s a f u n c t i o n of f o c a l plane p o s i t i o n ( c r u d e l y

corresponding t o momentum). Pions w e n both ranged out and absorbed by n u c l e a r

i n t e r a c t i o n s , whereas muons passed through t h e absorber and were d e t e c t e d by Sb.

(4)

The e f f e c t i v e n e s s of t h i s technique i s demonstrated i n Fig. 2, where TOF s p e c t r a a r e s e p a r a t e l y presented f o r e v e n t s accepted and r e j e c t e d by S4. E f f i c i e n c y scans of t h e muon r e j e c t e r made by observing a n e l a s t i c l i n e w i t h the s p e c t r o m e t e r magnet f i x e d and channel magnets v a r i e d showed approximately 96% of a l l muons were r e j e c t e l while only 2% of pions were r e j e c t e d by t h i s method.

Fig. 2 - Time of f l i g h t spectrum f o r a ) p i o n s , b ) muons a s determined by t h e focal-plane muon r e j e c t e r .

I n a d d i t i o n t o t h e methods l i s t e d above each e v e n t was liequired t o have a t r a j e c t o r y which p r o j e c t e d back t o t h e t a r g e t , and t o have a n g l s e n t e r i n g t h e spectrometer which were c o n s i s t e n t w i t h those e x i t i n g t h e spectromet 2 r w i t h i n f 1 0 mrad u s i n g t h e known o p t i c s . This requirement was e s p e c i a l l y u s e f u l f o r r e j e c t i n g e v e n t s i n which pions decayed between t h e f r o n t and r e a r chambers.

A t forward a n g l e s t h e hardware t r i g g e r r e q u i r e d t h e TOF through t h e spectrometer t o be i n the range expected f o r p i o n s , and r e q u i r e d t h e absence of a s i g n a l from t h e f o c a l p l a n e muon r e j e c t e r . I n a d d i t i o n , a f i r s t o r d e r hardware c a l c u l a t i o n of momentum l o s s , u s i n g c o a r s e p o s i t i o n information from hhe d r i f t chambers, was used t o r e j e c t 99 o u t of e v e r y 100 e l a s t i c s c a t t e r i n g e v e n t s from t h e hardware t r i g g e r . A t l a r g e r a n g l e s the t r i g g e r requirements were relaxed and t h e corresponding c u t s were made i n t h e software. The t y p i c a l f r a c t i o n of e v J n t s which were p i o n s v a r i e d from s e v e r a l p e r c e n t a t 8' t o n e a r l y 1.0 a t 20°. More t h a n 96% of t h e muon e v e n t s were e l i m i n a t e d from t h e hardware t r i g g e r by t h e requPrements l i s t e d above. The remaining muons were e l i m i n a t e d by s o f t w a r e c u t s .

A missing-mass spectrum o b t a i n e d a t 8' f o r 162 MeV pion i n e l a s t i c s c a t t e r i n g from

12c

i s shown i n Figure 3. This spectrum h a s been c o r r e c t e d f o r focal-plane

e f f i c i e n c y , and h a s been c o r r e c t e d f o r t h e r e j e c t e d e l a s t i c e v e n t s .

(5)

JOURNAL DE PHYSIQUE

Q - VALUE (MeV)

Fig. 3 - Missing mass spectrum f o r 162 MeV

n+

s c a t t e r i n g from 1 2 c a t 8' l a b o r a t o r y angle.

111 - LOW LYING COLLECTIVE STATES

A t i n c i d e n t pion e n e r g i e s between 100 and 300 MeV t h e A resonance dominates t h e pion-nucleon i n t e r a c t i o n . I n t h e static-DWIA mode?; where i n t e r m e d i a t e

A

propagation is ignored, t h e r e l a t i v e s t r e n g t h s of t h e c e n t r a l , spin-dependent, and isospin-dependent p a r t s of t h e f o r c e a r e f i x e d with r e s p e c t t o each o t h e r by t h e quantum numbers of t h e A. The s t r o n g e s t p a r t of t h e f o r c e is t h e s p i n - i s o s p i n independent p a r t . Consequently c o l l e c t i v e s t a t e s a r e s t r o n g l y e x c i t e d i n pion i n e l a s t i c s c a t t e r i n g .

A comparison of DWIA c a l c u l a t i o n s using e m p i r i c a l l y determined form f a c t o r s from i n e l a s t i c e l e c t r o n s c a t t e r i n g i n g e n e r a l g i v e s e x c e l l e n t agreement w i t h pion i n e l a s t i c s c a t t e r i n g t o s u c h c o l l e c t i v e s t a t e s [7-101. Cross s e c t i o n s and c a l c u l a t i o n s of resonance energy ( i n c i d e n t pion energy of 180 MeV) pion s c a t t e r i n g I111 from t h e ground s t a t e and 2f member of t h e r o t a t i o n a l band i n 1 5 2 ~ m a r e p r e s e n t e d a s an example i n Figure 4. The DWIA (dashed l i n e ) and coupled-channel-impulse approximation (CCIA s o l i d l i n e ) c a l c u l a t i o n s shown i n t h e f i g u r e have used c o l l e c t i v e - m o d e l form f a c t o r s determined from e l a s t i c and i n e l a s t i c e l e c t r o n s c a t t e r i n g . A d e p a r t u r e from t h e s t a t i c model i s an energy s h i f t of -28 MeV used i n e v a l u a t i n g t h e T - m a t r i x elements from pion-nucleon phase s h i f t s . This phenomenology has been shown t o improve f i t s t o e l a s t i c s c a t t e r i n g 1121. The q u a l i t y of agreement between t h e c a l c u l a t i o n s and t h e d a t a i n t h i s c a s e is t y p i c a l of t h a t o b t a i n e d i n o t h e r n u c l e i f o r s t r o n g l y e x c i t e d c o l l e c t i v e s t a t e s .

Some e x c e p t i o n s t o t h i s g e n e r a l l y good agreement have been observed. I n a

comparison of DWIA c a l c u l a t i o n s w i t h d a t a f o r low l y i n g s t a t e s i n 12C and 4 0 ~ a , [ 7 ]

small-angle c r o s s s e c t i o n s f o r t h e 2f (4.44 MeV) s t a t e were observed t o be

underestimated by n e a r l y a f a c t o r of two w h i l e t h o s e f o r t h e 0; s t a t e were

overestimated by a s i m i l a r f a c t o r . The r e s u l t s of a more d e t a i l e d s t u d y of pion

i n e l a s t i c s c a t t e r i n g from I 2 c a t forward a n g l e s a t 162 MeV i n c i d e n t pion energy

along w i t h some c a l c u l a t i o n s a r e p r e s e n t e d i n Figure 5. The e x p l a n a t i o n of t h e

d i s c r e p a n c i e s between static-DWIA c a l c u l a t i o n s ( s o l i d l i n e ) and t h e d a t a r e s t s i n

two d i f f e r e n t higher-order processes. The enhancement of t h e 2; c r o s s s e c t i o n s a t

forward a n g l e s a r i s e s from s p i n - f l u x t e n s o r coupling terms t h a t appear i n t h e

isobar-hole model. These have been e v a l u a t e d i n a dynamic-DWIA c a l c u l a t i o n by Lenz,

(6)

Fig. 4 - Data and c a l c u l a t i o n s f o r e l a s t i c and i n e l a s t i c s c a t t e r i n g of 180 MeV pions from lS2Sm. The c a l c u l a t i o n s a r e d e s c r i b e d i n t h e t e x t .

Thies and Horikawa [ I 3 1 (dashed l i n e ) . These e x t r a censor p i e c e s of t h e i n t e r a c t i o n do n o t a f f e c t t r a n s i t i o n s w i t h A j < 1, and s o do n o t e x p l a i n t h e forward-angle c r o s s s e c t i o n s f o r t h e 0; s t a t e , a s can be seen by comparing t h e dynamic-DWIA and static-DWIA c a l c u l a t i o n s f o r t h i s s t a t e .

This discrepancy has been removed by Sparrow and Gerace [14] by c a l c u l a t i n g two-step c o n t r i b u t i o n s through t h e 2f s t a t e . These have been e v a l u a t e d i n t h e coupled channel impulse approximation (CCIA), shown a s t h e dot-dash l i n e i n t h e f i g u r e . The form f a c t o r s used i n t h e s e c a l c u l a t i o n s have been f i t t o a v a i l a b l e e l e c t r o m a g n e t i c o b s e r v a b l e s and, a s can be s e e n , g i v e a good d e s c r i p t i o n of t h e d a t a .

I V - SPIN-FLIP DIPOLE STATES

Resonance-energy pion i n e l a s t i c s c a t t e r i n g can a l s o e x c i t e s t a t e s which involve AS

f

0 and/or AT

f

0. One example of such an e x c i t a t i o n which involves AS

=

0, AT

=

1 is t h e g i a n t d i p o l e resonance (GDR). I f t h e Goldhaber-Teller model of t h i s resonance is extended t o include s p i n degrees of freedom, and i f spin-dependent n u c l e a r f o r c e s a r e i g n o r e d , t h e n t h e r e ought t o be s t a t e s w i t h AS

=

1 ( w i t h Jv

=

0-,

1- and 2-1 degenerate i n energy with t h e GDR. The T

=

0 members of t h i 6 m u l t i p l e t correspond t o d i p o l e e x c i t a t i o n s w i t h spin-up p a r t i c l e s o s c i l l a t i n g a g a i n s t spin-down p a r t i c l e s r a t h e r t h a n neutrons o s c i l l a t i n g a g a i n s t p r o t o n s a s i s t h e case f o r t h e GDR. Strong evidence f o r c o n s i d e r a b l e 2- s t r e n g t h w i t h T = 0 and 1 i n t h e r e g i o n of t h e GDR i n

12c

has a l r e a d y been observed i n pion i n e l a s t i c s c a t t e r i n g [3].

The evidence f o r 1- s p i n - f l i p s t r e n g t h was much weaker because t h e d a t a d i d not go t o small enough a n g l e s .

Both DWIA and e i k o n a l model c a l c u l a t i o n s p r e d i c t a n g u l a r d i s t r i b u t i o n s f o r a J"

=

1-; AS

=

1 e x c i t a t i o n t o f o l l o w [ J ~ ( ~ R ) ] ~ a t forward a n g l e s . This is u n l i k t h e a n g u l a r d i s t r i b u t i o n expected f o r t h e GDR, which i s expected t o f o l l o w [Jl(qR)] 8

and t o go t o z e r o a t oO, but i s the same a s t h a t expected f o r a 0+ e x c i t a t i o n . The

p r e v i o u s l y d e s c r i b e d small-angle m o d i f i c a t i o n s have been used t o measure i n e l a s t i c

s c a t t e r i n g from 1 2 ~ , 2881 and kOca t o s e a r c h f o r s t a t e s w i t h t h i s p r e d i c t e d forward

a n g l e behavior [ I S ] .

(7)

JOURNAL DE PHYSIQUE

Fig. 5 - Angular d i s t r i b u t i o n s measured f o r 162 MeV 1 2 ~ ( r + , r + ' ) 1 2 ~ a l o n g w i t h s t a t i c DWIA ( s o l i d ) , dynamic DWIA ( d a s h e d ) , and CCIA (dot-dashed) c a l c u l a t i o n s .

S p e c t r a f o r both 1 2 c and 2 8 ~ i a r e p r e s e n t e d i n F i g u r e 6. I n both n u c l e i s t r o n g l y forward-peaked a n g u l a r d i s t r i b u t i o n s were observed f o r s t a t e s o r groups of s t a t e s l o c a t e d a t e x c i t a t i o n e n e r g i e s of 20.0 and 17.6 MeV r e s p e c t i v e l y . The a n g u l a r d i s t r i b u t i o n s f o r b o t h s t a t e s a r e c o n s i s t e n t w i t h t h a t expected f o r t h e e x c i t a t i o n of a

O+

o r spin-f l i p d i p o l e s t a t e .

The f r a c t i o n s of t h e monopole, energy-weighted sum r u l e r e q u i r e d t o reproduce t h e observed c r o s s s e c t i o n s , u s i n g a breathing-mode form f a c t o r i n t h e DWIA, i s 15% i n 1 2 c and 25% i n

2 8 ~ i .

These a r e much l a r g e r t h a n observed i n t h i s e x c i t a t i o n e n e r g y r e g i o n i n (He3 ,He3') [16]. Although no monopole s t r e n g t h was observed i n any n u c l e u s l i g h t e r than 6 4 ~ n i n e a r l i e r O0

(a,cx')

[ I 7 1 a more r e c e n t experiment [ I 8 1 r e p o r t s s i g n i f i c a n t monopole s t r e n g t h i n 28Si a t a s i m i l a r e x c i t a t i o n e n e r g y - A l t e r n a t i v e l y , m i c r o s c o p i c c a l c u l a t i o n s of t h e c r o s s s e c t i o n s t o a doorway s t a t e which c o n t a i n s a l l of t h e s p i n - f l i p d i p o l e s t r e n g t h expected i n a ltlw s h e l l - m o d e l s p a c e a l s o reproduce t h e observed a n g u l a r d i s t r i b u t i o n s . The observed c r o s s s e c t i o n s i n d i c a t e 62% of t h i s (non-energy weighted) sum r u l e i s exhausted i n 1 2 c and 84% i n 28Si i f t h e s e s t a t e s a r e assumed t o be i s o s c a l a r . N e i t h e r t h e s p i n - f l i p d i p o l e n o r t h e monopole c a l c u l a t i o n g i v e s a good a c c o u n t of t h e energy dependence of t h e s e c r o s s s e c t i o n s .

I n o r d e r f o r t h e s e s t a t e s t o be i d e n t i f i e d a s T

= 0

s p i n - f l i p components of t h e GDR,

t h e p o s s i b i l i t y of a monopole assignment needs t o be r u l e d o u t u s i n g measurements

made w i t h o t h e r probes. S p i n - f l i p p r o b a b i l i t y measurements i n ( p , p ' ) might be v e r y

u s e f u l t o h e l p s o r t out t h i s puzzle. S y s t e m a t i c s a l s o need t o be e s t a b l i s h e d i n

o t h e r n u c l e i .

(8)

Fig. 6 - L e f t ) ~ ~ c ( w + , T + ' ) ~ ~ c a t 8O(lab) and TT=164 MeV. R i g h t ) Same f o r 2 8 ~ i .

V - "ISOSCALAR" GIANT RESONANCES I N 2 0 8 ~ b

We have a l s o u s e d t h e small-angle m o d i f i c a t i o n s t o s t u d y p i o n i n e l a s t i c s c a t t e r i n g a t a n i n c i d e n t energy of 162 MeV f o r t h e g i a n t resonance r e g i o n i n 2 0 8 ~ b . P r e v i o u s work i n medium-mass n u c l e i ( d i s c u s s e d e a r l i e r ) h a s shown t h a t i s o s c a l a r resonances a r e s t r o n g l y e x c i t e d w i t h good s i g n a l - t o - n o i s e r a t i o s . The s p e c t r a o b t a i n e d (Fig.

7) show t h a t t h i s is a l s o t h e c a s e f o r *08pb. The d a t a have been analyzed as a sum of Gaussian peaks superimposed on a background which v a r i e s slowly both i n a n g l e and i n e x c i t a t i o n energy. Peaks were observed a t e x c i t a t i o n e n e r g i e s of 10.5, 13.5, 17.7, and 22.0 MeV. These correspond t o t h e p r e v i o u s l y observed g i a n t quadrupole

Fig. 7 - Normalized s p e c t r a f o r 162 MeV p i o n i n e l a s t i c s c a t t e r i n g t o t h e g i a n t

resonance r e g i o n i n 208pb.

(9)

C4-334 JOURNAL DE PHYSIQUE

(GQR), g i a n t monopole (GMR), h i g h energy o c t u p o l e (HEOR), and a sum of t h e i s o s c a l a r g i a n t d i p o l e (ISGDR) and t h e i s o v e c t o r g i a n t quadrupole (IVGQR) resonances. The c r o s s s e c t i o n a n g u l a r d i s t r i b u t i o n s o b t a i n e d f o r both n+ and n- s c a t t e r i n g t o t h e GQR a r e p r e s e n t e d i n Figure 8.

One s t r i k i n g f e a t u r e of t h e d a t a i s t h e d i f f e r e n c e i n c r o s s s e c t i o n s measured f o r r + and n- f o r both t h e g i a n t resonances and t h e continuum. This can be r e a d i l y observed i n t h e f i g u r e . This d i f f e r e n c e s u g g e s t s t h a t t h e r o l e s played by n e u t r o n s and p r o t o n s i n t h e s u r f a c e r e g i o n ( t h e r e g i o n probed by pion i n e l a s t i c s c a t t e r i n g ) a r e very d i f f e r e n t .

A s e m i - q u a n t i t a t i v e understanding of these c r o s s s e c t i o n r a t i o s , R

=

o(n')/o(n+), can be obtained from t h e plane-wave Born approximation. Since t h e i s o s c a l a r pion-nucleon i n t e r a c t i o n i s twice a s s t r o n g a s t h e i s o v e c t o r i n t e r a c t i o n a t e n e r g i e s n e a r t h e resonance ( n e a r 180 MeV i n c i d e n t pion e n e r g i e s ) o(nf +

p)

and

o(n- + n ) a r e 9 times l a r g e r t h a n o(n+ + n) and o(n- + p). Applying t h i s t o pion-nucleus s c a t t e r i n g g i v e s :

Fig. 8-- Cross s e c t i o n a n g u l a r d i s t r i b u t i o n f o r t h e GQR i n Pb. Curves ( d e s c r i b e d i n t h e t e x t ) a r e t h e r e s u l t of a DWIA c a l c u l a t i o n .

where F (F) and Fn(?) a r e r e s p e c t i v e l y t h e p r o t o n and n e u t r o n t r a n s i t i o n d e n s i t i e s a t t h e s t r o n g a b s o r p t i o n r a d i u s P i. For a n i s o s c a l a r e x c i t a t i o n R i s expected t o be u n i t y . For a hydrodynamical model e x c i t a t i o n ( e q u a l amplitude o s c i l l a t i o n s of both t h e n e u t r o n s and t h e p r o t o n s ) R i s expected t o be approximately N / Z . The observed v a l u e of R

=

3.0 f o r t h e GQR i s not expected from e i t h e r of t h e above models.

1 n . o r d e r t o o b t a i n a more q u a n t i t a t i v e understanding of t h e i m p l i c a t i o n s of t h e d a t a

we have performed DWIA c a l c u l a t i o n s using c o l l e c t i v e - m o d e l f o m f a c t o r s . I n t h e s e

c a l c u l a t i o n s the neutron deformation parameter, BXn, and t h e p r o t o n deformation

parameter, BAp, were s e p a r a t e l y s c a l e d t o o b t a i n f i t s t o t h e measured

IT'

a n g u l a r

(10)

d i s t r i b u t i o n s . These were t h e n used t o o b t a i n t h e f r a c t i o n s of the i s o s c a l a r and t h e i s o v e c t o r energy-weighted sum r u l e exhausted by t h e GQR. The r e s u l t of such a c a l c u l a t i o n u s i n g t h e same r a d i a l shape f o r both t h e n e u t r o n and proton form f a c t o r s i s shown i n Figure 8. The f r a c t i o n of t h e E2 i s o s c a l a r sum r u l e , SIS, n e c e s s a r y t o e x p l a i n t h e d a t a w i t h t h i s model i s 71%, i n good agreement w i t h o t h e r hadronic [19-211 measurements. However 23% of t h e E2 i s o v e c t o r sum r u l e , SIV, is r e q u i r e d t o e x p l a i n both t h e

T+

and n- c r o s s s e c t i o n s . From t h e hydrodynamical model SIV

=

[ ( N - Z ) / ( N + Z ) ] * S ~ ~ o r 3% i s expected.

There a r e two s o l u t i o n s t o Eq. 1 ) f o r SIS and SIV. The second s o l u t i o n l e a d s t o a predominantly i s o v e c t o r s t a t e w i t h SIV

=

330% and SIS

=

5%. This s o l u t i o n is i n c o n s i s t e n t with a l l o t h e r measurements.

Another method of determining both t h e i s o s c a l a r and i s o v e c t o r s t r e n g t h f o r a t r a n s i t i o n i s t h e comparison of probes w i t h d i f f e r e n t s e n s i t i v i t i e s t o t h e i s o s c a l a r and i s o v e c t o r p i e c e s of t h e form f a c t o r . Such a comparison is provided by (a,@') and ( e , e ' ) . U n f o r t u n a t e l y t h e r e is s i g n i f i c a n t disagreement about t h e amount of s t r e n g t h observed i n ( e , e ' ) [22-251. Although P i t t h a n e t a l . [23] have r e p o r t e d observing a l a r g e f r a c t i o n of the i s o s c a l a r E2 sum r u l e n e a r 10.5 MeV, more r e c e n t h i g h - r e s o l u t i o n s t u d i e s 1251 i n d i c a t e very l i t t l e E2 s t r e n g t h i n t h i s region. The above a n a l y s i s can be p r e s e n t e d i n terms of a n e u t r o n and a p r o t o n ( e l e c t r o m a g n e t i c ) sum r u l e . We f i n d t h a t although 72% of the neutron sum r u l e is exhausted by t h i s s t a t e only 8.4% of t h e proton sum r u l e i s exhausted. Thus t h e r e s u l t s of t h i s a n a l y s i s a r e c o n s i s t e n t w i t h both o t h e r hadronic measurements and w i t h t h e r e c e n t high r e s o l u t i o n ( e , e ' ) measurements but n o t w i t h t h e e a r l i e r ( e , e ' ) measurements.

W e have examined t h e s e n s i t i v i t y of t h e s e r e s u l t s t o d i f f e r e n c e s between t h e ground-state neutron and p r o t o n r a d i i and t o d i f f e r e n c e s between t h e neutron and p r o t o n r a d i i used i n o b t a i n i n g t h e form f a c t o r s ( l e a v i n g t h e ground-state d e n s i t i e s unchanged). This a n a l y s i s should i n d i c a t e whether n e u t r o n t a i l s on t h e form f a c t o r s can e x p l a i n the l a r g e value of R. Radius changes of 0.3 fm changes l e a d t o only s m a l l d i f f e r e n c e s i n SIS and

SIT.

The c r o s s - s e c t i o n r a t i o s could a l s o be e x p l a i n e d by enhancing t h e i s o v e c t o r

n-N

i n t e r a c t i o n , V1 w i t h r e s p e c t t o t h e i s o s c a l a r p a r t of t h e i n t e r a c t i o n , Vo. The hydrodynamical model would e x p l a i n t h e d a t a i f V1/V was 1.26 r a t h e r t h a n 0.5 a s expected from t h e pion-nucleon i n t e r a c t i o n . Altgough H i r a t a , Lenz and Theis 1261 p r e d i c t enhancements of 25% i n V1 w i t h r e s p e c t t o Vo (V1/VO = 0.63) t h i s i s much s m a l l e r t h a n needed t o e x p l a i n t h e p r e s e n t d a t a .

The a n a l y s i s presented above i n d i c a t e s t h a t e i t h e r the GQR i n 2 0 8 ~ b i s a g i a n t n e u t r o n resonance o r we do n o t understand t h e pion-nucleus i n t e r a c t i o n . A n a n a l y s i s of t h e HEOR i n d i c a t e s t h a t it is a l s o predominantly a neutron s t a t e . I f t h e s e a r e neutron s t a t e s , where is the missing proton s t r e n g t h ? Since the background i n the e n t i r e continuum r e g i o n a p p e a r s t o be n- enhanced, t h i s missing proton s t r e n g t h must l i e e i t h e r h i g h e r i n energy, o r must be quenched. I f indeed i t i s a g i a n t neutron resonance t h i s idea can be f u r t h e r s u b s t a n t i a t e d by measuring t h e decay from t h e analog of t h i s neutron g i a n t resonance i n 2 0 8 ~ i u s i n g t h e ( p , p ' ) r e a c t i o n . This experiment[27] was done f o r lower-lying s t a t e s and provides examples f o r t h e neutron parentage of t h e s e s t a t e s i n 2 0 9 ~ b .

V I - SUMMARY

Some new d a t a f o r pion i n e l a s t i c s c a t t e r i n g from t h e giant-resonance r e g i o n of n u c l e i h a s been presented. New e x p e r i m e n t a l techniques have enabled measurements t o be made a t small angles. The d a t a i n d i c a t e t h a t pions provide a probe which i s u s e f u l f o r l o c a t i n g s p i n - f l i p modes a s w e l l a s f o r measuring new p r o p e r t i e s of p r e v i o u s l y observed g i a n t resonances.

The a u t h o r s would l i k e t o thank o u r c o l l a b o r a t o r s from t h e U n i v e r s i t y of

Pennsylvania, t h e U n i v e r s i t y of Texas, and Los Alamos N a t i o n a l Laboratory f o r

permission t o p r e s e n t new d a t a p r i o r t o p u b l i c a t i o n . This work has been supported

i n p a r t by t h e US Department of Energy and t h e N a t i o n a l Science Foundation.

(11)

JOURNAL DE PHYSIQUE

V I I - REFERENCES

[ I ] Arvieux ( J . ) , e t a l . , Phys. Rev. L e t t . , 1979, 62, 753.

[ 2 ] Buenerd (M.) and Arvieux ( J . ) , i n Giant M u l i t i p o l e Resonances, ed Bertrand (F. F.) (Harwood, New York, 1980) 381.

[ 3 ] Moore (C. F r e d ) e t a l . , Phys. Rev. C, 1982, 6, 2561.

[ 4 ] Ullman ( J . L.) e t a l . , Phys. Rev. L e t t . , 1983, 2, 1038.

[ 5 ] Walecka (J. D. ), P r e l u d e s i n T h e o r e t i c a l P h y s i c s , ed. de S h a l i t (A.), Feshbach (H.) and van Hove (L.), ( I n t e r s c i e n c e , New York, 1966); U b e r a l l (H.), Nuovo Cim., 1966, 4, 781.

161 T h i e s s e n (H. A.), Los Alamos Report LA-4534-MS, 1970.

[ 7 ] Morris (C. L.) e t a l . , Phys. Rev. C, 1981, 3, 231.

[ 8 ] Boyer (K. G.) e t a l . , Phys. Rev. C , 1981, 6, 598.

[ 9 ] Olmer (C.) e t a l . , Phys. Rev. C , 1980, 21, 254.

[ l o ] Seestrom-Morris (S. J.) e t a l . , Phys. Rev. C, 1983, 8, 1301.

[ I l l Morris (C. L.), Seestrom-Morris (S. J.), S e i d l (P.

A.)

and U z i a h (R. R.), Phys. Rev. C , t o be p u b l i s h e d , 1983.

1121 Cottingame (W. B.) and Holtkamp (D. B.), Phys. Rev. L e t t . , 1980, 65, 1828.

[13] Lenz (F.), Thies (M.) and Horikawa (Y.), Ann. Phys., 1982, 140 266.

[14] Sparrow (D. A.) and Gerace (W. J . ) , Phys. Rev. L e t t . , 1978, 41_ 1101.

[ I S ] Bland

(L.

C.) e t a l . , p r e p r i n t , 1983.

1161 Lebrun (D.) e t r ~ h y s . L e t t . , E, 358 (1980).

1171 Youngblood (D. H.) e t a l . , Phys. Rev. C, 1981, 2, 1997.

1181 Lui (Y.-W.), Bronson ( J . D.), Garg (u.) and Youngblood (D. H.), Bul. Am. Phys.

Soc., 1983, 28, 965.

[19] Youngblood (D. H.) e t a l . , Phys. Rev. C, 1976, 2, 994.

[20] Harakeh (N. M.) e t a l . , Phys. Rev. L e t t . , 1977, 38, 676.

[21] Morsch (H. P.), Rogge (M.), Turek (P.) and Mayer-BBricke (C.), Phys. Rev.

L e t t . , 1980, 45, 337.

[22] Buskirk (F. R.) e t a l . , Phys. L e t t . , 1972, G, 194.

[23] P i t t h a m (R.) e t a l . , Phys. Rev. L e t t . , 1974, 2, 849.

[24] Sasao (M.) and Torizuka (Y.), Phys. Rev. C, 1977, 15, 217.

[25] KUhner (G.) e t a l . , Phys. L e t t . , 1981, E , 189.

[26] H i r a t a (M.), Lenz (F.) and Thies (M.), Phys. Rev.

C,

1983, 8, 785.

1271 Moore (C. F r e d ) , Kulleck (J. G.), von Brentano ( P e t e r ) , and Rickey (F.), Phys.

Rev., 1967, 164, 1559.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to