• Aucun résultat trouvé

Devoir Surveillé : noms AA-DU

N/A
N/A
Protected

Academic year: 2022

Partager "Devoir Surveillé : noms AA-DU"

Copied!
11
0
0

Texte intégral

(1)

Promeo - Université de Picardie Jules Verne 2020-2021 LPro Automatisme et Robotique Initiation à la Robotique

F. Morbidi et J. Ducrocq Page 1/2

Devoir Surveillé : noms AA-DU

27 novembre 2020 Consignes pour le contrôle:

Durée: 2h15 à partir de 8h30. Le barème est donné à titre indicatif.

Cours non autorisé.

Envoyez votre copie (nom du fichier: votre_nom_de_famille.pdf) avant 10h45 à l'adresse email: fabio.morbidi@u-picardie.fr

Exercice 1 : [3 pts]

Définir les caractéristiques suivantes d'un robot industriel:

1. Charge maximale transportable, 2. Répétabilité,

3. Volume de travail.

Exercice 2 : [2 pts]

Soit le manipulateur Stanford tel que montré dans la Figure 1.

1. Déterminer le nombre de DDL et le vecteur q des variables articulaires du robot.

2. Avec quel type de porteur et de poignet est équipé ce manipulateur ?

Figure 1: Manipulateur Stanford.

Exercice 3 : [5 pts]

Pour les quatre robots industriels, a) TX200 de Stäubli, b) IRB 1520ID de ABB, c) IRB 910SC-3/0.65 de ABB et d) M-20iB/25 de FANUC (voir les fiches techniques en annexe), déterminer:

• Le nombre de DDL,

• Le type des articulations,

• La charge maximale transportable,

• La répétabilité (sur la position),

(2)

Promeo - Université de Picardie Jules Verne 2020-2021 LPro Automatisme et Robotique Initiation à la Robotique

F. Morbidi et J. Ducrocq Page 2/2

• La masse du robot,

• Le rayon d'action,

• Les bornes des axes 2 et 3,

• La vitesse maximale des trois premiers axes,

• L'utilisation type.

En sachant que les produits à manipuler sont des para-brises en verre feuilleté de 6 kg, quel est le robot le plus adapté à une tâche de palettisation ?

Exercice 4 : [3 pts]

1. Décrire les fonctionnalités principales qu'on trouve dans le boîtier d'apprentissage d'un robot Stäubli à 6 axes. Illustrer, en particulier, les modes manuels "joint", "frame"

et "tool".

2. Expliquer les fonctions de mouvement suivantes pour un robot Stäubli à 6 axes:

movel(point location, tOutil, mDesc),

movec(pIntermédiaire, pCible, tOutil, mDesc).

3. Qu'est-ce que le language VAL3 ? Quelles sont les fonctionnalités de la Stäubli Robotics Suite ?

Exercice 5 : [3 pts]

1. Quels sont les éléments constitutifs du système d'actionnement de l'articulation d'un robot industriel ?

2. Définir les notions d'exactitude et de precision d'un capteur.

3. Pour chacun des capteurs suivants, indiquer s'il s'agit d'un capteur proprioceptif ou extéroceptif et actif ou passif: a) encodeur rotatif optique, b) capteur temps-de-vol, c) caméra industrielle, d) télémètre laser, e) capteur d'effort, f ) accéléromètre.

Exercice 6 : [4 pts]

Soit le robot planaire à 3 DDL (RRR) montré dans la Figure 2.

1. Fixer les repères et écrire le tableau des paramètres de Denavit-Hartenberg du robot.

2. Les coordonnées du point P dans le repère {x

3

, y

3

, z

3

} sont p

3

= [2, 2, 0]

T

(mètres).

Déterminer les coordonnées du même point dans le repère {x

0

, y

0

, z

0

} de la base.

3.

Est-ce que le repère {x

3

, y

3

, z

3

} coïncide avec le repère de la pince ?

Figure 2 : Robot planaire à 3 DDL.

(3)

TX200 series industrial robots

Food Automotive and equipment manufacturers Life Sciences and pharma Plastics Cleanroom Machine tending Photovoltaics

TS

Scara / 4 axis

TX

Low payload / 6 axis

RX / TX

Medium payload / 6 axis

RX / TX

Heavy paylod / 6 axis

TP

Picker / 4 axis

(4)

MODEL TX200 TX200L Characteristics

Maximum load (1) 130 kg 80 kg

Nominal load 100 kg 60 kg

Reach (between axis 1 and 6) 2194 mm 2594 mm

Number of degrees of freedom 6 6

Repeatability - ISO 9283 ± 0,06 mm ± 0,1 mm

Axis 1 (A) ± 180° ± 180°

Axis 2 (B) ± 120° ± 120°

Axis 3 (C) +145°/-140° +145°/-140°

Axis 4 (D) ± 270° ± 270°

Axis 5 (E) ±120° ±120°

Axis 6 (F) ± 270° (2) ± 270° (2)

Maximum reach between axis 1 and 5 (R. M) 2000 mm 2400 mm Maximum reach between axis 2 and 5 (R. M) 1750 mm 2150 mm Minimum reach between axis 1 and 5 (R. m1) 365 mm 528 mm Minimum reach between axis 2 and 5 (R. m2) 545 mm 690 mm Minimum reach between axis 3 and 5 (R. b) 800 mm 1200 mm

Axis 1 160°/s 160°/s

Axis 2 160°/s 160°/s

Axis 3 160°/s 160°/s

Axis 4 260°/s 260°/s

Axis 5 260°/s 260°/s

Axis 6 400°/s 400°/s

Maximum speed

at load gravity center 12 m/s 14 m/s

Axis 5 45 kg.m2 40 kg.m2

Axis 6 20 kg.m2 15 kg.m2

Weight 1000 kg 1020 kg

Brakes All axis

Pneumatic

2 solenoid valves in option 5/2-way monostable (compressed air) 3 direct line between

the base and the forearm

Electrical

Standard

1 female 19-contact socket (7 twisted pairs including 2 shielded, 3 power contacts)

Option Ethernet

A 19-contact female cylindrical connector with 5 twisted pairs and 3 power contacts.

+ 1 4-contact female cylindrical connector M12 code D for a Cat 5e Ethernet link.

Cleanroom standard - ISO 14644-1 5

Protection class (*wrist) IP65 (*67)

Stäubli CS8 series controller CS8C HP

Installation environment Working temperature according

to standard directive NF EN 60 204-1 + 5°C to + 40°C

Humidity according to standard directive

NF EN 60 204-1 30% à 95% max. non-condensing

Attachment methods Floor/Shelf/Ceiling (6)

Vertical cable outlet version (3) • •

Pressurized version (4) • •

Version HE (Humid Environnement) (5)(6)(6)

Market specific versions

CR Cleanroom - class 4 cleanliness - ISO 14644-1(6)(6)

(1) Under special conditions, consult us.

(2) Software configurable up to ±18000°.

(3) Vertical outlet version: designed to offer additional connection protection at robot base or for use in clean and/or humid environment. Factory installation only.

(4) Pressurization kit: necessary for use in an environment with high dust levels or with substantial liquid splashing.

This kit generates positive pressure in the arm. Factory installation only and required with pressurization kit.

(5) Version HE (Humid Environment): designed for use in humid and oxidizing environments.

The arm components are painted individually, providing additional arm protection against oxidation and corrosion. Factory installation only and required with pressurization kit.

(6) Contact our sales team.

Motion range

CS8C HP controller

Forearm connectionsMaximum inertiasMaximum speedWork envelopeMotion range

Work envelope Mounting (not for vertical cable outlet option)

TX200 dimensions TX200L dimensions Wrist

(5)

IRB 1520ID

The Lean Arc Welder

Robotics

Dedicated arc welding robot

With IRB 1520ID (Integrated Dressing), the hose package is totally integrated into the upper arm and through the base of the robot. This means, all media necessary for arc welding, including power, welding wire, shielding gas and pressurized air is routed for maximized performance and energy efficiency.

The IRB 1520ID delivers stable welding, excellent path ac- curacy, short cycle times and extended life expectancy of the hose package. Thanks to the integrated dressing, welding around cylindrical objects can be carried out without any stops and narrow spaces are more easily accessed.

Flexible installation

With a payload capacity of 4 kilograms and a reach of 1.5 meters, the highly compact IRB 1520ID can be mounted in both floor and inverted position. This positioning flexibility offers short cycle times and a wide range of production pos- sibilities.

Superior accuracy and speed

ABB robots are renowned for their superior motion control.

With the second generation TrueMove™ technology, IRB 1520ID has an outstanding path accuracy. With the second generation QuickMove™ technology, the robot is able to uti- lize maximum acceleration between welds to increase output with minimum energy consumption.

Easy to use, Easy to program

Both robot and arc welding process are easily programmed and maintained with the ABB FlexPendant. It has a intuitive graphical interface which lets the operators control the robot and selected process equipment in their own language. It is equipped with a touchscreen and the unique ABB joy-stick for quick and easy positioning of the robot. If you appreciate the benefits of simulating and programming offline, ABB offers the most popular, reliable and cost-efficient software packages with RobotStudio™ and RobotStudio Arc Welding Power- Pac including VirtualArc™. With VirtualArc™ you get built-in welding expertise and the opportunity for virtual trial and error to achieve a perfect welding parameter setup and much less trimming. The welding robot will produce predictible cycle times and welding quality after only a few hours.

Global service and support

For worry-free operation, ABB also offers RemoteService, which gives remote access to equipment for monitoring and support. Moreover, ABB customers can take advantage of the company’s service organization; with more than 35 years of experience in the arc welding sector, ABB provides service support in over 100 locations in 53 countries.

This high precision robotic arc welder,

with integrated process dressing,

combines 24/7 production output with

50% lower cost of maintenance to

deliver the lowest cost per weld in its

class.

(6)

© Copyright ABB. ROB0214EN_G March 2014.

www.abb.com/robotics

IRB 1520ID

Main applications Arc welding

Specification

Payload 4 kg

Armload 10 kg

Reach 1.50 m

Number of axes 6

Protection IP40

Mounting Floor, Inverted

IRC5 controller variants Drive module, Single cabinet Physical

Dimensions robot base 300 x 300 mm

Robot weight 170 kg

Performance (according to ISO 9283)

Position repeatability (RP) 0.05 mm Path repeatability (RT) 0.35 mm Movement

Axis movements Working range Maximum speed

Axis 1 +170° to -170° 130°/s

Axis 2 +150° to -90° 140°/s

Axis 3 +80° to -100° 140°/s

Axis 4 +155° to -155° 320°/s

Axis 5 +135° to -135° 380°/s

Axis 6* +200° to -200° 460°/s

*+288 rev. to -288 rev max.

Electrical connections

Supply voltage 380 V

Power consumption ISO cube 0.6 kW Environment

Ambient temperature for mechanical unit:

During operation +5°C (41°F) to +45°C (113°F) During transportation and storage -25°C (13°F) to +55°C (131°F) For short periods (max 24h) up to +70°C (158°F)

Relative humidity Max. 95% at constant temperature

Safety Double circuits with supervision,

emergency stops and safety func- tions, 3-position enabling device

Emission EMC/EMI shielded

Data and dimensions may be changed without notice

Working range IRB 1520ID-4/1.5

2601

1500 295

808

Z

160

X

(7)

IRB 910SC SCARA

Robotics

The IRB 910SC (SCARA) is fast, cost-effective and, because it‘s from ABB, accurate.

In designing its Selective Compliance Articulated Robot Arm (SCARA), or IRB 910SC, ABB has delivered a single arm robot capable of operating in a confined footprint. ABB’s SCARA is ideal for the Small Parts Assembly, Material Handling and parts inspection.

Variants

With a maximum payload of 6 kg, the IRB 910SC is available in three configurations (IRB 910SC –3/0.45, IRB 910SC – 3/0.55m, and IRB 910SC – 3/0.65.) All are modular by design, with different linking arm lengths and have individual reaches of 450 mm, 550 mm and 650 mm, respectively.

Tabletop mountable, each member of our SCARA family is IP54-rated for optimum protection against dust and liquids.

A Clean Room ISO-5 option is under development.

Applications

ABB’s SCARA family is designed for a variety of general-purpose applications such as tray kitting, component placement, machine loading/unloading and assembly.

These applications require fast, repeatable and articulate point-to-point movements such as palletizing, depalletizing, machine loading/unloading and assembly.

ABB’s SCARA family is ideal for customers requiring rapid cycle times, high precision and high reliability for their Small Part Assembly applications and for laboratory automation and prescription drug dispensing.

Features

A Clean Room ISO-5 option is under development

IP54 protection

Table top mountable

Ease of integration

Custom interfaces

Modular design

Customer benefits

Short cycle times which achieved by high speed

High precision which is achieved by superior motion control

Superb reliability due to reuse and standard proven

components

(8)

2 IRB 910SC | ABB data sheet

Specification

Robot version Reach Payload Armload IRB 910SC-3/0.45 450 mm Rated: 3 kg; Max: 6 kg Included in

the max payload IRB 910SC-3/0.55 550 mm Rated: 3 kg; Max: 6 kg Included in the max

payload IRB 910SC-3/0.65 650 mm Rated: 3 kg; Max: 6 kg Included in

the max payload

Features

Integrated signal supply 10 signals on wrist Integrated air supply 4 air on wrist (5 bar) Robot mounting Table

Degree of protection IP30

Controller IRC5 Compact

Arm length 450mm; 550mm; 650mm Shaft Diameter ø (mm) 20mm

Movement

IRB 910SC-3/0.45 IRB 910SC-3/0.55 IRB 910SC-3/0.65 Axis movement Working range Max speed Working range Max speed Working range Max speed Axis 1 Rotation ±140 deg 415 deg/s ±140 deg 415 deg/s ±140 deg 415 deg/s Axis 2 Rotation ±150 deg 659 deg/s ±150 deg 659 deg/s ±150 deg 659 deg/s Axis 3 Up/Down 180mm 1.02 m/s 180 mm 1.02 m/s 180 mm 1.02 m/s Axis 4 Rotation ±400 deg 2400 deg/s ±400 deg 2400 deg/s ±400 deg 2400 deg/s

Electrical connections

IRB 910SC IRB 910SC IRB 910SC -3/0.45 -3/0.55 -3/0.65 Supply voltage 200-600 V, 200-600 V, 200-600 V,

50/60Hz 50/60Hz 50/60Hz Transformer rating 3.0 kVA 3.0 kVA 3.0 kVA Power consumption 220 W 220 W 220 W

Physical

IRB 910SC IRB 910SC IRB 910SC -3/0.45 -3/0.55 -3/0.65 Footprint 160mmx160mm 160mmx160mm 160mmx160mm Weight 24.5 kg 25 kg 25.5 kg Performance

IRB 910SC IRB 910SC IRB 910SC -3/0.45 -3/0.55 -3/0.65 1 kg picking cycle 0.380 s 0.370 s 0.385 s Max TCP Velocity 6.2 m/s 6.9 m/s 7.6 m/s Max TCP Acceleration 65 m/s^2 60 m/s^2 55 m/s^2 Acceleration time 0.04 s 0.05 s 0.06 s 0-1m/s

Axis 3 (Z stroke) 250 N 250 N 250 N down force

Maximum Speed

Axis 1+ Axis 2 6.13 m/s 6.86 m/s 7.58 m/s Axis 3 1.02 m/s 1.02 m/s 1.02 m/s Axis 4 2400 deg/s 2400 deg/s 2400 deg/s Position Repeatability

Axis 1 + Axis 2 ±0.015 mm ±0.015 mm ±0.015 mm Axis 3 ±0.01 mm ±0.01 mm ±0.01 mm Axis 4 ±0.005 deg ±0.005 deg ±0.005 deg

(9)

ABB data sheet | IRB 910SC 3 0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.65

6,0 kg (Za= 0,046 , Zb= 0,034 , Lb= 0,056 , Lc= 0,061 ) 5,0 kg (Za= 0,052 , Zb= 0,039 , Lb= 0,061 , Lc= 0,067 ) 4,0 kg (Za= 0,065 , Zb= 0,048 , Lb= 0,070 , Lc= 0,075 3,0 kg (Za= 0,074 , Zb= 0,056 , Lb= 0,076 , Lc= 0,087 ) 2,0 kg (Za= 0,111 , Zb= 0,083 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,199 , Zb= 0,149 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.45

6,0 kg (Za= 0,049 , Zb= 0,037 , Lb= 0,053 , Lc= 0,061 ) 5,0 kg (Za= 0,056 , Zb= 0,042 , Lb= 0,057 , Lc= 0,067 ) 4,0 kg (Za= 0,068 , Zb= 0,051 , Lb= 0,066 , Lc= 0,075 3,0 kg (Za= 0,078 , Zb= 0,059 , Lb= 0,072 , Lc= 0,087 ) 2,0 kg (Za= 0,116 , Zb= 0,087 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,207 , Zb= 0,155 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.55

6,0 kg (Za= 0,049 , Zb= 0,037 , Lb= 0,053 , Lc= 0,061 ) 5,0 kg (Za= 0,056 , Zb= 0,042 , Lb= 0,057 , Lc= 0,067 ) 4,0 kg (Za= 0,068 , Zb= 0,051 , Lb= 0,066 , Lc= 0,075 3,0 kg (Za= 0,078 , Zb= 0,059 , Lb= 0,072 , Lc= 0,087 ) 2,0 kg (Za= 0,116 , Zb= 0,087 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,207 , Zb= 0,155 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.65

6,0 kg (Za= 0,046 , Zb= 0,034 , Lb= 0,056 , Lc= 0,061 ) 5,0 kg (Za= 0,052 , Zb= 0,039 , Lb= 0,061 , Lc= 0,067 ) 4,0 kg (Za= 0,065 , Zb= 0,048 , Lb= 0,070 , Lc= 0,075 3,0 kg (Za= 0,074 , Zb= 0,056 , Lb= 0,076 , Lc= 0,087 ) 2,0 kg (Za= 0,111 , Zb= 0,083 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,199 , Zb= 0,149 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.45

6,0 kg (Za= 0,049 , Zb= 0,037 , Lb= 0,053 , Lc= 0,061 ) 5,0 kg (Za= 0,056 , Zb= 0,042 , Lb= 0,057 , Lc= 0,067 ) 4,0 kg (Za= 0,068 , Zb= 0,051 , Lb= 0,066 , Lc= 0,075 3,0 kg (Za= 0,078 , Zb= 0,059 , Lb= 0,072 , Lc= 0,087 ) 2,0 kg (Za= 0,116 , Zb= 0,087 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,207 , Zb= 0,155 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.55

6,0 kg (Za= 0,049 , Zb= 0,037 , Lb= 0,053 , Lc= 0,061 ) 5,0 kg (Za= 0,056 , Zb= 0,042 , Lb= 0,057 , Lc= 0,067 ) 4,0 kg (Za= 0,068 , Zb= 0,051 , Lb= 0,066 , Lc= 0,075 3,0 kg (Za= 0,078 , Zb= 0,059 , Lb= 0,072 , Lc= 0,087 ) 2,0 kg (Za= 0,116 , Zb= 0,087 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,207 , Zb= 0,155 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.65

6,0 kg (Za= 0,046 , Zb= 0,034 , Lb= 0,056 , Lc= 0,061 ) 5,0 kg (Za= 0,052 , Zb= 0,039 , Lb= 0,061 , Lc= 0,067 ) 4,0 kg (Za= 0,065 , Zb= 0,048 , Lb= 0,070 , Lc= 0,075 3,0 kg (Za= 0,074 , Zb= 0,056 , Lb= 0,076 , Lc= 0,087 ) 2,0 kg (Za= 0,111 , Zb= 0,083 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,199 , Zb= 0,149 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.45

6,0 kg (Za= 0,049 , Zb= 0,037 , Lb= 0,053 , Lc= 0,061 ) 5,0 kg (Za= 0,056 , Zb= 0,042 , Lb= 0,057 , Lc= 0,067 ) 4,0 kg (Za= 0,068 , Zb= 0,051 , Lb= 0,066 , Lc= 0,075 3,0 kg (Za= 0,078 , Zb= 0,059 , Lb= 0,072 , Lc= 0,087 ) 2,0 kg (Za= 0,116 , Zb= 0,087 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,207 , Zb= 0,155 , Lb= 0,150 , Lc= 0,150 )

0,00

0,10

0,20

0,30

0,00 0,10 0,20

Z [m]

L [m]

Load Diagram IRB 910SC - 3 / 0.55

6,0 kg (Za= 0,049 , Zb= 0,037 , Lb= 0,053 , Lc= 0,061 ) 5,0 kg (Za= 0,056 , Zb= 0,042 , Lb= 0,057 , Lc= 0,067 ) 4,0 kg (Za= 0,068 , Zb= 0,051 , Lb= 0,066 , Lc= 0,075 3,0 kg (Za= 0,078 , Zb= 0,059 , Lb= 0,072 , Lc= 0,087 ) 2,0 kg (Za= 0,116 , Zb= 0,087 , Lb= 0,106 , Lc= 0,106 ) 1,0 kg (Za= 0,207 , Zb= 0,155 , Lb= 0,150 , Lc= 0,150 )

160

136.5

c

b

a

e

m p

n IRB 910SC-3/0.65

q j

k 160

136.5

a

b b

c c

d d

j k

a

f h

g

p m n

IRB 910SC-3/0.55

q

136.5

160

a a

b b

c c

d d

j k

ef

h g

p

m q n IRB 910SC-3/0.45

IRB 910SC-3/0.45 IRB 910SC-3/0.55 IRB 910SC-3/0.65

140 140 140

1.5 1.5 1.5

150 150 150

119 150145

300 400

450 550 650

150 150 150

5 5 5

1 3 4 5 6

C

1 3 4 5 6

C

B B

1 1 160

136.5

c

b

a

e

m p

n IRB 910SC-3/0.65

q j

k 160

136.5

a

b b

c c

d d

j k

a

f h

g

p m n

IRB 910SC-3/0.55

q

136.5

160

a a

b b

c c

d d

j k

ef

h g

p

m q n IRB 910SC-3/0.45

IRB 910SC-3/0.45 IRB 910SC-3/0.55 IRB 910SC-3/0.65

140 140 140

1.5 1.5 1.5

150 150 150

119 150145

300 400

450 550 650

150 150 150

5 5 5

1 3 4 5 6

C

1 3 4 5 6

C

B B

1 1

160

136.5

c

b

a

e

m p

n IRB 910SC-3/0.65

q j

k 160

136.5

a

b b

c c

d d

j k

a

f h

g

p m n

IRB 910SC-3/0.55

q

136.5

160

a a

b b

c c

d d

j k

ef

h g

p

m q n IRB 910SC-3/0.45

IRB 910SC-3/0.45 IRB 910SC-3/0.55 IRB 910SC-3/0.65

140 140 140

1.5 1.5 1.5

150 150 150

119 150145

300 400

450 550 650

150 150 150

5 5 5

1 3 4 5 6

C

1 3 4 5 6

C

B B

1 1

(10)
(11)

Références

Documents relatifs

Although diluting or mixing pulp and paper waste effluents with other high-nutrient wastewaters has a great potential for growing algae for biomass and lipid production together

Although there exists no set of experimental data that was obtained at high pressure, high temperature and high ionic strength in the same experiment, the validity domain of

L’UNSA a été créée en février 1993 par l’union de cinq syndicats autonomes : la Fédération de l’éducation nationale (Fen), la Fédération générale

Un indicateur est « une variable, ou une combinaison de variables, sélectionnée pour représenter une certaine question plus large ou une caractéristique d'intérêt » (Gudmundsson

Ultrasonic fatigue test machine is often used to perform the VHCF and provides a high frequency (20kHz) to accelerate the fatigue test, but the fatigue thermal

GNSS is mandatory for initialization of the localization system, and GNSS information should be used as much as possible as long as it is consistent with the pose estimate.Where

To accelerate it, we are developing several numerical libraries supporCng accurate computaCon based on high-precision arithmeCc or algorithmic approach.. Some sojware

To accelerate it, we are developing several numerical libraries supporCng accurate computaCon based on high-precision arithmeCc or algorithmic approach.. Some sojware