• Aucun résultat trouvé

A MECHANISM FOR THE EFFECT OF DOPING ON DISLOCATION MOBILITY

N/A
N/A
Protected

Academic year: 2021

Partager "A MECHANISM FOR THE EFFECT OF DOPING ON DISLOCATION MOBILITY"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00219040

https://hal.archives-ouvertes.fr/jpa-00219040

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A MECHANISM FOR THE EFFECT OF DOPING ON DISLOCATION MOBILITY

P. Hirsch

To cite this version:

P. Hirsch. A MECHANISM FOR THE EFFECT OF DOPING ON DISLOCATION MOBILITY.

Journal de Physique Colloques, 1979, 40 (C6), pp.C6-117-C6-121. �10.1051/jphyscol:1979624�. �jpa-

00219040�

(2)

JOURNAL DE PHYSIQUE CoZZoque CF, s u p p l h e n t au n06, tome 40, j u i n 1979, page C6-117

A MECHANISM FOR THE EFFECT OF DOPING ON DISLOCATION M O B I L I T Y P.B. H i r s c h

Department of Metallurgy and Science o f Materials, University o f Oxford, Parks Road, Oxford, England

Resume.- Un modele nouveau e s t propose pour l ' a c t i o n des impuretes e l e c t r i q u e s sur l a v i t e s s e des d i s l o c a t i o n s dans l e s semiconducteurs c o o r d i n a t i o n tetrahPctri,que

.

La s t r u c t u r e e l e c t r o n i q u e des p a r t i e l l e s 8 30" e t 90°, l e s q u e l l e s sont l e s c o n s t i t u a n t s des di'slocations v i s e t 8 60'. e s t sup- pos@e se composer d'une bande complete e t d'une bande v i d e d ' e n e r g i e p l u s haute dans l ' e t a t n e u t r e . Les " k i n k s " sont suppos&s S t r e associ@s 8 des niveaux l o c a l i s @ s d 1 @ n e r g i e e n t r e l e s deux bandes de d i s l o c a t i o n s . L ' a c t i o n des impuretes e s t due

a

l a d i m i n u t i o n de l ' e n e r g i e l i b r e du systeme p a r l a t r a n s i t i o n d ' u n @ l e c t r o n / t r o u de l a bande de conduction/bande de valence, ou des bandes de d i s l o c a - t i o n s aux "kinks". Le modele expl i q u e raisonnablernent l a v a r i a t i o n de l a v i tesse des d i s l o c a t i o n s avec l a c o n c e n t r a t i o n des impuretes, 8 une temperature f i x e , e t donne des v a l e u r s de l ' e n e r g i e pour l e s niveaux l o c a l i s 6 s des " k i n k s " dans Ge e t S i , lesquels sont comparables aux niveaux d 1 6 n e r g i e associes avec l e s d i s l o c a t i o n s c o i n , determinges par des mesures e l e c t r i q u e s .

Abstract.- A new model i s proposed f o r t h e e f f e c t of doping on d i s l o c a t i o n v e l o c i t y i n t e t r a h e d r a l l y coordinated semiconductors. The e l e c t r o n i c s t r u c t u r e o f 30° and 90" p a r t i a l s , which a r e the compo- n e n t s of screw and 60' d i s l o c a t i o n s , i s assumed t o c o n s i s t o f a f u l l donor band an empty ( h i g h e r energy) acceptor band i n t h e n e u t r a l s t a t e . Kinks a r e thought t o be associated w i t h l o c a l i s e d accep- tor/donor l e v e l s w i t h i n the gap of t h e d i s l o c a t i o n bands. The doping e f f e c t i s considered t o be due t o t h e r e d u c t i o n of t h e f r e e energy o f t h e system by t h e t r a n s i t i o n o f an e l e c t r o n / h o l e fkom t h e conduction/valence band, o r from t h e d i s l o c a t i o n bands, t o the k i n k s i t e s . The model accounts rea- sonably w e l l f o r t h e observed v a r i a t i o n o f d i s l o c a t i o n v e l o c i t y w i t h dopant c o n c e n t r a t i o n a t a g i - ven temperature, and y i e l d s values f o r t h e energies of the l o c a l i s e d k i n k s t a t e s i n Ge and Si, which a r e o f t h e same order as t h e energy l e v e l s associated w i t h edge d i s l o c a t i o n s as determined from e l e c t r i c a l measurements.

1. I n t r o d u c t i o n . - The i n f l u e n c e o f doping on d i s l o - c a t i o n v e l o c i t y i n Ge and S i and some 111-V com- pounds i s w e l l e s t a b l i s h e d /1-9/. The e f f e c t has been a t t r i b u t e d t o t h e i n f l u e n c e o f l i n e charge on the generation o f double k i n k s /3/, /6-9/. The theory o f F r i s c h and Pate1 /3/ i s phenomenological i n t h a t the authors assume t h a t t h e d i s l o c a t i o n v e l o c i t y i s pro- p o r t i o n a l t o t h e f r a c t i o n o f charged d i s l o c a t i o n s i - tes; i n Haasen's /8/ t h e o r y t h e e f f e c t i s due t o a r e d u c t i o n i n a c t i v a t i o n energy o f double k i n k forma- t i o n due t o a decrease i n e l e c t r o s t a t i c energy o f a d i s l o c a t i o n r e s u l t i n g from t h e f o r m a t i o n o f a double k i n k . The a c t u a l formula used by Haasen /8/, which p r e d i c t s a change i n e l e c t r o s t a t i c energy p r o p o r t i o - nal t o t h e l e n g t h o f t h e double k i n k i s however i n e r r o r , and, a f t e r c o r r e c t i o n seems t o p r e d i c t t o o small an e f f e c t . Both t h e o r i e s (as published) seem t o assume t h a t t h e same basic mechanism operates f o r double k i n k generation on charged and uncharged d i s - l o c a t i o n s . This assumption leads t o t h e p r e d i c t i o n t h a t the change i n d i s l o c a t i o n v e l o c i t y i s t o be a t t r i b u t e d t o a change i n a c t i v a t i o n energy, w i t h o u t a p p a r e n t l y changing the pre-exponential f a c t o r . However, t h e experimental r e s u l t s f o r Ge and S i / I / , /6/ show f o r example t h a t t h e r a t i o o f t h e v e l o c i t y o f di'slocations i n doped n type t o t h a t i n undoped m a t e r i a l i s expected t o be, according t o t h e change

i n a c t i v a t i o n energy, about 100 times g r e a t e r than a c t u a l l y observed. I n t h i s paper we suggest how t h e doping e f f e c t may a r i s e from the n a t u r e o f t h e e l e c - t r o n i c s t a t e s associated w i t h t h e k i n k s formed i n t h e p a r t i a l d i s l o c a t i o n s .

2. M o b i l i t y and double k i n k formation.- 2.1.

Screw gl?locafjgns. -

2.1.1

.Sg:ggf !~g=;~~=gzgcgu=1g_up1~=gf

kighi2.- According t o Wagner and Haasen

/ l o / ,

screw d i s l o c a t i o n s , i .e. 30' p a r t i a l s , i n Ge a r e associa- ted ( i n t h e n e u t r a l s t a t e ) w i t h a f u l l donor band a t 0.035 eV and an empty acceptor band a t 0.59 eV r e s - p e c t i v e l y above the valence band. For a wide range o f Ferrni l e v e l s w i t h i n t h e gap the d i s l o c a t i o n s w i l l t h e r e f o r e c a r r y l i t t l e charge. The presence o f a k i n k along t h e d i s l o c a t i o n d i s t u r b s t h e p e r i o d i c i t y and leads t o l o c a l i s e d s t a t e s w i t h i n the gap. F i g u r e 1 shows t h e p o s s i b l e s t r u c t u r e s o f t h e two types of k i n k i n a 30' p a r t i a l ; t h e s t r u c t u r e s o f t h e two k i n k s are d i f f e r e n t , b u t f o r s i m p l i c i t y we s h a l l assume t h a t they a r e b o t h associated w i t h s i m i l a r l o c a l i s e d s t a t e s , energy EBa

,

EBd f o r t h e acceptor and donor l e v e l s .

2.1-2 ~ ~ ~ ~ ~ ~ ~ ~ ~ D - x ~ ~ ~ ~ ~ ~ Y ~ - c o D ~ ~ P ~ ~ I : ~ = ~ u ~ M D E ~ P ~ ~ ~ ~

$i$kk.-

F o l l o w i n g H i r t h and Lothe /13/, and assuming t h a t the mean f r e e p a t h o f t h e k i n k s i s determined by a n n i h i l a t i o n by o t h e r s moving i n t h e o p p o s i t e d i - r e c t i o n , t h e p a r t i a l d i s l o c a t i o n v e l o c i t y vp i s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1979624

(3)

C6-1 18 JOURNAL DE PHYSIQUE

given by

where ao i s t h e r e s o l v e d shear s t r e s s a c t i n g on t h e p a r t i a l , h t h e d i s t a n c e jumped forward by t h e d i s l o - c a t i o n , Fk the f o r m a t i o n energy o f one h a l f double kink, Dk t h e k i n k d i f f u s i v i t y .

F i g . 1 : P o s s i b l e s t r u c t u r e s of k i n k s i n 90' and 30" p a r t i a l s viewed normal t o t h e s l i p plane. The atoms i n t h e centres o f the k i n k s A and C, and adja- c e n t t o t h e two c e n t r e atoms i n k i n k B c o u l d t a k e up s l i g h t l y d i f f e r e n t p o s i t i o n s .

I n t h e steady s t a t e t h e v e l o c i t i e s o f both p a r t i a l s are the same, and i f t h e parameters a, Dk, Fk a r e d i f f e r e n t t h e s e p a r a t i o n D between t h e p a r t i a l s changes so t h a t an e f f e c t i v e s t r e s s

tk %

a c t s t o speed up one and t o r e t a r d t h e o t h e r p h i a l , so t h a t t h e two v e l o c i t i e s a r e equal. (Wi i s t h e i n - t e r a c t i o n energy p e r u n i t l e n g t h , i n c l u d i n g t h e f a u l t energy, between t h e two p a r t i a l s )

.

Assuming t h a t t h e s t r e s s term i n Fk can be neglected the steady s t a t e d i s l o c a t i o n v e l o c i t y vo i s

vo =

-

2'effh2 Dk exp(-Fk/kT)

8 k ~ (2)

where oeff = 1 dWi

* E ~

1

(3)

Equation ( 2 ) gives t h e v e l o c i t y o f d i s l o c a t i o n s w i t h uncharged kinks, w i t h

Dk = bT2 v D exp(-Wm/kT)

where bT i s t h e t o t a l Burgers v e c t o r , v D the Debye frequency and Wm t h e a c t i v a t i o n energy f o r m i g r a t i o n o f an uncharged k i n k . Fk may i n c l u d e an e l e c t r o s t a - t i c term due t o t h e reducJion i n e l e c t r o s t a t i c ener- gy due t o t h e f o r m a t i o n o f a k i n k (8), i . e . we can w r i t e

where Q i s the l i n e charge o f t h e d i s l o c a t i o n and E

t h e d i e l e c t r i c constant. T h i s e l e c t r o s t a t i c term w i l l be neglected i n what f o l l o w s .

2.1.3. E f f e c t of-chgyged-blDks.-

...

The f o r m a t i o n o f a double k i n k on a 30' p a r t i a l i s considered t o l e a d t o t h e generation o f acceptor/donor l e v e l s i n t h e gap (see 2.1.1.). The r e a c t i o n between an uncharged k i n k s i t e K and e.g. an e l e c t r o n e

K

+

e + K - ( 6 )

i s d r i v e n t o t h e r i g h t by i n c r e a s i n g the donor con- c e n t r a t i o n . Since t h e c o n c e n t r a t i o n o f t h e uncharged k i n k s i s expected t o be constant the t o t a l concentra- t i o n o f k i n k s increases, and since t h e d i s l o c a t i o n v e l o c i t y i s p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n o f k i n k s ( i . e . t h e exponential term i n equation ( 2 ) ) t h i s provides a mechanism f o r t h e e f f e c t o f doping on d i s l o c a t i o n v e l o c i t y . If t h e Fermi energy EF>EBa2 EBd, the acceptor/donor l e v e l s o f t h e k i n k s , these w i l l tend t o be n e g a t i v e l y charged, and t h e r a t i o o f the concentrations o f n e g a t i v e l y charged and n e u t r a l k i n k s (-ck. o ~ k ) i n thermodynamic e q u i l i b r i u m i s de- termined by Fermi-Dirac s t a t i s t i c s t o be

where eV i s t h e e l e c t r o s t a t i c energy o f t h e ( s l i g h t l y ) charged d i s l o c a t i o n ( i n c l u d i n g t h e k i n k s ) . The e f f e c t o f t h e Fermi energy on d i s l o c a t i o n v e l o c i t y i s appa- r e n t from ( 7 ) . Equation ( 7 ) may a l s o be regarded as g i v i n g the r a t i o o f the c o n c e n t r a t i o n o f h a l f , doubly n e g a t i v e l y charged, double k i n k s , t o t h a t o f n e u t r a l h a l f double kinks.

Since t h e v e l o c i t y o f t h e d i s l o c a t i o n i s pro- p o r t i o n a l t o t h e c o n c e n t r a t i o n o f k i n k s ( o r o f h a l f double k i n k s ) through t h e exponential (-Fk/kT) term i n ( 2 ) , we can w r i t e f o r t h e v e l o c i t y o f t h e d i s l o - c a t i o n c o n t r o l l e d by n e g a t i v e l y charged double k i n k s

where AWm i s t h e d i f f e r e n c e i n m i g r a t i o n energy f o r charged and uncharged k i n k s . S i m i l a r l y , f o r p o s i t i - v e l y charged double kinks, i .e. f o r EF < EBd,

The t o t a l d i s l o c a t i o n v e l o c i t y due t o charged and uncharged k i n k s i s vo

+

v, o r vo

+

vp. I n o r d e r t o i n t e r p r e t t h e experimental r e s u l t s we need t o consi- d e r t h e temperature dependence o f EF. I n what f o l - lows we s h a l l n e g l e c t t h e term AWm. Using t h e usual approximate r e l a t i o n s f o r EF f o r i n t r i n s i c and n

(4)

P.B. H i r s c h C6-1 19

t y p e m a t e r i a l , we f i n d f o r i n t r i n s i c m a t e r i a l :

i "'dh 3~ 1

-

v =

(-1

exp (2Eg

-

EBa

-

eV)/kT

o mde

where mdh9 mde a r e t h e e f f e c t i v e masses o f holes and e l e c t r o n ; n type m a t e r i a l :

--

-

N~

vo N ~ ( T / ~ o o ) ~ / ~ exp ( E

-

EBa

-

eV)/kT

g

where ND i s t h e c o n c e n t r a t i o n o f donor atoms; p type m a t e r i a l :

v Nv(T/30O)%

I P

-

- -

exp

-

(EBa

+

eV)/kT

0 A

where NA i s the c o n c e n t r a t i o n o f acceptor atoms. For valence band t r a n s i t i o n s f o r p type m a t e r i a l :

.A?=

v

N~

y2 exp(EBd + eV)/kT (13)

vo Nv(T/300)

I n s e r t i n g t y p i c a l values, t h e pre-exponential f a c - t o r s i n (11)

,

(13) a r e

%lo-'-

t h e r e i s an a d d i t i o n a l f a c t o r due t o t h e temperature dependence o f Eg and EB; eV w i l l a l s o vary w i t h temperature.

The charged k i n k mechanism w i l l t h e r e f o r e predomi- n a t e i f t h e exponential f a c t o r outweighs t h e pre- exponential f a c t o r , i . e . f o r s u f f i c i e n t l y l a r g e ND, NA i n ( l l ) , (13), and below a c r i t i c a l temperature.

It f o l l o w from ( l l ) , (12), (13) t h a t a t cons- t a n t T

l o g

-

= l o g ND

+

const.

0

(14) v

l o g

3

=

-

l o g N,

+

const.

vo (15

v

l o g

3

= l o g N~

+

const.

vo (16)

The r e s u l t s f o r screw d i s l o c a t i o n s i n n-type S i due t o P a t e l , T e s t a r d i and F r e e l and /6/ fit equation (14) w e l l over a range o f values (see f i g u r e 2 based on data from t h e i r paper).

The i n t e r c e p t made by t h e l i n e on t h e l o g ND a x i s i s c o n s i s t e n t ~ i t h known values f o r Nc and assuming a l i n e a r temperature dependence f o r Eg-EBa, s i m i l a r t o and scaled t o t h a t f o r Eg. The f i t w i t h equation (16) f o r p t y p e m a t e r i a l i s n o t q u i t e so good, b u t t h e r e s u l t s show c l e a r l y t h a t the mechanism o f equa- t i o n (13), n o t t h a t o f equation (12) operates. T h i s suggests t h a t EBd i s s u b s t a n t i a l . I n i n t e r p r e t i n g t h e a c t i v a t i o n energies, t h e temperature dependence o f t h e parameters Eg, EBa,d must be taken i n t o account. Assuming t h a t Eg, EBa,d v a r y l i n e a r l y w i t h temperature, t h e experimental data y i e l d values .corresponding t o T = 0 K. The changes i n a c t i v a t i o n

energy AF, r e l a t i v e t o t h a t f o r uncharged kinks, are given by the term i n t h e exponentials i n equations (10)

-

(13).

F i g . 2 : Logarithm of the r a t i o o f screw d i s l o c a t i o n v e l o c i t y i n n t y p e Si(vln) t o t h a t i n i n t r i n s i c S i ( v , i ) as a f u n c t i o n o f t h e l o g a r i t h m o f t h e donor c o n c e n t r a t i o n N

,

a t 600°C. A s t r a i g h t l i n e o f u n i t slope (see equa?ion (14) i s f i t t e d i n t h e range o f l o g l o N % 18.5-19.5. Data from P a t e l , T e s t a r d i and

~ r e e 1 an! /6/.

Thus

-

(AF,,

-

AFIi) = 7Eg-(eV)n+(eVfi 1 (17)

-

( FZP

-

Fli) = EBd+EBa

-

%g+(e~)p+(e~)i(18) Table I shows t h e r e s u l t s . The experimental value f o r

-

(AF,,-AF,i) i s i n good agreement w i t h 1/2 E suggesting t h a t the values o f eV a r e small. Assum~ng

s'

t h a t i n p type m a t e r i a l d i s l o c a t i o n s a r e p o s i t i v e l y chzrged, and i n n t y p e m a t e r i a l n e g a t i v e l y charged, t h e terms (eVb and (eV)i i n (18) w i l l cancel t o some e x t e n t . Assuming f u r t h e r t h a t EBd a EBa, t h e d a t a y i e l d a v a l u e o f EBa a EBd % 0.5 i 0.15 eV.

2.2. 60" DjslWcatjops

.-

2.2.1. Effect-of-charged

---

kinks.- The 60' d i s l o c a t i o n c o n s i s t s o f a 30" and a

--- ---

90" p a r t i a l . The e l e c t r o n i c s t r u c t u r e o f t h e 90"

p a r t i a l i s u n c e r t a i n /ll/. We s h a l l assume here t h a t t h e r e i s a s u b s t a n t i a l gap between acceptor and do- n o r l e v e l s , t h a t t h e charge on t h e d i s l o c a t i o n i s r e l a t i v e l y small f o r a wide range o f Fermi l e v e l s , and t h a t deep acceptor/donor 1 eve1 s a r e associated w i t h t h e kinks, which l i e between t h e acceptor/donor l e v e l s f o r the 90" p a r t i a l . The s t r u c t u r e o f these k i n k s (A i n Fig. 1) has some s i m i l a r i t y t o t h a t o f t h e B type k i n k i n t h e 30" p a r t i a l ( F i g . 1 ) . We s h a l l assume f o r simp1 i c i ty t h a t t h e energy l e v e l s o f t h e l o c a l i s e d k i n k s t a t e s a r e the same as those assumed f o r both t h e k i n k s i n t h e 30" p a r t i a l , Eba,d.

I t f o l l o w s t h a t t h e change i n a c t i v a t i o n energy should be s i m i l a r t o t h a t f o r screw d i s l o c a t i o n s . Table I shows t h a t f o r S i t h e e x p e r i m e n t a l l y d e t e r - mined values of AF a r e indeed s i m i l a r t o those f o r

screw d i s l o c a t i o n s , t o w i t h i n t h e experimental e r r o r

(5)

JOURNAL DE PHYSIQUE

Table I

I

Screw d i s l o c a t i o n i n s i l i c o n (600°C, 3 kg/mm2)

I

I I I

I

Derived o r

!

Fexpt

i

E~ ( A F - A F i ) e x ~ t

:

c a l c u l a t e d values

:

(eV) (eV) I (eV) I I (eV)

I 6 I I

I I I I

p type 8 ~ 1 0 ~ ' c m - ~ B

:

1.7(2.15)

:

4 . 0 4 -0.452 .15 EBa,EBd4.5i0.15

I I I I

i n t r i n s i c

:

2.15 0.49 I 0 I I

n-type 5 .5x101 'CIII-~AS 1.6 0.87 -0.55+ .15

-

-$g 1 = -0.58

Eg ( 0 K) = 1.16eV

(Experiments o f P a t e l , T e s t a r d i and Freeland /6/; t h e r e s u l t s f o r p type m a t e r i a l a r e f o r T

<

600°C; those i n b r a c k e t s f o r T 2 600°C).

60" d i s l o c a t i o n i n s i l i c o n (600°C, 12 k g / m 2 )

i

Fexpt

I

E~

I (eV)

:

(eV) (eV)

I 6

p t y p e 10' ' c ~ - ~ B

:

1.8 0.12

I I

i n t r i n s i c

:

2.1 0.49

:

0 I

I I I I

n type 10' ' ~ m - ~ ~ s / S b

:

1.5

1

0.77 -0.6?0.1

E (0 K) = 1 . 1 6 e V

I

I I I

9 I I I

(Experiments o f Erofeev and ~ i k i t e n k o /5/)

. '

I I

60' d i s l o c a t i o n i n germanium (500°C, 6 kg/mm2)

A A i e x p t (:%:

I E~

,

i

Fexpt

I (eV) (eV)

i

( eV )

I I

I I I

p type 2 ~ 1 0 ' ~ c m - ~ G a

:

1.75

:

%0.02 I 0

I I I

i n t r i n s i c

:

1.57 0.24

:

-0.18t0.15

:

<0.19+.15

t t I 1

n type 10' ' ~ m - ~ A s

1

1.2

:

0.38

:

-0.5520.15

1

10.19t.15

Eg (0 K ) = 0.741 eV

:

I I I I I I

(Experiments o f Pate1 and ~ h a u d h r i / I / ) .

'

I 1

( t h e r e s u l t s i n ( 5 ) a r e s t a t e d t o be accurate t o a p p l i e s i n t h e p type region, 0.05 eV). The experimental value f o r -(AF,,-bFli) i s -(AFn

-

AF ) = E

-

EBa

-

eV

1 P 9

again i n good agreement w i t h

$ .

w h i l e EBa%EBd%

9 -(AFi

-

AF ) = -ZEg 1

-

EBa

-

eV

0.44+0.1 eV. P

For Ge, t h e v a r i a t i o n o f v e l o c i t y w i t h doping c o n c e n t r a t i o n a t a given temperature f o r n type ma- t e r i a l i s c o n s i s t e n t w i t h t h a t p r e d i c t e d from t h e r a t i o o f equation (11) t o equation ( l o ) , i . e . s i m i - l a r t o t h a t o f equation (14), r e p l a c i n g vo by v, i and f o r p type m a t e r i a l w i t h t h a t p r e d i c t e d from t h e r a t i o o f equations (12) t o ( l o ) , i .e. s i m i l a r t o t h a t o f equation (15), r e p l a c i n g vo by v,

.

(See

f i g u r e 3,' based on f i g u r e 1 o f /9/). The i n t e r c e p t s made by t h e l i n e s on t h e l o g ( i m p u r i t y c o n c e n t r a t i o n ) a x i s f o r l o g ( v e l o c i t y r a t i o ) = 0 a r e i n good agree- ment w i t h e s t a b l i s h e d values f o r Nc, Nv, Eg, mdh, mde. Contrary t o t h e case'of S i , f o r Ge t h e acceptor/

donor l e v e l s must be very c l o s e 'to t h e valence band, so t h a t t h e mechanism o f equation (12) operates.

Using t h e value o f Eg a t 0 K f o r Ge (= 0.741 ,eV), and assuming t h a t t h e uncharged k i n k mechanism vo

t a b l e I shows t h a t EBa<0.19+.15 eV.

3. Conclusions.- The simple t h e o r y presented e x p l a i n s reasonably w e l l t h e v a r i a t i o n o f d i s l o c a t i o n v e l o c i - t y w i t h dopant c o n c e n t r a t i o n . As regards t h e values o f a c t i v a t i o n energy, t h e l i m i t s o f e r r o r are r a t h e r l a r g e . Nevertheless t h e s i m i l a r i t y between the va- l u e s o f EBa%EBd<(0.19k0.15) eV f o r Ge, and o f EBa%EBd%

(0.45_+0.15)eV f o r Si, w i t h t h e energy l e v e l s f o r a h a l f f i l l e d band obtained by t h e Gottingen group from H a l l c o n d u c t i v i t y data, suggests t h e p o s s i b i l i t y t h a t the l a t t e r may be c o n t r o l l e d by edge d i s l o c a - t i o n s (60" p a r t i a l s ) , o r by geometric kinks, and t h a t t h e 90° p a r t i a l s have a band gap. I t should be noted t h a t t h e s t r u c t u r e o f t h e A and B type k i n k s i s r a t h e r s i m i l a r t o t h a t o f t h e atoms w i t h i n one p e r i o d o f the 60' p a r t i a l /11/. I t should a l s o be p o i n t e d o u t t h a t t h e s t r u c t u r e o f t h e 60° p a r t i a l

(6)

P.B. H i r s c h

shown i n f i g u r e 4 i n /11/ can be r e c o n s t r u c t e d i n two ways;

17 18 19 20

log IMPURITY CONCENTRATION

Fig. 3 : Logarithm o f the r a t i o o f 60" d i s l o c a t i o n v e l o c i t y i n n and p t y p e Ge t o t h a t i n i n t r i n s i c Ge as a f u n c t i o n o f t h e l o g a r i t h m o f t h e i m p u r i t y con- c e n t r a t i o n , a t 500°C. S t r a i g h t l i n e s w i t h u n i t s l o - pes have been f i t t e d t o t h e data reproduced from f i g u r e 1 o f Pate1 and T e s t a r d i /9/.

F i r s t l y , by j o i n i n g i n each p e r i o d (JJbT) t h e two atoms i n t h e 90' p a r t i a l c o n f i g u r a t i o n , l e a v i n g one d a n g l i n g bond p e r p e r i o d ; secondly, by j o i n i n g neighbouring atoms along t h e d i s l o c a t i o n i n p a i r s , which r e s u l t s i n one r e c o n s t r u c t e d bond o f t h e 90' p a r t i a l type, p l u s two o f t h e 30' p a r t i a l type per double p e r i o d (2J5bT), ( i .e. one 30" p a r t i a l p l u s one h a l f 90' p a r t i a l bond p e r p e r i o d ( f i b T ) ) . If t h e c a l c u l a t i o n s o f Marklund and Jones /14,15/ a r e c o r r e c t , and t h e l o w e r i n g o f t h e energy i s substan- t i a l l y g r e a t e r f o r t h e r e c o n s t r u c t i o n of the 90' p a r t i a l than f o r the 30° p a r t i a l bond, t h e f i r s t t y p e o f r e c o n s t r u c t i o n suggested above f o r t h e 60' p a r t i a l may have lower energy, and a h a l f f i l l e d band, w i t h one d a n g l i n g bond per p e r i o d ( f i b T ) r e - s u l t s .

References

/I/ P a t e l , J.R. and Chaudhuri, A.R., Phys. Rev.

143

(1966) 601.

/2/ P a t e l , J.R. and Freeland, P.E., Phys. Rev. L e t t . 18 (1967) 833.

-

/3/ F r i s c h , H.L. and P a t e l , J.R., Phys. Rev. L e t t . 18 (1967) 784.

-

/4/ P a t e l , J.R. and F r i s c h , H.L., Appl

.

Phys. L e t t . 13 (1968) 32.

-

/5/ Erofeev, V.N. and N i k i t e n k o , V . I . , Sov. Phys.

S o l i d S t a t e

13

(1971) 116.

/6/ P a t e l , J.R., . T e s t a r d i , L.R. and Freeland, P.E., p h y s . - ~ e v . ~ 1 3 (1976) 3548. See a l s o phys. Rev. ,:

B15

-

(1977) 4 n 1 .

/7/ Alexander, H., and Haasen, P., S o l i d S t a t e Phys.

22 (1968) 28.

-

/8/ Haasen, P . , Phys. Status S o l i d i ( a ) - 28 (975) 145.

/9/ P a t e l , J.R. and Testardi, L.R., Appl. Phys. ' L e t t . 30 (1977)

-

3.

/ l o /

Wagner, R. and Haasen, P., L a t t i c e Defects i n Semiconductors, I n s t . Phys. Conf. Ser. No.

23

(1975) 387.

/11/ H i r s c h , P.B., ( t h i s conference).

/12/ Labusch, R. and Schr8ter. W., L a t t i c e Defects

, . . .

i n ~ e m i c o n d u c t o r s , I n s t . Phys. Conf. Ser. No.23

(1975) 56.

-

/13/ H i r t h , J.P. and Lothe, J., Theory o f D i s l o c a - t i o n s (New York : McGraw-Hill) 1968.

/14/ Marklund, S., ( t h i s conference).

/15/ Jones, R., ( t h i s conference).

Acknowledgement.- I should l i k e t o t h a n k p r o f e s s o r s P. Haasen, R. Labusch and W. Schroter, and Dr J.R.

P a t e l , f o r v e r y h e l p f u l discussions.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to