• Aucun résultat trouvé

On mean values of Dirichlet polynomials

N/A
N/A
Protected

Academic year: 2021

Partager "On mean values of Dirichlet polynomials"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01279465

https://hal.archives-ouvertes.fr/hal-01279465

Submitted on 29 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

On mean values of Dirichlet polynomials

Michel Weber

To cite this version:

Michel Weber. On mean values of Dirichlet polynomials. Mathematical Inequalities & Applications,

2011, 14 (3), pp.529-534. �10.7153/mia-14-45�. �hal-01279465�

(2)

arXiv:0907.4767v1 [math.NT] 28 Jul 2009

On Mean Values of Dirichlet Polynomials

Michel Weber July 29, 2009

Abstract

We show the following general lower bound valid for any positive in- tegerq, and arbitrary realsϕ1, . . . , ϕN and non-negative realsa1, . . . , aN,

cq

XN

n=1

a2n

q

≤ 1 2T

Z

|t|≤T

XN

n=1

aneitϕn

2q

dt.

1 Main Result

The object of this short Note is to prove the following lower bound

Theorem 1 For any positive integerq, there exists a constantcq, such that for any realsϕ1, . . . , ϕN, any non-negative reals a1, . . . , aN, and anyT >0,

cq

XN

n=1

a2nq

≤ 1 2T

Z

|t|≤T

XN n=1

aneitϕn

2q

dt.

The result is no longer true for arbitrary reals a1, . . . , aN as yields the case ϕ1=. . .=ϕN. It also follows that

cXN

n=1

a2n1/2

≤sup

t∈R

XN n=1

aneitϕn

. (1) In the caseϕn= logn, it is known from [5] and [8] that for any (an)

sup

t∈R

NX−1 n=0

annit

≥α1eβ1

logNlog logN

√N

NX−1

n=0

|an|

(2) and for some (an)

sup

t∈R

N−1X

n=0

annit

≤α2eβ2

logNlog logN

√N

NX−1

n=0

|an|

, (3)

with some universal constantsα1, α2, β1, β2. Then (1) is better than (2) if for instancean =n−α,α >1/2, since

eβ1

logNlog logN

√N

N−1X

n=0

|an|

∼eβ1

logNlog logN)N12−α=o(1)≪XN

n=1

a2n1/2

.

(3)

TheL1-case is related to well-known Ingham’s inequality [2]. We state the sharper form due to Mordell [7]: let 0< ϕ1< . . . < ϕN and letγ be such that

1<n≤Nmin ϕn−ϕn−1≥γ >0. Then

supN

n=1|an| ≤ K T

Z T

−T

XN n=1

aneitϕn

dt withT =π

γ, (4)

whereK≤1.

Further with no restriction, one always have supN

n=1|an| ≤lim sup

T→∞

1 2T

Z T

−T

XN n=1

aneitϕn

dt≤sup

t∈R

XN n=1

aneitϕn

, (5)

a very familiar inequality in the theory of uniformly almost periodic functions.

See also [1] where the more complicated inequality is established:

|an| ≤ 1 Qn−1

j=0 cos(πϕj

n)·QN

n+1cos(πϕn

j)· sup

|t|≤π2(ϕnn +PN j=n+1

1 ϕj)

XN n=1

aneitϕn .

(6) In particular, if ϕ1, . . . , ϕN are linearly independent, and T is large enough, then

bq

XN

n=1

a2nq

≤ 1 2T

Z

|t|≤T

XN n=1

aneitϕn

2q

dt≤Bq

XN

n=1

a2nq

, (7)

holds for any nonnegative realsa1, . . . , aN andbq,Bq depend onqonly.

The proof of Theorem 1 relies upon the following lemma, which just gen- eralizes a useful majorization argument ([6], p.131) to arbitrary even powers.

Lemma 2 Letqbe any positive integer. Letc1, . . . , cN be complex numbers and nonnegative reals a1, . . . , aN such that |cn| ≤an, n= 1, . . . , N. Then for any reals T, T0 with T >0

Z

|t−T0|≤T

XN n=1

cneitϕn

2q

dt≤3 Z

|t|≤T

XN n=1

aneitϕn

2q

dt.

Proof. Let

KT(t) =KT(|t|) = 1− |t|/T)χ{|t|≤T}

Observe that for any realst, H

a) KT(t−H) = 1− |t−H|/T)χ{|t−H|≤T}

b) χ{|t−H|≤T}≤KT(t−H) +KT(t−H+T) +KT(t−H−T) c) KbT(u) = 1

T

sinT u u

2

≥0, for all realu.

Suppose that|cn| ≤an forn= 1, . . . , N. From XN

n=1

cneitϕnq

= X

k1+...+kN=q

q!

k1!. . . kN! YN

n=1

cknneitknϕn. (8)

(4)

and

XN n=1

cneitϕn

2q

= X

k1 +...+kN=q h1 +...+hN=q

(q!)2 k1!h1!. . . kN!hN!

YN

n=1

cknncnhneit(kn−hnn

we get Z

R

KT(t−H)

XN n=1

cneitϕn

2q

dt

= X

k1 +...+kN=q h1 +...+hN=q

(q!)2 k1!h1!. . . kN!hN!

YN n=1

cknncnhn

Z

R

KT(t−H)eitPN

n=1(kn−hnndt

= X

k1 +...+kN=q h1 +...+hN=q

(q!)2 k1!h1!. . . kN!hN!

YN n=1

cknncnhn

Z

R

KT(s)ei(s+H)PN

n=1(kn−hnnds

= X

k1 +...+kN=q h1 +...+hN=q

(q!)2 k1!h1!. . . kN!hN!

YN n=1

(cneiHϕn)kn(cneiHϕn)hnKbT

XN

n=1

(kn−hnn

≤ X

k1 +...+kN=q h1 +...+hN=q

(q!)2 k1!h1!. . . kN!hN!

YN n=1

aknn+hnKbT

XN

n=1

(kn−hnn

= Z

R

KT(t)

X

k1 +...+kN=q h1 +...+hN=q

(q!)2 k1!h1!. . . kN!hN!

YN n=1

aknn+hneit PN

n=1(kn−hnn

dt

= Z

R

KT(t)

XN n=1

aneitϕn

2q

dt.

Hence, if|cn| ≤an forn= 1, . . . , N Z

R

KT(t−H)

XN n=1

cneitϕn

2q

dt≤ Z

R

KT(t)

XN n=1

aneitϕn

2q

dt. (9)

By applying Lemma 2 withH = 0, T0,−T0, and using b), we get Z

|t−T0|≤T

XN n=1

cneitϕn

2q

dt

≤ Z

R

KT(t−T0) +KT(t−T0+T) +KT(t−T0−T)

XN n=1

cneitϕn

2q

dt

≤ 3 Z

R

KT(t)

XN n=1

aneitϕn

2q

dt≤3 Z

|t|≤T

XN n=1

aneitϕn

2q

dt. (10)

(5)

The proof of Theorem 1 is now achieved as follows. First recall the Khintchin- Kahane inequalities [4]. Let {εi,1 ≤ i ≤ N} be independent Rademacher random variables, thus satisfying P{εi =±1} = 1/2, if (Ω,A,P) denotes the underlying basic probability. Then for any 0< p <∞, there exist positive finite constantscp,Cpdepending onponly, such that for any sequence{ai,1≤i≤N} of real numbers

cp

XN

i=1

a2i1/2

XN i=1

aiεi

p≤Cp

XN

i=1

a2i1/2

. (11)

This remains true for complexan. Ifann+iβn, then

XN j=1

ajεj

p

p = E

XN j=1

αjεj+i XN j=1

βjεj

p

=E

XN j=1

αjεj

2

+

XN j=1

βjεj

2p/2

≤ 2(p/2)−1 E

XN j=1

αjεj

p

+E

XN j=1

βjεj

p ,

where we have denoted byEthe corresponding expectation symbol. Thus, since

√A+√ B≤p

2(A+B),A, B≥0,

XN j=1

ajεj

p ≤ 21/2−1/pCp

h XN

j=1

α2j1/2

+ XN j=1

βj21/2i

≤ 21−1/pCp

XN

j=1

2j2j)1/2

=CpXN

j=1

|aj|21/2

. Conversely, from

XN j=1

ajεj

p

p = E

XN j=1

αjεj

2

+

XN j=1

βjεj

2p/2

≥ max E

XN j=1

αjεj

p

,E

XN j=1

βjεj

p , we get

XN j=1

ajεj

p ≥ max

XN j=1

αjεj

p,

XN j=1

βjεj

p

≥ cpmax XN

j=1

j|21/2

, XN j=1

j|21/2

≥ cp

2 XN

j=1

(|αj|2+|βj|2)1/2

=cpXN

j=1

|aj|21/2

. Now choose cnnan. Taking expectation in inequality of Lemma 2.1, and using Fubini’s Theorem, gives

Z

|t|≤T

E

XN n=1

εnaneitϕn

2q

≤3 Z

|t|≤T

XN n=1

aneitϕn

2q

dt. (12)

(6)

By (11) we have cq

XN

n=1

a2nq

≤E

XN n=1

εnaneitϕn

2q

≤Cq

XN

n=1

a2nq

. (13)

By reporting

2T cq

XN

n=1

a2nq

≤3 Z

|t|≤T

XN n=1

aneitϕn

2q

dt, (14)

which proves our claim.

2 Application

We shall deduce from Theorem 1 the following lower bound.

Corollary 3 For everyN,T andν cνlogν2N ≤ 1

2T Z

|t|≤T

XN n=1

1 n12+it

dt.

In relation with this is Ramachandra’s well-known lower bound (see [3] section 9.5, to which we also refer for the estimates used in the proof)

cν(logT)ν2≤ 1 2T

Z

|t|≤T

ζ(1 2+it)

dt. (15) Proof. Apply Theorem 1 with q= 2 to the sum

XN

n=1

1 n12+it

ν

:=

Nν

X

m=1

bm

m12+it, where

bm= #

(nj)j≤ν; nj≤N :m=Y

j≤ν

nj . Thus for allN andT

cν Nν

X

m=1

b2m m ≤ 1

2T Z

|t|≤T

XN n=1

1 n12+it

dt.

But ifm≤N,bm=dν(m) wheredν(m) denotes the number of representations ofmas a product ofν factors, and we know that

X

m≤x

d2ν(m)

m = (Cν+o(1)) logν2x.

Thus XNν

m=1

b2m

m ≥

XN m=1

b2m

m ≥cνlogν2N Henceforth

cνlogν2N ≤ 1 2T

Z

|t|≤T

XN n=1

1 n12+it

dt.

(7)

Acknowlegments. I thank Professor Aleksandar Ivi´c for useful remarks.

References

[1] Binmore K.G. [1966]: A trigonometric inequality, J. London Math. Soc.

41, 693–696.

[2] Ingham A.E. [1950]: A further note on trigonometrical inequalities, Proc.

Cambridge Philos. Soc.46, 535-537.

[3] Ivi´c A. [1985]The Riemann Zeta-function, Wiley-Interscience Publication, J. Wiley&Sons, New-York.

[4] Kashin B.S., Saakyan A.A. [1989]Orthogonal Series, Translations of Math- ematical Monographs75, American Math. Soc.

[5] Konyagin S.V., Queff´elec H. [2001/2002]The translation 12 in the theory of Dirichlet series, Real Anal. Exchange27(1), 155–176.

[6] Montgomery H.[1993]: Ten lectures on the interface between analytic number theory and harmonic analysis, Conference Board of the Math. Sci- ences, Regional Conference Series in Math.84.

[7] Mordell I.J. [1957]: On Ingham’s trigonometric inequality, Illinois J.

Math.1, 214–216.

[8] Queff´elec H. [1995] H. Bohr’s vision of ordinary Dirichlet series; old and new results, J. Analysis3, p.43-60.

[9] Ramachandra K. [1995]On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Tata Institute of Fundamental Research, Bombay, Springer Verlag Berlin, Heidelberg, New-York, Tokyo, vii+167p.

Michel Weber, Math´ematique (IRMA), Universit´e Louis-Pasteur et C.N.R.S., 7 rue Ren´e Descartes, 67084 Strasbourg Cedex, France.

E-mail: weber@math.u-strasbg.fr

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to