• Aucun résultat trouvé

MAOUETTE RMS

N/A
N/A
Protected

Academic year: 2022

Partager "MAOUETTE RMS"

Copied!
11
0
0

Texte intégral

(1)

FfæEfl i

MAOUETTE RMS

-le premier circuit ADs34 est utilisé en multiplieur et permet, par exemple en faisantX 2=Yr=0 , d'obtenir S 1 --Xt2/1O.

-le deuxième circuit AD534 est directement cablé en vue de délivrer une tension S r=(10Er1ttz.

-On pourra intercaler entre les deux circuits un filtre RC (non fourni) afin d'obtenir E z=vâleur moyenne de S ,'.

xr

Xz Yr

Y2

s, _(X, - Xr)* (Yz - fr) s 2 - @

10

(2)

ANAIOG, DEVICES

F E A T U R E S

ketrimmed to 10.25% max 4-Ouadrant Ertor (AD534Ll All lnputs (X, Y and Zl Differential. High lmpedance for

[(X' -X2 )(Yr -Y2 )i10V] +2, Trander Function Scale-Factor Adiuslable to Provide up to X10O Gain Low Noise Design: !)OprV rms, lOHz-1OkHz Low Cost, Monolithic Construction

Excellent Long Term Stability APPLICATIONS

High Ouality Analog Signal Processing

Differential Ratio and Percentage C3çnputations Atçbraic and Trigonometric Function Synthesis Wideband, High-Crest rms-todc Conversion Accur.te Voltaç Controlled Oscillators and Filters Available in ChiP Form

PRODUCT DESCRIPTION

Thc AD534 is a monolithic laser trimmed fournuadrant multi- plier divider having accuracy spccifications prcviously found Lnly in cxpcnsivc hybrid or modular products' A maximum muitiplication crror of 10 25% is guarantccd for the AD5l4l- without any cxtcrnal trimming. Exccllcnt supply rcjcction, low rempcrature coefficients and long tcrm stability of the on-chip thin film rcsistors and buricd zcncr refercnce prcservc accuracy cvcn under adverse conditions of usc. lt is the first multiplier to offer fully differcntial, high impedance opcration on all in- puts, including the Z-input, a feature which greatly incrcascs its flcxibility and easc of use. The scalc factor is pretrimmcd to the standard value of 10.00V; by means of an cxtcrnal resis tor, this can bc reduccd to values as low as JV.

Thc widc spcctrum of applications and thc availability of scv' eral gradcs commend this multiplier as thc first choicc for all n c w d c s i g n s . T h c A D 5 3 4 J ( t l 7 o m a x e r r o r ) , A D 5 J 4 K ( 1 0 5 o l o m a x ) a n d A D 5 l 4 L ( ! O . Z s V o m a x ) a r e s p e c i f i e d f o r o p c r a t i o n ovcr thc 0 to +7O"C temPcrature rangc. Thc AD5l45 (11% max) and AD534T (10.5% max) arc specified ovcr the extended tempcraûre rangc, -5 5"C to + 125"C. All gradcs arc available in hcrmetically sealed TO-lOO metal cans end TO-1 16 ceramic DIP packagcs. AD5 34J, K, S and T chips are also available.

PROVIDES GAIN WITH LOW NOISE

The ADS 14 is the first gene ral purposc multiplicr capablc of pr-'viding gains up to X10O, frcqucntly climinating thc need f('. scperatc instrumentation amplificrs to prccondition the ir çuts. The AD514 can be very cffectively cmploycd as a v .iiablc gain diffcre ntial input amplifier with high common n cdc rejcction. The gain option is availablc in all modcs, and wrl bc found to simplify the implementation of many function- fitting algorithms such as those uscd to generatc sinc and tan-

Precision lC Multiplier

AD534 PIN CONFIGURATIONS T O - l 1 6 ( D - 1 4 )

Package

9 r o 1 r 1 2 1 3

; ; : i :

ilc = No coNNEcT

g e n t . T h e u t i l i t y o f t h i s f c a t u r c r s e n h a n c e d b y t h c i n h c r c n t l o w - n o i s c

o f r h e A D 5 l 4 , 9 O g V , r m s ( d e p e n d i n g o n t h e g a r n ) ' a f a c t o r o f l O l c w e r t h e n p r e v i o u s m o n o l i t h i c m u l t i p l i e r s - D r i f t a n d f e e d t h r o u g h a r e a l s o s u b s t a n t i a l l y r e d u c e d o v e r e a r l i e r d e s i g n s .

U N P R E C E D E N T E D F L E X I B I L I T Y

T h c p r e c i s c c a l i b r a t i o n a n d d i f f e r e n t i a l Z - i n p u t p r o v i d e a d e g r e e o f f l c x i b i l i r y f o u n d i n n o o t h e r c u r r c n t l y e v a i l a b l e m u l - t i p t i e r . S t a n d a r d M D S S R f u n c t i o n s ( m u l t i p l i c a t i o n , d i v i s i o n , s q u " . i n g , s q u a r e - r o o t i n g ) a r e c a s i l y i m p l e m c n t e d w h i l c t h c r e s t r i c t i o n t o p a r t i c u l a r i n p u t / o u t p u t p o l a r i t i e s i m p o s e d b y c a r l i c r d : s i g n s h a s b e c n c l i m i n a t e d - S i g n a l s m a y b c s u m m c d t n - t o t h e ' r u t p u t , with or with-ut gain and with either a positive o r n c g , ; t i v e s c n s e . M a n y n e w m o d e s b a s c d o n i m p l i c i t - f u n c t i o n s y n t h e s : s h a v e b e e n m a d e p o s s i b l e , u s u a l l y r e q u i r i n g o n l y e x - ternal 1,.rssivc comPoncnts. The output can be in the form of a c u r r c n t , i f d e s i r e d , f a c i l i t a t i n g s u c h o p c r a t i o n s a s i n t e g r a t i o n '

TO-r00 (H-loA)

Package

Internally Trimmed

frc = l{O CONN€Cr

LCC (E-204)

Package

N - o f o

x X Z + Z

t 2 r 2 0 t 9

t'tc 4 N C 5

Î.lC 7 N C 8

r--lr--l

l , x n l

[ , * , - r - " , 1

1 8 o u t 1 7 N C 1 6 z r 1 5 N C 1 1 z 2 AD534 T O P V l € W l N o i l o S c r l c l

ANALOG MULTIPLIERS/DIVIDERS 6-1 3

(3)

SPECIFICATI0NS n^= *25t, =Y,=tsY, R>xco)

NOTES

rFçlre giu æ pæt of futt rolc, : tOV (i..-' 0-01',( = IE\I)' rfUy U rcArea ac to lV si4 ædû.| ÉiG bcrc -V3 od SF rlrædeiblc opæt ôr o mliuiry: ddud6.fd of ofis' 'g;-t auul çrirc dirræd rc gin SF - lV.

tSæ f|minl Uocldilta fc dcfuiti:o of siu- 'Sæ Socrho æ fq ncùræ odia ialmriu SpÉifdi(r sbid o éo6r rithot uicc.

6_1 4 ANALOG MULNPUERS/DIVIDERS

Spæi6orir tra ir boldfæ æ 6Éd q |! Fodudi! qiu rt lird ioiof ra- Rals ft6 thd. td G e.Gd b olobæ oqti4 qulity tc"Gk- ÂI Eit !d @ rgæifanin æ 3mod' dôdlg! onlt ùdc tùm b boldio. æ !Ércd o .lt DodGioa uiE

Modcl ^I)'L,

ltb Ttt Ms

ADsllK

Mb Typ l{8

AI'5!aL

ftir Typ Mu Uritr

*

ttfc 9l .Âfc

*

t5

*

!a 6V rVt'C MHz lllz V/ys Fr MULTIPUER PERFORMANCE

Tnnrfs Fuætln

ToriEffit(- lov<x,Y5 + lov) T^=mintou

TuelEruwTopqrturc S€l€FdûErt

(SF= l0-0o0VNminell Topqluæ{odfricotof

S€lit!3VolsSF

SupplyRddir(- l5V: lV) NorliruitY, X (X = 20V Pk-Pk' Y = lOV) NontisitY, Y (Y = 2{w Pk-Pk' X = l0V) FedrhM|8ùt, x (Y Nutlcd,

X = 2Ovpk-pk SoHz) Fccdrhrsgù', Y (x Nltlcd,

Y = 2ovr*+f !OHz) Ou.p0to{frr Volt4r

( x r - x r ) ( Y r - Y r ) _ --_--ffi-,zz

r l-0 : 1 . 5

=O.O22 : 0 . 2 5 :0.02 : 0 . 0 1

= 0.'t : 0 . 2

= 0 . 1 : 0 . 0 1 : J i 3 o 200

( X 1 -X 1 ) ( Y 1 - Y 2 ) . -

----l6V- *'r

* 0 . 5

= l - 0 :O-015 : O - l : 0 - 0 1 : 0 . 0 1 : 0 . 2 a 0 . , : 0 - l r 0 . l : 0 - l J i 0 . 3 : 0 , 0 1 t o - l

= 2 a l 5 l m

( X j - X ) ( Y 1 - Y r ) . ----- rov- -"t

a0.23 : 0 . 5

=0.00E

= 0 . 1 :0.005

=0-Ol : 0 - 1 0 : 0 . 1 2

= o.oot tc.l

=0-05 i0-12

= 0.003 :0.1

! 2 a l O

r00

DYNAMICS

Smdl Sisnl Brf ,(Vrr = 0- I mr) lx ^mplitudc Effi (Cno = l0oOPF) Slq Ræ(Vorun 2OP&-Pk) Sêrrlie Tiæ (ro ltÉ. ôVs = 29Y1

to

20

I

v, 20

I JO

æ

2 NOISE

Noi$ Spcc{r.t-D@itY SF = lOv SF = lv' Vllcbqad Noi* f = l0Hz to 5MHz

f= l0Hzro lOkHz

0.t 0.,1

I 90

0 . 8 o-,t I 90

0.t 0..1

I 90

evrJfr.

rrV/rÆ oV/tu

pV/tm

OUIPUT

Ourplrt Voltrgs S*iag Outpu lepcdrG (f< lkHt) Ourput Sbql CimitCumr

(Rr = 0, Tr = min to ru) r-d;& fk I mCain f f = 5OHz)

i l l

o . l lo 70

! l l

0 . 1 l0 70

r l l 0 . 1

,o 70

o

BA dB

oV pVrC BV pVÆ dB F^

MO

tt ta '6

*

ta

DA

Ir.rrtrr,run:ngns (x, Y ud z)t

Signl Vol4c Reqs (Diff . o CM OpcailgDilf.)

O{fcVoltrgsX,Y Offæt volt{G Drift x,Y Ofi*rVolngÊZ Offst Vologc Drift Z CMRR

BigCumt OffsCrrmt Diffcmtirl Rsism

: 1 0 : l 2

= 5 100 : 5

2m

o t o

0 . t 0 . t l 0

r æ r 3 0

2 . 0

: 1 0

= 1 2

= 2 50

= 2 l m 90 0.8 0 . 1 l 0

t l 0

r 1 5

: 1 0

= 1 2 50 : 2 t00 90 0.E 0.05 l0

* 1 0 r l 0

2.0 e.2

DTVIDER PERFORMANCE

Tmrfc Frmin (Xr>Xr)

Tud Ersr (X = l0v, - lovszs + lov) (X- lV, - lv<Z= + lv) (0.lvixstov' - lovs

( 2 , - 2 , \

tovfr_1ç*Y'

: 0 . 7 5 - 2.0

! 2 . 5

o , - 2 , \ tovffi.y+Yr

=0.35

= 1 . 0

l 1 . 0

- - @ t - Z ) - .

rovd;T;+ rr

ro.2 : 0 . t : 0 - t SQUARE PERFORMANCE

TnarfaFoætin

TorlFm(- IOVsX<l0V)

( X r - X r F _---i6V- * "r

= 0 . 1

(xr-xl -

--TV-t"2 :0.2 SQUARE.ROOTES, PERFORMANC

Tnada Furûn@r=Zr) ldi Fffr {lvszs lorn

J@@:7i+x,

: 1 . 0

!lnlv6-7i,x2

: 0 . 5

{ffiQ}Zj+x2 1o.25

POVER SI'PPLY SPECTFICATIONS Supplyvolt arc

RlcdPqfm Opq..int SupplyGrmt

= 1 5

= 8 t l t

1 6

: 1 5

: t t l t

, t 6

: 1 5

= t t l t

1 6

PACKAGEOPTTONS!

TGl00(H-l0A) TGl16(r},la) Cbipe

^D534rH ÀDt]4JD

^D531J Chips

AD']4KH

^D53,tKD AD5]4KCbipc

ADSt4lll ÀD'3,+LD

(4)

A0534

l*r Mir D5?rSTyp l(a fÂin AD5'{TTtP Mr Uria.

*

t(rc ta xfc

!a

!6

!6

x

*

oV pVfc T.ULTIPLIER PERFORMANCE

mfa Fumin

TddE|ur(- lov=x,Y= + lov) T ^ = m i n t o t u

TdrlEffiET@Pcntuc SelcFærGE rcr

(SF = IO.OOOV Nmindl TopauueCsffrcicmof

Salin3 Volt4c

SuplyRcic<in(: l5V : lV) Xqrrlsirv, X (X = æV Pkak' Y = l0V) Noriruiq, Y(Y = 2OVPrak'X = lOV) Fccdrhurli!, X (Y Nutl'cd'

X = 2OVp&-Pk 5OHz) F..drhsrùr, Y (x Nult€d,

Y=Xw*'PetOHz) OllpurOfi*rVolt{s ormr OfÊa Volorc Drifi

+ Z t

* 1.0 t2.o i0.02

= O . 2 5

= 0 . 0 2 : O . 0 1 :O.,1 : O . Z

= 0 . 3 : 0 . 0 1

=5 ttÛ

500

( x r - x r ) ( Y r - Y r ) . -

-=Ïfr-..2

r 0 . 5 r 1.0 t 0 . 0 1 : 0 . I

i0-005

= 0.01 : 0 . 2 l 0 . l : 0 . 1 t o . l : 0 . 1 5 1 0 - 3

= 0 - 0 1 t o . l

= 2 * t 5

'! 3oo

DYNA.tr{lcs

Srnelt Sigrt 8V' (Vm = 0' I t) lrÉ Anditudc Ers(Cæao = lû!PF) Sld Rrtc(Vffi 20 Pttk)

zov)

I 50

æ

2

I 50

m 2

MHz kHz V/t t F5 NOTSE

Nd* Spcrd-DcÉiry SF = lOV SF = !\r Virtôcd N<i* f = l0Hzro iMtlz

f= l0Hzrot0kllz

o.t o.{

l.o

90

o-8 0.{

l - 0 90

*vt'y'É LVnÆ DVrms pV/m

o dB

m V trvrc Fv/.c d B

r.^

M O

*

OUTPUT

Ourpur Vok4s Swing olrtpol f nPcdæ (f= I ktlz) Oue{t Sb{rCidit Crrct

( R r - = 0 , T ^ = m i n ( o t u )

i l l

o.t to

70

r l l 0 . 1 lo 70 tNPUr,rr,rrURms (X' Y &d at

Signd Votu;r Rlngs (Dilf . q CM OpardngDiff.)

Offrct Votugc X, Y Ofi< Volu3t Drifr X' Y OffavolugrZ Ofi< volugr Drif( Z CMRR

Bis Curcnt OffrtCurot

a l 0

: 1 2

i 5 r m

l m : 5 i l o

5llo 6 / 0 8 0

0 . t 2 . o o . t t 0

: 1 0

+ t )

= 2 r l 0 r50 t 2 r l 5

llxl

70 90

0 . 8 2 . 0 0 . 1 l 0 DTVTDER PERFOR-À{ANCE

Tmfct Fumbn (X1> X2) Tool Errqt (X = lOV, - lov=Z= + ll

( X = l V , - l V s Z < + I v ) (o.tv=x<10v, - l0v=

Z=lov)

. - _ - ( 2 2 - z t ) ., rov d;-x )+ r I

: 0 - 7 5

= 2 - O

= 2 - 5

( 2 , - z,\

rovfu;j)çp+ Yr

: 0 - 3 5

= l - 0

= l - 0 SQUARE PERFORMANCE

Trusfc Fuction Tael Enc( - IOV<X<l0V)

G r - x f --i6l- '",-

: 0 . 6

( X r - X r P - --i6î- "t

SQUARE.ROOTÊR PERFORMANCE Tnrfcr Frmin(21<22)

Tcd Eror1tV=Z=t0V1

VIô(ZIZJ+x2

= 1 . 0

JIN@ii*x7

: 0 . 5 PO\TER SUPPI-Y SPECIFICATIONS

Supply Vo.r.ûc RerodPcdme Opcntirg Suppty Cu n'nt

l 1 5

= 8 ! 2 2

1 6

a l 5

:t r22

, a 6

PACKAGEOPTIONSf TGIæ(H-10^) TO l16(D-1.() E-æ^

Chipe

AD5]4SH AD5XSD ÂD5ttsE ÂDtXSChi!É

AD5]4TH AD53.lTD AD5'4TE AD5l4TChipc NOTES

i f i:* ti- * poont of frrlt olc, : lOV (i'c-' 0'o1116 = I oV)'

'iàïfu*.aai-to lvui4æautuirubcm - V5odSF

tlÉ*iuf.*p""-t du tomliuity: achrdaGfidof offÉ' t J d u d d u l Ë i d d d i u t d b d w S F - w'

\æ flminf bbcf diqm fq drfuith o{ mls' ïc Sætip 20fcprchfpuliæ iafotioo' Soæifsd<r otitq to ô||t ri6drt dit'

Spæifsûs.hûninboldlæ ærqtcdodlprodcth uiurt fu 9tT- ot rd. Rdls f!û tbæ cr æ u*d tooloLrcdcdlt qudity lcth' Âll À.oa - çodliqd@ æ !@'GÉd, 't6ot$ dty rbo" dç! i!

boldtæ æ stod o il Fodmioo riE'

ANALOG MIJLTIPLIERS/DIVIDERS 6-1 5

(5)

Supply Voltagc

Intcrnal Powcr Dissipetion Output Shon{ircuit to Ground l n p u t V o l t a g c s , X 1 X 2 Y 1 Y 2 2 1 2 2 Ratcd Operating Tcmpcraturc Rangc Storagc Tcmpcreturc Rznge [.cad Tcmpcruturc, 6Os soldcring

CHIP DIMENSIONS AND BONDING DIAGRAM

Dimcosioos sborn iÀ inchcs end (mm).

Coatrct factory for htcst dincosions.

oul

rH€ aD3ra |s avartÆLE lx usER.Tnmlocxl? foât

ABSOLUTE MAXTMUM RATINGS

AD534J, K, L AD534S, T

FT,NCTIONAL DESCRIPTTON

Figurc I is e functional block diegrem of thc AD514. Inputs are convcncd to diffcrentiel currcnts by thrcc identicrl voltagc.

to-currcnt convcrtcnr, cach trimmcd for zcro offsct. Thc prod- uct of thc X and Y currénts isgencratcd by e multiplier ccll using Gilbcrt's translincer tcchniquc. An on<hip "Buricd Zencr" providcs a highly steblc rcfcrcncc, which is lascr trim- mcd to providc an ovcrell scelc frctor of lOV. Thc diffcr- cncc bctwccn XY/SF and Z is thcn applicd to thc high gain output emplificr. This pcrmits verious closcd loop configura- tions and drematically rcduccs nonlinearitics duc to thc input amplificrs, a dominant sourcc of distortion in cerlicr dcsigns.

Thc cffcctivcness of thc ncw schcmc can bcjudgcd from thc fact thrt undcr typicel conditions as e multiplicr thc nonlincar- ity on thc Y input, witlr X at full scale (tlOv). is tO.OOS% of F.S.; cvcn at its worst point, which occurs whcn X = 16.4V, it is typically only tO.O5% of F.S. Nonlincariry for signds applicd to thc X input, on thc other hand, is dctcrmined al- most entirely by thc multiplicr clcmcnt and is parabolic in form. This crror is a major factor in detcrmining thc overall accuracy of thc unit and hcnce is closcly rclltcd to thc dcvice gradc.

Figure 1. AD534 Functional Ùlæk Diagrarn Thc gcncralizcd transfcr function for tfrc 4D534 is givcn by

vour="f-i#ry l(x, -c,t-22)

whcrc A = opcn loop gain of output amplificr, typically 70dB at dc

X, Y, Z = input volt.ges (full scalc = +SF, Pcak=

t 1 . 2 5 S F )

SF = scale factor, prctrimmcd to IO.OOV but adjusteblc by thc uscr down to 3V.

t l S v 5OOmW Indcfinitc t V s O t o + 7 O " C - 6 5 " C ro +l 5O"C + 3 o o " c

t 2 2 V

-55"C ro + 1 2 5 o c

'Smc s AD5 34J spcc.

OPTIONAL TRIMMING CONFIGU RATION

Thcrmd Cheractcristics.

Thernal Rcsistencc0y6 : ola :

orc :

ola :

25"C/Vl for H-IOA I5OPCJV Sor H-IOA 25'C^W for D-14 or E-204 95"C^W for D-14 or E-204

ORDERING GUIDE Tempcreturc

Reryc Headcr(H)

Sidcbrezcd DIP(D)

LcedlcssChip

C,arricr(E) Chips

0to +70PC AD534JH

AD534KH AD534LH

AD534JD AD534KD ÂD534LD

AD534J,KChips

- 55qCto + 125"C AD534SH AD534Sw883B AD534TH AD534T}V883B

AD534SD AD534SD/8838 AD534TD AD534TDÆ838

AD534SE AD534Sg883B AD534TE AD534TE/8838

AD534S,TChips

6-16 ANALOG MULNPUERS/DIVIDERS

(6)

A0534

- --:,rsr ca.scs thc oPcn loop gain can bc regardcd as infinitc, :': SF wrll bc lOV. Thc operation Pcrformcd by thc AD534'

ijr rhcn bc dcscribcd in tcrms of cquation:

( X 1 - X 2 X Y 1 - Y ) = f i v ( 2 1 - Z 2 )

Thc uscr mav adjust SF for values bctwcen 10'OOV and 3V by connccting an extcrnal rcsistor in scrics with a potcntiomctcr bcrwecn ir' "ttd -V5. Thc aPProximatc value of thc total rcsist- ancc for a givcn valuc of SF is givcn by the relationship'

R c ç = 5 . 4 K S F 1 0 - S F

Duc to dcvicc tolcrenccs, allowance should bc medc to vary Rsr by 125% using. thc potcntiometcr' Considerablc rcduction in bies currcntsr norsc and drift cen bc lchievcd by dccrcesing SF. This hes thc ovcrall cffcct of incçesing signal gain with- àut th. customary incrcasc in noisc. Notc that thc pcek input . signal is dways limitcd to 1-25SF (i.e', 15V for SF = 4V) so the oicrall trensfcr function will show e maximum gain of 1'25' ih. p.rfo.-"ncc with srnall input signals, however, is improvcd bv usins I lowcr SF since thc dynamic range of thc inputs is nt*" frrity urilizcd. Bendwidth is uneffccted by thc use of this oPdon.

Supply voltlgcs of + I 5V arc gcncrelly essumcd' Howcvcr, satis- f".tàry oPcration is possiblc down to t8V (scc curvc l)' Sincc all inputs maintain a constant Pclk inPut capability of t1'25SF somc fecdback ettcnuetion will be ncccssary to echievc outPut voltage swings in cxccss of t12V whcn using highcr zupply voltages.

OPERATION AS A MULTIPLIER

Figurc 2 shows thc basic conncction for multiplication' Notc rh-at thc circuit will mect ell specifications without trimming'

A much lower scaling volcegc can bc echicvcd without any rcduction of input signel rangc using e fccdback attcnuator as shown in figurc f . ln this exemplc' thc scalc is such that Vour = XY-, so that thc circuit can exhibit e maximum gain of f olïtr* connccdon rcsults in a rcduction of bandwidth to about 8OkHz without thc pceking caPlcitor Cr = 2OOPF' In addition, thc ourput offsct voltagc is incrcascd by a factor of lO making cxternal adjustmcnts ncccssary in somc aPPlications Adjustmcnt is madc by connccting t 4JMf'L rcsistor bctwecn Z, znd thc slidcr of e Pot conncctcd across thc suPPlics to pàvide t30omV of trim rangc at thc outPut'

Fccdback attcnuation also rctains thc capabiliry for adding a signal to thc ouçut. Signals may be applied to the high imped-

X INPUT r10v Fs

*l2v P(

Y INPUT :tov Fs fl2v PK

æTrOâlAL P€AI(ING CA'ACITOR Cr - 20OpF

X I N ? U T i tov Fs r 1 2 V P (

OUTPUT. t12V ?K - ( X ! - X 2 l ( Y t - Y r l + z2

10v

o?lrot{aL sut{MlilG INPUT.2.1101r' PK

Fpure 3. Connections for Scal*Factor of Unity ancè22 tcrminal whcrc thcy arc amplificd by +10 or to thc .o*.rron ground conncction whcrc they arc amplified by +1' tnput sigrials may also bc applicd to the lowcr e-nd of thc lokf,l reiistor, giving a gain of -9. Othcr valucs of fecdback ratio, uP to XlO0, can bc uscd to combinc multiplication with gain' Occasionally it may bc desirablc to convert the output to a currcnt, into a load of unspccificd impcdancc or dc lcvcl' For examplc, thc function of multiplication is so,metimcs followcd by iniegration; if thc output is in thc form of e currcnt' a simple ."pa.ito. will provide the intcgration functio,n' Figurc 4 shows how this can bc achievcd. This mcthod can also be applicd in squaring, dividing and squarc rooting modcs by appropriatc choice of tcrminals. This tcchniquc is uscd in the voltagc-con- uollcd low-pass filter and thc diffcrcntial-inPut voltâgic-to- frcqucncy convcrtcr shown in the Applications Scction'

Y IN?UT r l o v F S t ' l 2 v P K

Figure 2. Easic Multiplier Connætion

ln somc cxscs thc uscr may wish to rcducc ec feedthrough to a minimum (as in e suPPrcsscd carricr modulator) by applying 2n cxtcmal rim voltagc (13OmV rlngc rcquired) to the X or Y input (scc Optional frimming Configuration, page 3). Curve 4 shows thc cypical ac fccdthrough with this adjustrnent mdc' Note thet dre Y input is a factor of 10 lowcr dran thc X input and should bc uscd in applications whce null suPPression is critical' The hieh impcdancc Z, tcrminelof thcAD534maybeuscdto ,u* *""aaiiional signJ into thc output. ln this mode thc ouçut amplificr bchaves as a voltegc followcr with a lMHz small signal bandwidth and a 2oVlgs slcw ratc- This tcrminal should always bc refcrcnced to the ground Point of thc driven rystcm' particularly if this is ïemotc- Likewisc the differcntial inputs should bc rcfcrcnced to their rcsPectivc ground Potentials to rcalizc thc full accuracy of thc ÂD534-

X I W T r lov F5.

i t w ? (

Y ITIPUT

! t 6 / F . s

! l 2 v P K

dRR€rrsÉilsrflG R€S|STOR, R6. 2tll lllt{

- - -'l

I

! . t I R s t I - r -

| i l T € G R A T O R . T \ c tActToR

tsee rexrt l';

X 1 + v t

X 2

OUT AD534

s r Z r

Z 2

Y 2 - v i

OUT A063a

Z1 22

X 1

X 2

At)53a

Figure 4. Convercion of Output to Current

ANALOG MULTIPLIERS/DIVIDERS 6-1 7

(7)

ff R,ATION AS A SQUARER

:<:rrron :rs a squarcr is achicved in the samc fashion as thc -:.uplicr cxcePt that thc X and Y inputs arc uscd in pardlcl' :.:rc differcntial inPuts can be uscd to dctcrminc thc ouçut :'oleriry (positive for X1 = Y1 and xz = Yz, nçgative if either one of thc inpus is revcrsed). Accuracy in thc squaring modc rs rypically a factor of 2 bcttcr than in thc multiplying modc, rhc lergcst crrors occulTing with small values of output for input below lV.

lf the application dcpends on accurate oPcration for inputs that arc always less than l3V, thc usc of a rcduccd velue of SF is rccommended as describcd in the FUNCTIONAL DESCRIFIION scction (previous pagc). Altcrnativcly, a feed- back attenuator may bc uscd to raisc the ouçut lcvcl. This is put to use in the diffcrcnccof-squares application [o comPcF sare for thc factor of 2 loss involvcd in gcncrating thc sum tcrm (sce Figurc 7).

Thc differcncc-offquarcs function is.rlso uscd as thc basis for a novcl rms-to-dc convcrtcr shown in Figurc 14. The avcraging filtcr is a truc intcgrator, :rnd thc loop sccks to zcro its input.

For this to occur, (Vrru)t - (Vour)t = 0 (for signals whosc pcriod is wcll bclow t}rc averaging timc{onstant). Hcncc V9g1 is forccd to equal thc rms value of V1N. The ebsolutc accuracy of this techniquc is vcry high; at mcdium frcqucncics, and for signals ncar full scalc, it is dctermincd almost cntirely by thc ratio of the rcsistors in the invcrting amplifier. The multiplicr sceling voltage affccts only opcn loop gain. Thc deta shown is rypical of pcrformance that can be achieved with en AD5 34K, but cven using an AD534J, this techniquc cen rcadily providc bettcr than l% accuracy ovcr a wide frequency rangc, evcn for crcst-feclors in excess of 1O.

OPERATION AS A DIVIDER

The AD5l5, a pin for pin functional cquivdent to thc AD534, has guaranteed performance in the dividcr and square-rootcr configuradons and is rccommcnded for such applications.

Figurc 5 shows thc conncction requircd for division. Unlikc carlicr products, thc 4D534 providcs diffcrcntial opcration on both numcrator and dcnominator, allowing the ratio of two floating variables to b€ gcncrated. Furthcr flexibility results from access to a high impcdancc summing input to Y1. As with ell diviilcrs bascd on tire usc of a multiplier in a fccdbeck loop, thc bandwidth is proportional to thc denominator magnitudc, es shown in cuwc 8.

Without additional trimming, thc accuracy of thc AD534K and L is sufficicnt to maintain a 1% crror ovcr a 1OV to lV dcnomi- nator r:rngc. This rangc may bc cxtcndcd to 1OO:1 by simply rcducing thc X offsct with an cxtcrnâllygencratcd trim voltage (rangc rcquircd is 13.5mV max) applied to thc unuscd X input ' (sce Optional Trimming Configuration). To trim, .pply a ramp of +1OOmV to +V lt IOOHz to both X1 end 21 (if X2 is uscd for offset adjusmrcnt, or}rcrwise rcvcrse thc signal po- lariry) and adjust thc trim voltage to minimizc the veriation in thc ou tput.'

'Scc thc ÂD535 Drtr Shect for morc dcteils.

6-I 8 ANALOG MULTIPLIERS/DIVIDERS

x-tftt l lDElroilxATofil

.rov Fs lta/ t|(

o"Ttot{aL SUMMIl{G Ii}PUT

rtov tx

Figure 5. Basic Divider Connætion

Sincc thc output will be ncer +10V, it should bc ac-coupled for this adjustrnent. The incrcasc in noise lcvcl end rcduction in bandwidth precludc operetion much bcyond a ratio of 1O0 t o 1 .

As with ôc multiplier conncction, ovcrell gain can bc intro- duced by inserting a simplc ettenuator between thc ouçut and Y, tcrminal. This option, and thc diffcrcntid-ratio capability of thc nDS34 are utilizcd in the percenhgc-computcr applica- tion shown in Figurc 11. This configurltion gcncratcs an out- put proportional to thc pcrccntege dcviation of onc variable (A) with rcspcct to a refcrcnce variable (B), with a scalc of one volt per percent.

OPERATION AS A SQUARE ROOTER

The opcration of thc AD534 in thc squarc root modc is shown in Figurc 6. The diode prevcnts a latching condition which could occur if thc input momcntarily changes polariry. As shown, the ourput is always Positivc; it may bc changcd to a ncgativc output by reversing the diode direction and inter- changing thc X inputs. Sincc the signal input is differcntial, all combinations of input and outPut polaritics can be rcalized, but opcration is rcstricted to thc onc quedrant associatcd with cach combination of inputs.

îffiîir,

(tTroitat sUtMtfitG rN?uT. x,

tt6/ PK

RÊV€nS€ | r x r s m o x l n r tNPlrrs FoR I tMusr ge

flEGATTvE 1 PRovloEol

ourPurs I

û

I

û

X 1

X 2

Figure 6. Sguarc-Rooær Connection

ln contrast to carlier deviccs, which were intolcrant of capaci tivc loads in thc squarc root modcs, the AD534 is stablc with all loads up to at least lOOOpF. For critical applications, a small adjustment to tlre Z input offsct (sce Optional Trimming Con- figuration) will improve eccuracy for inputs bclow lV-

X 1 l v t

X 2

o t T ao63a

$ 2 1

2 2

Y2 _v5

ZJNPUl I N U T E R A T O R I i l o v F s , r t z v ? K

- r 5 v

(8)

lications Section - 40534

- -. vcrsatility of the AD534 allows the crcativc dcsigncr to _"'.-*."u".i..yofcircuitssuchaswatûncters'frcqucncy ,;Ï;;-;; autom"tic gain controls to nemc but a few'

OUTPUT At -8r '-109

CONTROL IilPUT.

€ c . Z E R O T O : 5 v

SIGNAL IilPUT

€ s , t 5 V P (

NOTÊS

F igure 7. D ifferenceof 'Squares

I$,ï,il,iiÉâÏIHâ'P$ïI3"#r.'"Pnî'ffi '.:l*''jf iîâ""

i

Figure 10. Linear AM Modulator

OUT9UT - ftOorrf 4f (I* ?ER VOLTI

oTH€R SCjL€S. fRoiri roi P€R voLT TO O'rt ?Gn voLT CAN aE oOIAIN€D aY ALTERti'G TH€ FE€OBACK RATIO.

Figure I l. Percentage ComPuter

OUTFUT, 112V PK - € c É s

o . t v

u

3 l 4 l

G A I N l S X l O P € R V O L T O f E ç ' Z E Î O T O X S O

"^*iir.Ë-rio+,' --:o*tt't oiirnrr nose ts lnv Rlls' rYP ônÀijpor.io'r,rc ro A Fs. s/N RAtlo oF toda

ôiiÈîeiË*ae o ro SIGNAL INPr.'r, s'trH Ec-' rsv' ts.60cv Rxs wP iliiliô;iii oc rô z*n.. <ae' tloEPCNoENr oF GAIN

F igure 8. Volaç-Conrolled Ampl ifier

USlttG CLOSE TOL€RAI'ICE R€SISIORS AltO AO534L' ACCUnACY OF FIT lSlYlTHlN

!o.sa ar aLL Fol{TS-, ls lN RAOtAf{s.

O U T P U T . T 5 V P K - {tovl J-

wHEnÊ v ' -I-

F igurc | 2. Bridge-Linearization F unction

ANALOG MULTIPLIERS/DIVIDERS 6-1 9

. (r0r/l ran I

t o r e n e o - ! . f t

It{?t T, Er o To +lov

X r " t |

x 2 ]

I

n * - * t

* Z r

a:

l''

I

lvr -v1

+ l5V

t : 9

2

t- I

t

An(

lO(

I

I

A + B

2 -l5v

X r Xz

4t)534 sf

O U T

A IT*UT

Figure 9. Sine-Function Generator

(9)

ADJ |.Iù

trt{s 5. c, t To +lsv

?tNs l. a To -15v r - E c . f

ao cR . llHr ?ER VOLT

wlTH v^luÊs sHollnl CONIROL lmUT. Ec

r(xlnv TO l(,v

6-20 ANALOG M ULTIPLIERS/DIVI DERS

CALIANATIOTI PîOCEDURC :

llllH E6 . t.Ov,AD.r,rST P'Ol TOS€T l - Lqxl}|.-wlTH Eç 't-0V. A)JtlST TAII|}ICR CAPACITOR TO SÊT | - r.Oû}|t- LlLE^nlTY wlLt IY?EALLY 8€ WITHIN ro-lt OF F.S. FOR AiIY OTXER Ii't'I

OUÉ TO O€IAYS Ii| TH€ COil?AFATOR. THIS TECIINIOI.,€ IS ]IOT SUITAEIE FOR ùlAXtrrut| fREOUEilCIES AEOVE l(tHr. FOF FRCOUE}{CIES ASOVE lO(H: THE ÀD53' VOLTAGE TO FNEOU€I{CY COTIVERTEN S RECOI/IT€âIOEO.

A TRTANGL€.WAVE OF :3V PX A?IEANS ACROSS TX€ O.OIIf CA?ACITOR; IF USEI) AS AI{ OUTPI,T. A VOLTAGE.FOILOII'ER g{OULO 8E INTERPOSCO.

F ig u re | 3. D i ff ercn ti a I - I n pu t V o I âgc -tu - F reg u ency Co n te rte r

CALIBBATIOiI IiOCEOUâE :

wrtH iloo€' SlllICH lJ{ ît*B + tlc' ?oÊlllotl, At?lY afl lt{PUT of +1.drvoc. atrrt sl Z€RO UitTlL OUTruT REAI}S SAfl€ AS ltlPt l. CHÊCX FOA ûi?t TS OF tlov; OUTruT SH(XrLD lE lflTHla{ ro.Ctf (scvl..

ACCITRACV tS f,Ala{T^lil€O FÊil !ûlr b rûtt, Al|O lS TY?ICALLY HIGH BY O.6f ÂT l$l|. FOâ Va - trv nlË; (slXE. S(XrAR€ Oâ InIANGUIAR WAVEI.

?novroqD ntaT TH€ ?E^( |âtuT lslloT ExcÊEo€o. cRCsl-FAcToRS t P 10 AT LÉA,sr TËN HAVE }lo A'?aÊG|AALE ÊFFECI o.I AccURAcY.

$ft T lpEtrarac€ ts AæuT rcn: FoÊ rrdÈ iinnt r*rorilc€. R€rcvE l|ooE iltTCfi AN() |rtur @(tLtt{G trOl{€Xnt.

FOR GUARAI|TEEO S'ECIFICATIO{'II TH€ ADSIA AIIO AT}dt6 IS CFF€R€D AS A SIIIGLE ?ACXAGE RæTO.DC @I'V€RT€N.

Figurc 14. IUidebnd, HiCt-Crest Fætor, RMS-Io-DC Converter

o-or J-

'"I

ot Ttt r 0 To )5v .VS

o t T ao53a

X 1

X 2

$

Y 2

OUT AD53'

(10)

Typical Performance Cuiles - 40534

ftypicC st +25oC, wiû VS= tlSV dc, unless oûen'uist ltsædl

I x u r i - E

' l Û r f f i G K m Ë l - s

Curue 1. lnput/Output Signal Range vs- Sùpply Voltages

€ -

I

a

6

È

!

Ë

û I=

t I

I Io

! .

F o

I

at

: ' t s

ffi,€K-t

Curue 4. AC Feedthrough vs. FrequencY

g

:

I

È t

I

o

t

! g

I

-

r

- { -

I

Ë o

t i a

Û Ë

a

I

a

T

a

- -

I

-

t

a

E

I I

a F q û I - t

gl r c g t æ - r y

4 d o i - o t û r É

f f i - ' €

Curve 2. Eias Current vs. Temperature (X, Y or Z lnputs)

ru

l 7

g u - m

I

n l l Û r

f f i - h

Curue 3. Common-Mode Rejection Ratîo vs. Frequency

g . m g l Æ - w

g !m

I l

E .

I

' f .

o

!I

F

I

E -

t n i l G

f l t t r g - &

Curve 5. Noise Spectral Density vs- Frequency

t x m G l r a Ê t t - h

Curue 6- Wideband Noise vs. Scaling Voltages

g E 6

)

I

/ /l

11 E

lr J l I

ANALOG MULNPUERSMVIDEBS æ21

(11)

I t l

/-'i-?î

- É

I

I

\

I D f i

c . - - |

\--d.J,j

\ c+<1r

N

-.lla

:*!i&

tr

: r o 7,

r

3 . æ

t 6

l ô Ê t r

a  c 4 r y - È

Curve 7. Frequency Response as a Multiplier

. ' !

Curve g. Frequency Response vs. Divider Denominator lnput Voltage

6-22 ANALOG MULTIPLIERS/DIVIDERS

Références

Documents relatifs

Ben Amar, Drogues, savoir plus, risquer moins,

Une étude a été réalisée pour détecter la réactivité croisée du test de drogue Willi Fox avec des substances/composés dans l’urine sans drogue ainsi que dans l’urine

Pour demander à la machine d’afficher un message dans la console, on peut utiliser la fonction print.. Par exemple,

[r]

• An RCT in 177 patients with refractory cancer pain tak- ing strong opioids (about 270 mg of morphine) com- pared THC-CBD, THC, and placebo for 2 weeks.. There was no difference

For functions of finite order this problem has recently been completely solved b y I~yllengren... set of capacity

Abstract – Objectives: A liquid/liquid extraction technique on solid support of Δ 9 -tetradydrocannabinol (THC), 11-hydroxy- Δ 9 -tetradydrocannabinol (11-OH-THC) and 11-nor- Δ

Le quotient de deux nombres ne change pas si l’on multiplie ou on divise le numérateur ET le dénominateur par un même nombre.. Dans tous les cas, on multiplie les numérateurs