• Aucun résultat trouvé

TIME RESOLVED RAMAN SPECTRA DURING PULSED LASER HEATING OF SILICON

N/A
N/A
Protected

Academic year: 2021

Partager "TIME RESOLVED RAMAN SPECTRA DURING PULSED LASER HEATING OF SILICON"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223098

https://hal.archives-ouvertes.fr/jpa-00223098

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TIME RESOLVED RAMAN SPECTRA DURING PULSED LASER HEATING OF SILICON

G. Wartmann, D. von der Linde

To cite this version:

G. Wartmann, D. von der Linde. TIME RESOLVED RAMAN SPECTRA DURING PULSED LASER HEATING OF SILICON. Journal de Physique Colloques, 1983, 44 (C5), pp.C5-107-C5-110.

�10.1051/jphyscol:1983517�. �jpa-00223098�

(2)

TIME RESOLVED RAMAN SPECTRA DURING PULSED LASER HEATING OF SILICON

G. Wartmann and D. von der Linde

UniversitCit Essen, Fachbereich Physik, 4300 Essen 1, F.R.G.

Resume

-

On a e t u d i e l e s spectres de diffusion Raman du phonon optique

r25

m i c i u m c r i s t a l l in pendant 1

'

excitation intense par une impul sion 1 aser de 10 ns. Ces spectres donnent evidence que l'echauffage l a s e r n ' e s t pas uniforme e t que pendant une periode de t r a n s i t i o n de 10 ns des regionsso- l i d e s e t liquides coexistent l a surface.

Abstract

-

The Raman spectrum of the

r,,

optical phonon in silicon during intense excitation by a 10 ns l a s e r pulse i s investigated with a time reso- lution of 2 ns. These spectra provide evidence t h a t non-uniform heating takes place and t h a t during a t r a n s i t i o n period of about 10 ns solid and liquid surface areas coexist.

1. Introduction

Over the past several years the fundamental physical mechanisms of pulsed l a s e r annealing of semiconductors have been the subject of an active discussion. The bulk of both experimental and theoretical work supports a simple thermal model in which the l a s e r pul se f i r s t me1 t s the material, and subsequently an epitaxial regrowth process takes place. On the other hand, several experiments were reported /1-5/ in which spontaneous Stokes and anti-Stokes Raman scattering was used to measure the changes of the l a t t i c e temperature of silicon di~ring and a f t e r exposure t o an in- tense l a s e r heating pulse. The r e s u l t s of these Zaman experiments appear t o be in disagreement with the thermal melt hypothesis. The l a t t i c e temperature inferred from the anti-Stokes/Stokes r a t i o was always fomd t o be well below the melting point of silicon. In addition, Raman scattering corresponding to the

rZ5

zone cen- t e r optical phonon of s i l i c o n was also observed during the high r e f l e c t ~ v i t y phase.

A sudden jump of the optical r e f l e c t i v i t y and the subsequent h i g h r e f l e c t i v i t y phase i s generally considered to indicate a sol id-to-1 iquid phase t r a n s i t i o n . The high r e f l e c t i v i t y phase i s a t t r i b u t e d to a thin surface layer of laser-molten me- t a l l i c silicon which i s not Raman active. Inadequate spatial and temporal resolu- t i o n and problems with properly correcting the measured Stokes/anti-Stokes r a t i o s f o r the temperature dependence of the optical properties and the Raman scattering cross sections /6/ have been ruled out /4,5/ as an explanation of the inconsistency of the Raman experiments with the thermal melt model.

In our previous work /3,4/ the temporal evolution of the Stokes/anti-Stokes r a t i o of spectrally integrated Raman scattering was measured. In t h i s report we present r e s u l t s of detailed measurements of time- and frequency-resolved Raman scattering.

These new data indicate t h a t a s p a t i a l l y non-uniform temperature distribution might be a possible explanation of the existing discrepancies.

2. Experimental

In our experiments we use l a s e r pulses of

-

lOns duration from a single frequency, single transverse mode, passively Q-swi tched Nd-YAG l a s e r . The second harmonic of the l a s e r pulses (532nm) serves both f o r laser-heating and Raman scattering. Good spatial resolution in the direction parallel t o the surface i s achieved by imaging

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983517

(3)

C5-108 JOURNAL DE PHYSIQUE

c i r c u l a r a p e r t u r e i n f r o n t o f t h e s l i t passes o n l y s c a t t e r e d l i g h t o r i g i n a t i n g f r o m w i t h i n a r a d i u s c o r r e s p o n d i n g t o t h e 90 % o f maximum i n t e n s i t y c o n t o u r o f t h e hea- t i n g beam. The energy d e n s i t y v a r i e s smoothly over t h e a c t i v e s u r f a c e area , t h e t o t a l v a r i a t i o n b e i n g l e s s than 10 %.

The samples a r e (100) o r i e n t e d c r y s t a l 1 i n e s i l i c o n w a f e r s which a r e r a s t e r - scanned t o a v o i d mu1 t i p l e exposure.

Raman l i g h t i s d e t e c t e d w i t h a p h o t o m u l t i p l i e r tube h a v i n g a t i m e r e s o l u t i o n o f a b o u t 211s. The i n d i v i d u a l p h o t o m u l t i p l i e r p u l s e s a r e r e c o r d e d and processed by a computer c o n t r o l 1 ed waveform d i g i t i z e r . By accumulating a s u f f i c i a n t l y 1 a r g e r num- b e r o f s i n g l e photon events t h e temporal p r o f i l e o f t h e average Raman s c a t t e r i n g i n t e n s i t y can be r e c o n s t r u c t e d . The t i m e - r e s o l ved s p e c t r a a r e o b t a i n e d by measuring t h e temporal Raman p r o f i l e f o r d i f f e r e n t frequency p o s i t i o n s a c r o s s t h e spect, d l r e g i o n o f i n t e r e s t . The r e c o r d i n g frequency bandwidth corresponded t o 15 c l r < - l . D u r i n g t h e Raman measurements t h e o n s e t and d u r a t i o n o f t h e h i g h r e f l e c t i v i t y phase a r e m o n i t o r e d by simultaneous measurements o f t h e o p t i c a l r e f l e c t i v i t y ( 1 n s t i m e r e s o l u t i o n ) . F o r i n s t a n c e , t h e d u r a t i o n o f t h e h i g h r e f l e c t i v i t y phase f o r a h e a t i n g p u l s e o f 0.6 ~ / c m * was measured t o be 20 ns.

F i g . 1

Stokes s i g n a l a t 526 cm-' as a f u n c t i o n o f t i m e ( s o l i d c u r v e ) . D o t t e d c u r v e : l a - s e r h e a t i n g p u l s e . Dashed c u r v e : Stokes s c a t t e r i n g e f f i e n c y . Arrow: p o s i t i o n o f t h e r e f l e c t i v i t y jump.

3. R e s u l t s and D i s c u s s i o n

As an e x a m p l e o f t h e m e a s u r e d temporal p r o f i l e s t h e Stokes s i g n a l a t 526 cm-l i s shown by t h e s o l i d c u r v e o f F i g . 1. The h e a t i n g p u l s e i s g i v e n by t h e d o t t e d l i n e f o r comparison. The arrow marks t h e o n s e t o f t h e h i g h r e f l e c t i v i t y phase. The dashed l i n e shows t h e r a t i o o f Stokes t o l a s e r i n t e n s i t y which i s n o r m a l i z e d t o u n i t y a t t h e f r o n t o f t h e pulse. The f o l l o w i n g p o i n t s should be n o t i c e d :

( i ) The dashed l i n e i n d i c a t e s a d r a s t i c decrease o f t h e s c a t t e r i n g e f f i c i e n c y w i t h time;

( i i ) The s c a t t e r i n g e f f i c i e n c y passes smoothly i n t o t h e h i g h r e f l e c t i v i t y phase w i t h o u t any d i s c o n t i n u i t y ;

( i i i ) Raman s c a t t e r i n g c o n t i n u e s d u r i n g t h e h i g h r e f l e c t i v i t y phase.

Stokes s p e c t r a f o r e x c i t a t i o n w i t h 0.6 J/cm2 o f 532 nm l i g h t a r e d e p i c t e d i n F i g . 2. Curves 1 t o 4 r e p r e s e n t a sequence o f t i m e - r e s o l v e d Raman s p e c t r a w i t h a 4 n s t i m e increment. The i n s e r t i n d i c a t e s t h e temporal p o s i t i o n s w i t h r e s p e c t t o t h e e x c i t a t i o n pul se. F o r a l l c u r v e s t h e s c a t t e r i n g i n t e n s i t y i s n o r m a l i z e d w i t h r e s p e c t t o t h e i n s t a n t a n e o u s i n t e n s i t y o f t h e e x c i t a t i o n p u l s e .

(4)

sents the Raman spectrum j u s t before the r e f l e c t i v i t y jump. Comparing w i t h spectrum 1, the f o l l o w i n g changes can be noticed:

( i ) A decrease o f the peak s c a t t e r i n g i n t e n s i t y by o n l y about 20 %;

( i i ) A small increase o f the w i d t h and a small l i n e s h i f t t o lower frequencies;

( i i i ) An asymmetric shape w i t h a very pronounced 1 ow frequency t a i 1.

It i s i n t e r e s t i n g t o compare spectrum 2 w i t h t h e dashed curve which represents t h e expected Raman spectrum o f a s i l i c o n c r y s t a l w i t h a uniform temperature c l o s e t o the me1 t i n g p o i n t (about 1600 K). The w i d t h and the s h i f t o f the Raman spectrum representing a h o t c r y s t a l were obtained by e x t r a p o l a t i o n o f a v a i l a b l e 1 it e r a t u r e data /7/ t o a temperature o f 1600 K. I n a d d i t i o n t o the s h i f t and the increase o f t h e l i n e w i d t h a strong decrease o f t h e s c a t t e r i n g i n t e n s i t y t o l e s s than 10 % o f t h e room temperature value (curve 1) i s expected. T h i s e f f e c t i s due t o the i n - crease o f the o p t i c a l absorption w i t h temperature a t 532 nm /8/ which l e a d s t o a dramatic decrease o f the s c a t t e r i n g volume when the s i l i c o n c r y s t a l i s heated up.

Comparison o f curve 2 w i t h the dashed l i n e shows t h a t the a c t u a l Raman spectrum i n t h e v i c i n i t y o f the r e f l e c t i v i t y jump i s q u i t e d i f f e r e n t from the spectrum corre- sponding t o a uniform temperature o f

-

1600 K. One i s t h e r e f o r e l e a d t o assume t h a t t h e c r y s t a l surface has a non-uniform temperature d i s t r i b u t i o n w i t h c o e x i s t i n g h o t and c o l d areas. The l a t t e r very s t r o n g l y dominate i n the Raman process g i v i n g a spectrum w i t h only a minor s h i f t and. broadening. The h o t areas, on the o t h e r hand, c o n t r i b u t e very l i t t l e t o the t o t a l Raman s c a t t e r i n g being r e s p o n s i b l e f o r the weak 1 ow frequency t a i 1

.

FREQUENCY SHIFT

[cm-'I

Fig. 2

Raman Stokes spectra o f l a s e r heated s i - l i c o n . I n s e r t : l a s e r h e a t i n g p u l s e show- i n g t h e temporal p o s i t i o n o f t h e f o u r spectra. Arrow: onset o f the h i g h r e - f l e c t i v i t y phase. Dashed curve: expect- ed Raman spectrum o f s i l i c o n w i t h a u n i - form temperature o f 1600 KA1

Spectral r e s o l u t i o n : 20 cm

.

I t i s important t o emphasize t h a t we do n o t expect the non-uniformity o f t h e tempe- r a t u r e t o be simply caused by s p a t i a l l y non-uniform i l l u m i n a t i o n , because g r e a t care was exercised t o ensure a u n i f o r m s p a t i a l energy d i s t r i b u t i o n o f the l a s e r beam. Rather, we assume t h a t some i n s t a b i l i t y o f the h e a t i n g process i s responsible f o r the inhomogeniety of the surface temperature. Non-uniform h e a t i n g would pre- sumably l e a d t o a m e l t i n g process i n which molten and s o l i d m a t e r i a l c o e x i s t d u r i n g a c e r t a i n t r a n s i t i o n period. This would e x p l a i n the r e s i d u a l Raman d u r i n g t h e h i g h r e f l e c t i v i t y phase.

(5)

C5-110 JOURNAL DE PHYSIQUE

Com a r i s o n o f curve 2 and 3 i n Fig. 2 shows t h a t the maximum o f t h e spectrum a t 520 cm-' decreases r a p i d l y a f t e r t h e onset o f the h i g h r e f l e c t i v i t y phase, whereas very l i t t l e change i s observed i n the low frequency t a i l . Curve 4 f i n a l l y represents the Raman spectrum a f t e r 8 ns where the s c a t t e r i n g i n t e n s i t y i s approaching the d e t e c t i o n l i m i t . During the remaining p a r t o f the pulse Raman s c a t t e r i n g i s too weak t o be detected.

The gradual disappearance o f Raman s c a t t e r i n g c o u l d be explained as being due t o an increase o f molten areas a t the expense o f sol i d areas. Complete coverage o f t h e surface by molten s i l i c o n would then take about 10 ns t o develop.

Attempts were made t o f i n d p o s i t i v e p r o o f o f a s p a t i a l temperature non-uniformity.

D i f f r a c t i o n experiments showed t h a t t h e r e are no t r a n s i e n t r i p p l e phenomena 191.

Permanent surface r i p p l e s can be generated o n l y by m u l t i p l e exposure o f the same c r y s t a l surface area. However, we discovered t h a t t h e r e i s a dramatic t r a n s i e n t enhancement o f d i f f u s e Rayleigh s c a t t e r i n g when the t r a n s i t i o n t o the h i g h r e f l e c - t i v i t y phase takes place. T h i s observation p o i n t s t o i r r e g u l a r s p a t i a l inhomoge- n i e t i e s r a t h e r than p e r i o d i c surface s t r u c t u r e s .

4. Conclusion

Time-resolved Raman spectra p r o v i d e evidence t h a t d u r i n g pulsed l a s e r h e a t i n g o f s i l i c o n t h e surface temperature i s n o t uniform. Because o f the very strong b i a s o f t h e Raman method i n favour o f c o l d surface areas, phonon temperatures i n f e r r e d from the anti-Stokes/Stokes i n t e n s i t y r a t i o o f 1 aser- heated s i l ic o n are expected t o l e a d t o an underestimate o f the l a t t i c e temperature.

References

1. LO H.W. and COMPAAN A., Phys. Rev. L e t t .

3

(1980) 1604 2. LO H.W. and COMPAAN A., Appl. Phys. L e t t .

-

38 (1980) 179

3. VON DER LINDE D. and WARTMANN G., Appl .Phys.Lett.

2

(1982) 700

4. VON DER LlNDE D., WARTMANN G. and OZOLS A. i n : L a s e r - S o l i d I n t e r a c t i o n s and T r a n s i e n t Thermal Processing o f M a t e r i a l (J. Narayan, W.L. Brown, R.A. Lemons eds.) North Holland, New York (1983)

5. COMPAAN A., LO H.W., AYDINILI A*, and LEE M.C., i n : Laser-Solid I n t e r a c t i o n s and Transient Thermal Processing o f M a t e r i a l (J. Narayan, W.L. Brown, R.A.

Lemons eds.) North Holland, New York (1983)

6. COMPAAN A., LO H.W., LEE M.C. and AYDINLI A., Phys. Rev. B26 (1982) 1079

-

7. HART T.R., AGGARWAL R.L. and LAX B., Phys. Rev. B1 (19701 638

-

8. JELLISON

G.E.

and MODINE F.A., Appl. Phys. L e t t .

41

119821 180

9. YOUNG J.F., PRESTON J.S., SIPE J.E. and VAN DRIEL H.M., Phys. Rev.

B

27 (1983) 1424

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to