• Aucun résultat trouvé

Self-influence and influence pseudotensors of d-dimensional spheres

N/A
N/A
Protected

Academic year: 2021

Partager "Self-influence and influence pseudotensors of d-dimensional spheres"

Copied!
54
0
0

Texte intégral

(1)

HAL Id: hal-00876028

https://hal-enpc.archives-ouvertes.fr/hal-00876028v2

Submitted on 30 Dec 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

Self-influence and influence pseudotensors of d-dimensional spheres

Sébastien Brisard, Luc Dormieux, Karam Sab

To cite this version:

Sébastien Brisard, Luc Dormieux, Karam Sab. Self-influence and influence pseudotensors of d-

dimensional spheres. 2013, pp.53. �hal-00876028v2�

(2)

Self-influence and influence pseudotensors of d-dimensional spheres

S. Brisard L. Dormieux K. Sab December 30, 2013

This document is a companion to Ref. [1]. It gathers analytical expressions for the self-influence and influence pseudotensors of d-dimensional spheres (d = 2, 3).

Contents

1 How to read this document? 1

2 Self-influence pseudotensors of d-dimensional spheres 2

2.1 Self-influence pseudotensors of disks (d = 2) . . . . 2 2.2 Self-influence pseudotensors of spheres (d = 3) . . . . 3

3 Elementary influence pseudotensors of d-dimensional spheres 9

3.1 Elementary influence pseudotensors of disks (d = 2) . . . . 9 3.2 Elementary influence pseudotensors of spheres (d = 3) . . . . 16

1 How to read this document?

Fourth-rank pseudotensors T

i jkl

are represented in tabular form as follows

Two-dimensional space (d = 2)

 

 

 

 

T 1111 T 1122 T 1112

T 2211 T 2222 T 2212 T 1211 T 1222 T 1212

 

 

 

 

Three-dimensional space (d = 3)

 

 

 

 

 

 

 

 

 

 

 

 

T 1111 T 1122 T 1133 T 1123 T 1131 T 1112 T 2211 T 2222 T 2233 T 2223 T 2231 T 2212 T 3311 T 3322 T 3333 T 3323 T 3331 T 3312

T 2311 T 2322 T 2333 T 2323 T 2331 T 2312

T 3111 T 3122 T 3133 T 3123 T 3131 T 3112

T 1211 T 1222 T 1233 T 1223 T 1231 T 1212

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the above representations should be understood as arrays, not matrices. Indeed, none of the components have been premultiplied by 2 (resp.

2), as required by the Voigt (resp. Mandel) notation, which precludes performing linear algebra operations (such as matrix-vector products) on these tables.

This document follows closely the notations of Ref. [1]. In addition, a α and a β denote the radiuses of the spherical inclusions α and β, respectively. It is recalled that r is the center-to-center distance of the two inclusions. Also, µ 0 (resp.

Universit´e Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, F-77455 Marne-la-Vall´ee, France

(3)

ν 0 ) denotes the shear modulus (resp. Poisson ratio) of the reference material. For d = 2, plane strain elasticity is assumed;

plane stress elasticity is retrieved with the classical substitution ν 0 ! ν 0 (1 + ν 0 )

−1

(leaving µ 0 unchanged).

Expressions of the self-influence pseudotensors S

k

α

l

and influence pseudotensors T

k

αβ

l

(r) are given for k

+

= k 1 + · · · + k

d

≤ p and l

+

= l 1 + · · · + l

d

≤ p, with p = 3 (d = 2) and p = 2 (d = 3); pseudotensors which are omitted below are identically null. In addition, it is assumed that r = re

d

for the influence pseudotensors; in other words, the influence pseudotensors are expressed in a local basis attached to the two inclusions under consideration. Such pseudotensors are called elementary. In the general case of an arbitrarily oriented center-to-center vector, a change of basis must be performed according to Ref. [1] to retrieve the influence pseudotensors from the elementary influence pseudotensors provided in the present document.

2 Self-influence pseudotensors of d-dimensional spheres

2.1 Self-influence pseudotensors of disks (d = 2)

S 0000 α = π a 2 α 16 µ 0 (1 − ν 0 )

 

 

 

 

5 − 8 ν 0 −1 0

−1 5 − 8 ν 0 0

0 0 3 − 4 ν 0

 

 

 

 

S 0002 α = π a 4 α 64 µ 0 (1 − ν 0 )

 

 

 

 

5 − 8 ν 0 −1 0

−1 5 − 8 ν 0 0

0 0 3 − 4 ν 0

 

 

 

 

S 0020 α = π a 4 α 64 µ 0 (1 − ν 0 )

 

 

 

 

5 − 8 ν 0 − 1 0

− 1 5 − 8 ν 0 0

0 0 3 − 4 ν 0

 

 

 

 

S 0101 α = π a 4 α 64 µ 0 (1 − ν 0 )

 

 

 

 

3 − 4 ν 0 −1 0

−1 7 − 12 ν 0 0

0 0 3 − 4 ν 0

 

 

 

 

S 0110 α = π a 4 α (1 − 2 ν 0 ) 64 µ 0 (1 − ν 0 )

 

 

 

 

0 0 1 0 0 1 1 1 0

 

 

 

 

S 0200 α = π a 4 α 64 µ 0 (1 − ν 0 )

 

 

 

 

5 − 8 ν 0 −1 0

−1 5 − 8 ν 0 0

0 0 3 − 4 ν 0

 

 

 

 

S 0202 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

21 − 32 ν 0 −5 0

−5 37 − 64 ν 0 0

0 0 19 − 24 ν 0

 

 

 

 

S 0211 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

0 0 3 − 4 ν 0

0 0 1 − 4 ν 0

3 − 4 ν 0 1 − 4 ν 0 0

 

 

 

 

S 0220 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

11 − 16 ν 0 −3 0

−3 11 − 16 ν 0 0

0 0 5 − 8 ν 0

 

 

 

 

S 1001 α = π a 4 α (1 − 2 ν 0 ) 64 µ 0 (1 − ν 0 )

 

 

 

 

0 0 1 0 0 1 1 1 0

 

 

 

 

S 1010 α = π a 4 α 64 µ 0 (1 − ν 0 )

 

 

 

 

7 − 12 ν 0 −1 0

−1 3 − 4 ν 0 0

0 0 3 − 4 ν 0

 

 

 

 

S 1102 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

0 0 3 − 4 ν 0

0 0 1 − 4 ν 0

3 − 4 ν 0 1 − 4 ν 0 0

 

 

 

 

(4)

S 1111 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

11 − 16 ν 0 −3 0

− 3 11 − 16 ν 0 0

0 0 5 − 8 ν 0

 

 

 

 

S 1120 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

0 0 1 − 4 ν 0

0 0 3 − 4 ν 0

1 − 4 ν 0 3 − 4 ν 0 0

 

 

 

 

S 2000 α = π a 4 α 64 µ 0 (1 − ν 0 )

 

 

 

 

5 − 8 ν 0 −1 0

−1 5 − 8 ν 0 0

0 0 3 − 4 ν 0

 

 

 

 

S 2002 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

11 − 16 ν 0 −3 0

−3 11 − 16 ν 0 0

0 0 5 − 8 ν 0

 

 

 

 

S 2011 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

0 0 1 − 4 ν 0

0 0 3 − 4 ν 0

1 − 4 ν 0 3 − 4 ν 0 0

 

 

 

 

S 2020 α = π a 6 α 768 µ 0 (1 − ν 0 )

 

 

 

 

37 − 64 ν 0 − 5 0

−5 21 − 32 ν 0 0

0 0 19 − 24 ν 0

 

 

 

 

2.2 Self-influence pseudotensors of spheres (d = 3)

S 000000 α = 2 π a 3 α 45 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

7 − 10 ν 0 −1 −1 0 0 0

−1 7 − 10 ν 0 −1 0 0 0

−1 −1 7 − 10 ν 0 0 0 0

0 0 0 4 − 5 ν 0 0 0

0 0 0 0 4 − 5 ν 0 0

0 0 0 0 0 4 − 5 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 000002 α = 2 π a 5 α 225 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

7 − 10 ν 0 −1 −1 0 0 0

−1 7 − 10 ν 0 −1 0 0 0

−1 −1 7 − 10 ν 0 0 0 0

0 0 0 4 − 5 ν 0 0 0

0 0 0 0 4 − 5 ν 0 0

0 0 0 0 0 4 − 5 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 000020 α = 2 π a 5 α 225 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

7 − 10 ν 0 −1 −1 0 0 0

−1 7 − 10 ν 0 −1 0 0 0

−1 −1 7 − 10 ν 0 0 0 0

0 0 0 4 − 5 ν 0 0 0

0 0 0 0 4 − 5 ν 0 0

0 0 0 0 0 4 − 5 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 000200 α = 2 π a 5 α 225 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

7 − 10 ν 0 − 1 − 1 0 0 0

−1 7 − 10 ν 0 −1 0 0 0

−1 −1 7 − 10 ν 0 0 0 0

0 0 0 4 − 5 ν 0 0 0

0 0 0 0 4 − 5 ν 0 0

0 0 0 0 0 4 − 5 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 001001 α = 2 π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

11 − 14 ν 0 −1 −3 0 0 0

−1 11 − 14 ν 0 −3 0 0 0

−3 −3 27 − 42 ν 0 0 0 0

0 0 0 11 − 14 ν 0 0 0

0 0 0 0 11 − 14 ν 0 0

0 0 0 0 0 6 − 7 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

(5)

S 001010 α = π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −2 0 0

0 0 0 8 − 14 ν 0 0 0

0 0 0 8 − 14 ν 0 0 0

−2 8 − 14 ν 0 8 − 14 ν 0 0 0 0

0 0 0 0 0 5 − 7 ν 0

0 0 0 0 5 − 7 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 001100 α = π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 8 − 14 ν 0 0

0 0 0 0 −2 0

0 0 0 0 8 − 14 ν 0 0

0 0 0 0 0 5 − 7 ν 0

8 − 14 ν 0 −2 8 − 14 ν 0 0 0 0

0 0 0 5 − 7 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 002000 α = 2 π a 5 α 225 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

7 − 10 ν 0 −1 −1 0 0 0

−1 7 − 10 ν 0 −1 0 0 0

−1 −1 7 − 10 ν 0 0 0 0

0 0 0 4 − 5 ν 0 0 0

0 0 0 0 4 − 5 ν 0 0

0 0 0 0 0 4 − 5 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 002002 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

107 − 146 ν 0 −13 −21 0 0 0

−13 107 − 146 ν 0 −21 0 0 0

−21 −21 211 − 338 ν 0 0 0 0

0 0 0 100 − 121 ν 0 0 0

0 0 0 0 100 − 121 ν 0 0

0 0 0 0 0 60 − 73 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 002011 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −1 0 0

0 0 0 9 − 12 ν 0 0 0

0 0 0 4 − 12 ν 0 0 0

−1 9 − 12 ν 0 4 − 12 ν 0 0 0 0

0 0 0 0 0 5 − 6 ν 0

0 0 0 0 5 − 6 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 002020 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

57 − 86 ν 0 − 7 − 7 0 0 0

−7 49 − 62 ν 0 −11 0 0 0

−7 −11 49 − 62 ν 0 0 0 0

0 0 0 20 − 31 ν 0 0 0

0 0 0 0 30 − 37 ν 0 0

0 0 0 0 0 30 − 37 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 002101 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 9 − 12 ν 0 0

0 0 0 0 −1 0

0 0 0 0 4 − 12 ν 0 0

0 0 0 0 0 5 − 6 ν 0

9 − 12 ν 0 −1 4 − 12 ν 0 0 0 0

0 0 0 5 − 6 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 002110 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 6 ν 0 − 2

0 0 0 0 0 6 ν 0 − 2

0 0 0 0 0 − 2

0 0 0 0 3 ν 0 − 5 0

0 0 0 3 ν 0 − 5 0 0

6 ν 0 − 2 6 ν 0 − 2 −2 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 002200 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

49 − 62 ν 0 −7 −11 0 0 0

−7 57 − 86 ν 0 −7 0 0 0

−11 −7 49 − 62 ν 0 0 0 0

0 0 0 30 − 37 ν 0 0 0

0 0 0 0 20 − 31 ν 0 0

0 0 0 0 0 30 − 37 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

(6)

S 010001 α = π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −2 0 0

0 0 0 8 − 14 ν 0 0 0

0 0 0 8 − 14 ν 0 0 0

−2 8 − 14 ν 0 8 − 14 ν 0 0 0 0

0 0 0 0 0 5 − 7 ν 0

0 0 0 0 5 − 7 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 010010 α = 2 π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

11 − 14 ν 0 −3 −1 0 0 0

−3 27 − 42 ν 0 −3 0 0 0

−1 −3 11 − 14 ν 0 0 0 0

0 0 0 11 − 14 ν 0 0 0

0 0 0 0 6 − 7 ν 0 0

0 0 0 0 0 11 − 14 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 010100 α = π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 8 − 14 ν 0

0 0 0 0 0 8 − 14 ν 0

0 0 0 0 0 −2

0 0 0 0 5 − 7 ν 0 0

0 0 0 5 − 7 ν 0 0 0

8 − 14 ν 0 8 − 14 ν 0 −2 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 011002 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −1 0 0

0 0 0 9 − 12 ν 0 0 0

0 0 0 4 − 12 ν 0 0 0

−1 9 − 12 ν 0 4 − 12 ν 0 0 0 0

0 0 0 0 0 5 − 6 ν 0

0 0 0 0 5 − 6 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 011011 α = 2 π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

5 − 6 ν 0 −1 −1 0 0 0

−1 13 − 18 ν 0 −3 0 0 0

−1 −3 13 − 18 ν 0 0 0 0

0 0 0 6 − 9 ν 0 0 0

0 0 0 0 5 − 6 ν 0 0

0 0 0 0 0 5 − 6 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 011020 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 − 1 0 0

0 0 0 4 − 12 ν 0 0 0

0 0 0 9 − 12 ν 0 0 0

−1 4 − 12 ν 0 9 − 12 ν 0 0 0 0

0 0 0 0 0 5 − 6 ν 0

0 0 0 0 5 − 6 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 011101 α = π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 4 − 6 ν 0

0 0 0 0 0 4 − 6 ν 0

0 0 0 0 0 −2

0 0 0 0 1 − 3 ν 0 0

0 0 0 1 − 3 ν 0 0 0

4 − 6 ν 0 4 − 6 ν 0 −2 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 011110 α = π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 4 − 6 ν 0 0

0 0 0 0 − 2 0

0 0 0 0 4 − 6 ν 0 0

0 0 0 0 0 1 − 3 ν 0

4 − 6 ν 0 −2 4 − 6 ν 0 0 0 0

0 0 0 1 − 3 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 011200 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −2 0 0

0 0 0 6 ν 0 − 2 0 0

0 0 0 6 ν 0 − 2 0 0

−2 6 ν 0 − 2 6 ν 0 − 2 0 0 0

0 0 0 0 0 3 ν 0 − 5

0 0 0 0 3 ν 0 − 5 0

 

 

 

 

 

 

 

 

 

 

 

 

(7)

S 020000 α = 2 π a 5 α 225 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

7 − 10 ν 0 −1 −1 0 0 0

− 1 7 − 10 ν 0 − 1 0 0 0

− 1 − 1 7 − 10 ν 0 0 0 0

0 0 0 4 − 5 ν 0 0 0

0 0 0 0 4 − 5 ν 0 0

0 0 0 0 0 4 − 5 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 020002 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

57 − 86 ν 0 −7 −7 0 0 0

−7 49 − 62 ν 0 −11 0 0 0

−7 −11 49 − 62 ν 0 0 0 0

0 0 0 20 − 31 ν 0 0 0

0 0 0 0 30 − 37 ν 0 0

0 0 0 0 0 30 − 37 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 020011 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −1 0 0

0 0 0 4 − 12 ν 0 0 0

0 0 0 9 − 12 ν 0 0 0

− 1 4 − 12 ν 0 9 − 12 ν 0 0 0 0

0 0 0 0 0 5 − 6 ν 0

0 0 0 0 5 − 6 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 020020 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

107 − 146 ν 0 −21 −13 0 0 0

−21 211 − 338 ν 0 −21 0 0 0

−13 −21 107 − 146 ν 0 0 0 0

0 0 0 100 − 121 ν 0 0 0

0 0 0 0 60 − 73 ν 0 0

0 0 0 0 0 100 − 121 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 020101 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 6 ν 0 − 2 0

0 0 0 0 −2 0

0 0 0 0 6 ν 0 − 2 0

0 0 0 0 0 3 ν 0 − 5

6 ν 0 − 2 −2 6 ν 0 − 2 0 0 0

0 0 0 3 ν 0 − 5 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 020110 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 9 − 12 ν 0

0 0 0 0 0 4 − 12 ν 0

0 0 0 0 0 −1

0 0 0 0 5 − 6 ν 0 0

0 0 0 5 − 6 ν 0 0 0

9 − 12 ν 0 4 − 12 ν 0 −1 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 020200 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

49 − 62 ν 0 −11 −7 0 0 0

−11 49 − 62 ν 0 −7 0 0 0

−7 −7 57 − 86 ν 0 0 0 0

0 0 0 30 − 37 ν 0 0 0

0 0 0 0 30 − 37 ν 0 0

0 0 0 0 0 20 − 31 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 100001 α = π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 8 − 14 ν 0 0

0 0 0 0 − 2 0

0 0 0 0 8 − 14 ν 0 0

0 0 0 0 0 5 − 7 ν 0

8 − 14 ν 0 −2 8 − 14 ν 0 0 0 0

0 0 0 5 − 7 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 100010 α = π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 8 − 14 ν 0

0 0 0 0 0 8 − 14 ν 0

0 0 0 0 0 −2

0 0 0 0 5 − 7 ν 0 0

0 0 0 5 − 7 ν 0 0 0

8 − 14 ν 0 8 − 14 ν 0 −2 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

(8)

S 100100 α = 2 π a 5 α 525 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

27 − 42 ν 0 −3 −3 0 0 0

− 3 11 − 14 ν 0 − 1 0 0 0

− 3 − 1 11 − 14 ν 0 0 0 0

0 0 0 6 − 7 ν 0 0 0

0 0 0 0 11 − 14 ν 0 0

0 0 0 0 0 11 − 14 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 101002 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 9 − 12 ν 0 0

0 0 0 0 −1 0

0 0 0 0 4 − 12 ν 0 0

0 0 0 0 0 5 − 6 ν 0

9 − 12 ν 0 −1 4 − 12 ν 0 0 0 0

0 0 0 5 − 6 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 101011 α = π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 4 − 6 ν 0

0 0 0 0 0 4 − 6 ν 0

0 0 0 0 0 −2

0 0 0 0 1 − 3 ν 0 0

0 0 0 1 − 3 ν 0 0 0

4 − 6 ν 0 4 − 6 ν 0 −2 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 101020 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 6 ν 0 − 2 0

0 0 0 0 −2 0

0 0 0 0 6 ν 0 − 2 0

0 0 0 0 0 3 ν 0 − 5

6 ν 0 − 2 −2 6 ν 0 − 2 0 0 0

0 0 0 3 ν 0 − 5 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 101101 α = 2 π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

13 − 18 ν 0 −1 −3 0 0 0

−1 5 − 6 ν 0 −1 0 0 0

−3 −1 13 − 18 ν 0 0 0 0

0 0 0 5 − 6 ν 0 0 0

0 0 0 0 6 − 9 ν 0 0

0 0 0 0 0 5 − 6 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 101110 α = π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 − 2 0 0

0 0 0 4 − 6 ν 0 0 0

0 0 0 4 − 6 ν 0 0 0

−2 4 − 6 ν 0 4 − 6 ν 0 0 0 0

0 0 0 0 0 1 − 3 ν 0

0 0 0 0 1 − 3 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 101200 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 4 − 12 ν 0 0

0 0 0 0 −1 0

0 0 0 0 9 − 12 ν 0 0

0 0 0 0 0 5 − 6 ν 0

4 − 12 ν 0 −1 9 − 12 ν 0 0 0 0

0 0 0 5 − 6 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 110002 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 6 ν 0 − 2

0 0 0 0 0 6 ν 0 − 2

0 0 0 0 0 − 2

0 0 0 0 3 ν 0 − 5 0

0 0 0 3 ν 0 − 5 0 0

6 ν 0 − 2 6 ν 0 − 2 −2 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 110011 α = π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 4 − 6 ν 0 0

0 0 0 0 −2 0

0 0 0 0 4 − 6 ν 0 0

0 0 0 0 0 1 − 3 ν 0

4 − 6 ν 0 −2 4 − 6 ν 0 0 0 0

0 0 0 1 − 3 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

(9)

S 110020 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 9 − 12 ν 0

0 0 0 0 0 4 − 12 ν 0

0 0 0 0 0 − 1

0 0 0 0 5 − 6 ν 0 0

0 0 0 5 − 6 ν 0 0 0

9 − 12 ν 0 4 − 12 ν 0 −1 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 110101 α = π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −2 0 0

0 0 0 4 − 6 ν 0 0 0

0 0 0 4 − 6 ν 0 0 0

−2 4 − 6 ν 0 4 − 6 ν 0 0 0 0

0 0 0 0 0 1 − 3 ν 0

0 0 0 0 1 − 3 ν 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 110110 α = 2 π a 7 α 2205 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

13 − 18 ν 0 −3 −1 0 0 0

−3 13 − 18 ν 0 −1 0 0 0

−1 −1 5 − 6 ν 0 0 0 0

0 0 0 5 − 6 ν 0 0 0

0 0 0 0 5 − 6 ν 0 0

0 0 0 0 0 6 − 9 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 110200 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 4 − 12 ν 0

0 0 0 0 0 9 − 12 ν 0

0 0 0 0 0 −1

0 0 0 0 5 − 6 ν 0 0

0 0 0 5 − 6 ν 0 0 0

4 − 12 ν 0 9 − 12 ν 0 −1 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 200000 α = 2 π a 5 α 225 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

7 − 10 ν 0 −1 −1 0 0 0

−1 7 − 10 ν 0 −1 0 0 0

−1 −1 7 − 10 ν 0 0 0 0

0 0 0 4 − 5 ν 0 0 0

0 0 0 0 4 − 5 ν 0 0

0 0 0 0 0 4 − 5 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 200002 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

49 − 62 ν 0 − 7 − 11 0 0 0

−7 57 − 86 ν 0 −7 0 0 0

−11 −7 49 − 62 ν 0 0 0 0

0 0 0 30 − 37 ν 0 0 0

0 0 0 0 20 − 31 ν 0 0

0 0 0 0 0 30 − 37 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 200011 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 −2 0 0

0 0 0 6 ν 0 − 2 0 0

0 0 0 6 ν 0 − 2 0 0

−2 6 ν 0 − 2 6 ν 0 − 2 0 0 0

0 0 0 0 0 3 ν 0 − 5

0 0 0 0 3 ν 0 − 5 0

 

 

 

 

 

 

 

 

 

 

 

 

S 200020 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

49 − 62 ν 0 −11 −7 0 0 0

− 11 49 − 62 ν 0 − 7 0 0 0

− 7 − 7 57 − 86 ν 0 0 0 0

0 0 0 30 − 37 ν 0 0 0

0 0 0 0 30 − 37 ν 0 0

0 0 0 0 0 20 − 31 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

S 200101 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 4 − 12 ν 0 0

0 0 0 0 −1 0

0 0 0 0 9 − 12 ν 0 0

0 0 0 0 0 5 − 6 ν 0

4 − 12 ν 0 −1 9 − 12 ν 0 0 0 0

0 0 0 5 − 6 ν 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

(10)

S 200110 α = 4 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

0 0 0 0 0 4 − 12 ν 0

0 0 0 0 0 9 − 12 ν 0

0 0 0 0 0 − 1

0 0 0 0 5 − 6 ν 0 0

0 0 0 5 − 6 ν 0 0 0

4 − 12 ν 0 9 − 12 ν 0 −1 0 0 0

 

 

 

 

 

 

 

 

 

 

 

 

S 200200 α = 2 π a 7 α 11025 µ 0 (1 − ν 0 )

 

 

 

 

 

 

 

 

 

 

 

 

211 − 338 ν 0 −21 −21 0 0 0

−21 107 − 146 ν 0 −13 0 0 0

−21 −13 107 − 146 ν 0 0 0 0

0 0 0 60 − 73 ν 0 0 0

0 0 0 0 100 − 121 ν 0 0

0 0 0 0 0 100 − 121 ν 0

 

 

 

 

 

 

 

 

 

 

 

 

3 Elementary influence pseudotensors of d-dimensional spheres

3.1 Elementary influence pseudotensors of disks (d = 2)

T 0000 αβ = π a 2 α a 2 β 8 µ 0 (1 − ν 0 ) r 2

 

 

 

 

1 − 4 ν 0 1 0 1 4 ν 0 − 3 0

0 0 1

 

 

 

 

− 3 π a 2 α a 2 β a 2 β + a 2 α 16 µ 0 (1 − ν 0 ) r 4

 

 

 

 

−1 1 0 1 −1 0

0 0 1

 

 

 

 

T 0001 αβ = π a 2 α a 4 β 16 µ 0 (1 − ν 0 ) r 3

 

 

 

 

4 ν 0 − 1 −1 0

−1 3 − 4 ν 0 0

0 0 −1

 

 

 

 

+ π a 2 α a 4 β

2 a 2 β + 3 a 2 α 16 µ 0 (1 − ν 0 ) r 5

 

 

 

 

−1 1 0 1 − 1 0

0 0 1

 

 

 

 

T 0002 αβ = π a 2 α a 4 β 32 µ 0 (1 − ν 0 ) r 2

 

 

 

 

1 − 4 ν 0 1 0 1 4 ν 0 − 3 0

0 0 1

 

 

 

 

− π a 2 α a 6 β (1 − 2 ν 0 ) 16 µ 0 (1 − ν 0 ) r 4

 

 

 

 

−1 0 0

0 1 0

0 0 0

 

 

 

 

+ 3 π a 4 α a 4 β 64 µ 0 (1 − ν 0 ) r 4

 

 

 

 

1 −1 0

−1 1 0

0 0 −1

 

 

 

 

5 π a 2 α a 6 β

a 2 β + 2 a 2 α 64 µ 0 (1 − ν 0 ) r 6

 

 

 

 

−1 1 0 1 −1 0

0 0 1

 

 

 

 

T 0010 αβ = π a 2 α a 4 β 16 µ 0 (1 − ν 0 ) r 3

 

 

 

 

0 0 2 ν 0 + 1

0 0 2 ν 0 − 3

2 ν 0 + 1 2 ν 0 − 3 0

 

 

 

 

+ π a 2 α a 4 β

2 a 2 β + 3 a 2 α 16 µ 0 (1 − ν 0 ) r 5

 

 

 

 

0 0 −1

0 0 1

−1 1 0

 

 

 

 

T 0011 αβ = π a 2 α a 6 β 32 µ 0 (1 − ν 0 ) r 4

 

 

 

 

0 0 −2 ν 0 − 1

0 0 3 − 2 ν 0

−2 ν 0 − 1 3 − 2 ν 0 0

 

 

 

 

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to