• Aucun résultat trouvé

GRAIN BOUNDARIES INTRODUCED DEEP LEVELS IN POLYSILICON

N/A
N/A
Protected

Academic year: 2021

Partager "GRAIN BOUNDARIES INTRODUCED DEEP LEVELS IN POLYSILICON"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00221783

https://hal.archives-ouvertes.fr/jpa-00221783

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GRAIN BOUNDARIES INTRODUCED DEEP LEVELS IN POLYSILICON

B. Lombos, S. Yee, M. Pietrantonio, M. Averous

To cite this version:

B. Lombos, S. Yee, M. Pietrantonio, M. Averous. GRAIN BOUNDARIES INTRODUCED DEEP LEVELS IN POLYSILICON. Journal de Physique Colloques, 1982, 43 (C1), pp.C1-199-C1-206.

�10.1051/jphyscol:1982127�. �jpa-00221783�

(2)

GRAIN BOUNDARIES INTRODUCED DEEP LEVELS IN POLYSILICON

B.A. Lombos, S . Yee, M . Pietrantonio and M . Averous*

Department of EZectrical Engineering, Concordia University, Montreal, P. Q., H3G 1M8, Canada

*Centre drEtudes d'Electronique des Solides, Université des Sciences e t Techniques du Languedoc, 34060 MontpeZZier, France

RESUME

Des f i l m s de p o l y s i l i c i u m o n t é t é obtenus dans un f o u r à résistance, par dépo- s i t i o n chimique en phase vapeur de s i l a n e . Pour m i n i m i s e r l a r é a c t i o n de l a phase gazeuse, un système d ' e n t r é e r e f r o i d i a é t é développé. Le c o n t r ô l e de l a r é a c t i o n de s u r f a c e permet une croissance en colonne. Le raie des j o i n t s de g r a i n s c a r a c t é r i s a n t l e s p o l y c r i s t a u x e s t examiné. Pour l e s mesures de , p r o p r i é t é de t r a n s p o r t , l e s cou- ches de p o l y s i l i c i u m o n t é t é i s o l é e s par une d é p o s i t i o n en phase vapeur d'un f i l m de d i o x i d e de s i l i c i u m sur l e S i s u b s t r a t .

Les niveaux profonds q u i p i è g e n t l e s é l e c t r o n s e t l e s t r o u s sont r e l i é s aux dimensions des grains. Les minima de m o b i l i t é c a r a c t é r i s t i q u e s en f o n c t i o n de l a c o n c e n t r a t i o n sont r e l lé s au passage du niveau de Fermi à t r a v e r s l e niveau profond associé. Le c r i t è r e de l a f o r m a t i o n d'une bande d'impuretés associée aux l i a i s o n s pendantes i n t r o d u i t e s p a r l e s j o i n t s de g r a i n s e s t examiné. Les m o b i l i t é s c a l c u l é e s c a r a c t é r i s a n t l e s p r o p r i é t é s de t r a n s p o r t dans un système a l é a t o i r e , i n t r o d u i t dans ce cas par l a formation d'une bande d'impuretés, sont r e l i é e s aux v a l e u r s mesurées aux minima de m o b i l i t é .

ABSTRACT

P o l y s i l i c o n f i l m s have been grown, i n a r e s i s t a n c e heated furnace, by chemical vapor d e p o s i t i o n o f s i l a n e . To minimize t h e gas-phase r e a c t i o n a cooled e n t r y sys- tem has been developed. The dominance o f surface r e a c t i o n c o n t r o l r e s u l t e d i n colum- n a r growth. The r o l e o f t h e g r a i n boundaries, c h a r a c t e r i z i n g p o l y c r y s t a l s , were examined. For t r a n s p o r t p r o p e r t i e s measurements t h e p o l y s i 1 ic o n l a y e r s were i s o l a - t e d by a chemical vapor deposited s i l i c o n d i o x i d e f i l m on a s i l i c o n substrate. Deep l y i n g e l e c t r o n and h o l e t r a p p i n g center concentrations were r e l a t e d t o g r a i n s i z e s . The c h a r a c t e r i s t i c measured m o b i l i t y minima as a f u n c t i o n of c a r r i e r concentrations, were associated t o t h e c r o s s i n g o f t h e Fermi energy t h e a p p r o p r i a t e deep l y i n g impu- r i t y l e v e l

.

The c r i t e r i a o f i m p u r i t y band formation, associated t o g r a i n boundaries introduced dangling bonds, were examined. The c a l c u l a t e d mobil i t i e s , c h a r a c t e r i z i n g t h e t r a n s p o r t p r o p e r t i e s o f a random system, introduced i n t h i s case by t h e forma- t i o n o f an i m p u r i t y band, were c o r r e l a t e d t o t h e measured values a t t h e m o b i l i t y minima, i n p o l y c r y s t a l l i n e s i l i c o n .

INTRODUCTION

Chemical Vapor Deposited (C.V.D. ) p o l y s i l i c o n has i n c r e a s i n g a p p l i c a t i o n i n s o l i d s t a t e e l e c t r o n i c devices ( 1 ) . Due t o i t s t r a n s p o r t p r o p e r t i e s , however, i t s u t i l i t y f o r a c t i v e devices i s l i m i t e d and i t i s m a i n l y used f o r passive components.

But i n t h e case of l a r g e area, low c o s t and l a r g e q u a n t i t y p h o t o v o l t a i c power gen- e r a t o r s , p y r o l i t i c C.V.D. p o l y s i l i c o n f i l m s are having more and more promising pos- s i b i l i t i e s (2-7). The a n a l y s i s of t h e t r a n s p o r t p r o p e r t i e s o f p o l y s i l i c o n m i g h t b r i d g e t o a b e t t e r understanding o f amorphous s i l i c o n , through t h e e l u c i d a t i o n o f random system introduced impuri t y band conduction ( 8 , l O ) .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982127

(3)

JOURNAL DE PHYSIQUE

I n t h i s i n v e s t i g a t i o n low c o s t substrates were used t o d e p o s i t p o l y s i l i c o n by C.V.D. u t i l i z i n g t h e p y r o l y s i s o f s i l a n e . The substrates were g r a p h i t e and f o r t h e t r a n s p o r t p r o p e r t i e s measurements they were s i l i c o n , covered by a t h i n C.V.D. grown s i l i c o n d i o x i d e f i l m . The s t r u c t u r e o f t h e p o l y s i l i c o n f i l m s as a f u n c t i o n o f deposi t i o n c o n d i t i o n s (temperature, dopi ng concentrations) was i n v e s t i g a t e d . The t r a n s p o r t p r o p e r t i e s o f t h e f i l m s were measured. The obtained experimental data were analysed by a mode1 based on g r a i n boundaries introduced d o n o r - l i k e and accep- t o r - l i k e deep l e v e l s . This model assumes t h a t t h e g r a i n boundaries introduced t r a p - ping s t a t e s are monovalent and c o n s i s t s o f s t a t e s w i t h a u n i f o n n d e n s i t y . The deep l y i n g acceptors being i n t h e upper h a l f o f t h e band gap w h i l e t h e corresponding donors i n t h e lower one according t o t h e suggestions o f several authors (11,12,13, 14). T h i s model

,

c l o s e l y r e l a t e d t o t h e s o - c a l l e d segregation theory (11-14), was p r e f e r r e d since t h e t r a p p i n g s t a t e introduced d e p l e t i o n l a y e r approximation ceases t o be a p p l i c a b l e i f t h e g r a i n s i z e s exceed 60 nm (1 1 ) . This deep l e v e l model was developed f o r s e m i - i n s u l a t i n g g a l l i u m arsenide t o i n t e r p r e t i t s measured t r a n s p o r t p r o p e r t i e s (15), and was s u c c e s s f u l l y a p p l i e d t o c l a r i f y t h e anomalies" i n t h e t r a n s p o r t p r o p e r t i e s o f mercury t e l l u r i d e (16), as w e l l .

The e x p e r i m e n t a l l y detennined m o b i l i t y minima as a f u n c t i o n o f c a r r i e r concen- t r a t i o n s , are r e l a t e d t o t h e c r o s s i n g o f t h e Fermi l e v e l t h e a p p r o p r i a t e deep l y i n g i m p u r i t y l e v e l . These are, i n t u r n , r e l a t e d t o t h e g r a i n boundaries introduced t r a p p i n g centers.

The p o s s i b i l i t y o f i m p u r i t y band conduction, c h a r a c t e r i z e d by a random system (8,9), and r e l a t e d t o deep l y i n g l e v e l s i n p o l y s i l i c o n m i g h t l e a d t o some i n t e r - e s t i n g a p p l i c a t i o n s . I n t h e case o f s o l a r c e l l s , however, t h i s phenomenon might have t o be avoided, s i n c e t h e t r a n s p o r t p r o p e r t i e s o f t h e deposited f i l m s need t o be optimized t o approach those o f a s i n g l e c r y s t a l t o maximize t h e power conversion e f f i c i e n c y o f t h e prepared s o l a r c e l l s . I n t h e case o f i n t e g r a t e d c i r c u i t a p p l i c a - t i o n s o f t h e p o l y s i l i c o n l a y e r s , however, i f t h e mechanism and c o n d i t i o n s o f impu- r i t y band conduction can be substantiated, some i n t e r e s t i n g p r o p e r t i e s o f t h e pas- s i v e components might be achieved.

EXPERIMENTAL PROCEDURES AND RESULTS

High p u r i t y (99.9999%) s i l a n e (SiH4) d i l u t e d i n hydrogen (0.5% v o l SiH4) w i t h n i t r o g e n as a c a r r i e r gas was used as t h e feedstock. The doping o f the p o l y s i l i c o n f i l m s was achieved by mixing diborane (0.05% v o l B2H6 i n Hz), and phosphine (0.05%

v o l PH3 i n Hz) t o t h e feedstock f o r p- and n- t y p e f i l m s , r e s p e c t i v e l y . The s i l i c o n d i o x i d e p a s s i v a t i n g f i l m s were grown i n t h e same system using s i l a n e i n n i t r o g e n

(0.5% v o l SiH4 i n Np) and o x i d i z e d by pure oxygen. Al1 gas m i x t u r e s were o f u l t r a h i g h p u r i t y grade. The d e p o s i t i o n temperature f o r p o l y s i l i c o n f i l m s ranged from 500°C t o 973"C, w h i l e t h e s i l i c o n d i o x i d e f i l m s were grown a t 500°C (17).

The substrates were g r a p h i t e and s i n g l e c r y s t a l s i l i c o n . They were about1.5mm t h i c k p o l i s h e d t o m i r r o r f i n i s h w i t h alumina powder. These substrates were degreased and then degased a t 1000°C i n hydrogen ambient.

The Chemical Vapor Deposition s e t up has been described p r e v i o u s l y (26). A t temperatures above 600°C t h e s i z e s o f t h e g r a i n s , forming t h e f i l m s , increased mono- t o n i c a l l y wi t h i n c r e a s i n g deposi t i o n temperatures. A t around 800°C, t y p i c a l g r a i n sizes were about 3pm i n c r e a s i n g t o 6pm a t 900°C and t o 10 t o 15pm a t about 950°C and about 20um a t 967OC.

To demonstrate t h e s t r u c t u r e o f t h e g r a i n s across t h e f i l m , a c r o s s - s e c t i o n a l Scanning E l e c t r o n Microscope (S.E.M.) photograph o f i t i s shown i n Fig. 1 deposited a t about 967OC.

(4)

g r a i n s i z e s o f about 20pm.

TRANSPGRT PROPERTIES MEASUREMENTS

H a l l e f f e c t measurements were performed on t h e deposited p o l y s i l i c o n f i l m s . The samples were prepared according t o A.S.T.M. s p e c i f i c a t i o n s (18).

The H a l l e f f e c t measurements were c a r r i e d o u t a t room temperature. The mag- n e t i c f i e l d dependence o f t h e H a l l c o e f f i c i e n t was v e r i f i e d and i t was found t h a t i n t h e above mentioned temperature range, i t became f i e l d independent above 0.1 Tesla.

Therefore a l 1 measurements were performed a t 0.5 Tesla.

DISCUSSION

To analyse t h e t r a n s p o r t p r o p e r t i e s o f p o l y c r y s t a l l i n e s i l i c o n f i l m s t h e r o l e o f t h e g r a i n boundaries i s o f fundamental importance. T h e i r behavior has been s t u d i e d by a number o f i n v e s t i g a t o r s i n t h e cases o f germanium (19) and s i l i c o n (11,20). The segregation (13,14) and the t r a p p i n g (11,21) t h e o r i e s assume a 6 - shaped d e n s i t y o f s t a t e s a t t h e g r a i n boundaries c h a r a c t e r i z i n g t h e t r a p p i n g states.

These a r e taken t o be monovalent and peaking c l o s e t o the midgap. Furthermore, i t i s assumed t h a t these t r a p s c o n s i s t o f s t a t e s w i t h uniform d e n s i t y (11,Zl) l o c a t e d i n t h e case o f t h e deep l y i n g donors i n t h e lower h a l f o f t h e band gap, 0.37 eV above the valence band. I n t h e case o f t h e deep l y i n g acceptors, t h e p o s i t i o n o f the a p p r o p r i a t e l e v e l i s assumed t o be i n t h e upper h a l f o f the band gap and t h i s i n v e s t i g a t i o n takes i t s l o c a t i o n t o be a t 0.37 eV below the conduction band edge was s u b s t a n t i a t e d by d e f e c t r e l a t e d deep l e v e l s found i n s i 1 ic o n (23). According t o the d e p l e t i o n theory (11,21 ,22) these t r a p p i n g s t a t e s a r e reducing t h e f r e e c a r r i e r con- c e n t r a t i o n . This approximation gave good r e s u l t s up t o g r a i n s i z e s o f about 60 nm.

However, i n a l 1 t h i s type of c a l c u l a t i o n s a surface t r a p p i n g c o n c e n t r a t i o n o f about 3.3 x 10~2,crn-2 was r e q u i r e d t o f i t t h e experimental d a t a (11,20,21,24).

I n t h i s i n v e s t i g a t i o n t h e columnar g r a i n s i z e s a r e reaching 20um and i n a l 1 the f o l 1 owing c a l c u l a t i o n s t h e c h a r a c t e r i s t i c surface t r a p p i n g center c o n c e n t r a t i o n ought t o be taken equal t o t h e atomic d e n s i t y o f t h e (111) plane i n s i l i c o n 7.8 x 1014, cm-2. I t i s assumed t h a t t h e g r a i n boundaries a r e c r e a t i n g a number of d e f e c t s i n t h e c r y s t a l due t o incomplete atomic bonding. The r e s u l t i n g h y b r i d i z e d dangl i n g bonds a r e randomly d i s t r i b u t e d and a r e forming e l e c t r o n and h o l e t r a p s .

(5)

JOURNAL DE PHYSIQUE

These deep l y i n g l e v e l s i n t h e band gap are t r e a t e d then t h e same way as donors and acceptors w i t h t h e i r a p p r o p r i a t e i o n i z a t i o n p o t e n t i a l s , as i n t h e case o f semi- i n s u l a t i n g GaAs (15) and i n o t h e r semiconductors (24). This mode1 i s schematically represented i n Fig. 2.

' Nad-

+ + + +

+Ndd+

-

, a ,

+

,

+ + -

, -Nas- + p +

;

037eV

j-.

Figure 2: Schematic r e p r e s e n t a t i o n o f t h e p o s i t i o n o f the deep-1 y i ng acceptor

,

Idad;

and deep-lying cionor, ~ ~ d ' , i n t h e band gap, Eg, o f s i l i c o n .

The c o n d u c t i v i t y o f t h e system can be analysed then by computing t h e p o s i t i o n o f t h e Fermi l e v e l based on t h e steady s t a t e n e u t r a l i t y c o n d i t i o n :

where t h e mobile h o l e c o n c e n t r a t i o n i s pi w h i l e Mdif and Nai- represents t h e i o n i z e d shallow and deep l y i n g donor and acceptor concentrations and the mobile e l e c t r o n concentration, n-, i s given by t h e corresponding c l a s s i c a l expression as i t has been d e t a i l e d i n (15). For any g i v e n i m p u r i t y and t r a p p i n g c e n t e r concentration a t a g i v e n temperature, t h e c h a r a c t e r i s t i c Fermi l e v e l w i l l be given when t h e n e u t r a l i t y c o n d i t i o n i n equ. (1) i s s a t i s f i e d .

A simple example i s shown i n Fig. 3, t o demonstrate t h e computation using, f o r example,the data c h a r a c t e r i z i n g a d e p o s i t i o n a t 800°C where the boron concentration, being shallow acceptors, i s ilas- = 5.3 x 1018,cm-3, t h e donor t r a p p i n g center concen- t r a t i o n i s ~ d= 1.56 ~ +x 1019, cm-3 then a t T = 300°C, t h e Fermi l e v e l i s c a l c u l a t e d t o be a t E ( f ) = 0.37 eV above t h e conduction band.

F i g u r e 3: The c a l c u l a t e d i o n i z e d impuri t y Nasr,

N ~

and

~ +

c a r r i e r concentrations n-, p+, as t h e f u n c t i o n o f energy, w i t h the computed Fermi energy corresponding t o t h e n e u t r a l i t y c o n d i t i o n (equ. ( 1 ) ) .

(6)

d e n s i t y i n s i 1 ic o n w i l l be of 7.8 x 1014,crn-~. The corresponding t r a p p i n g center c o n c e n t r a t i o n can be computed t o be Ndt = 1.56 x 1019,cm-~. This i s t h e value used i n t h e c a l c u l a t i o n s i n Fig. 3. I f one assumes average g r a i n s i z e s o f 6vm and 12vm char- a c t e r i z i n g t h e f i l m s deposited at9009C and 9 5 O Q C r e s p e c t i v e l y t h e n t h e correspondingtrap- ping center concentrations can be computed t o be 7.8 x 1018, cm-3 and 3.9 x 1018,cm-3 r e s p e c t i v e l y (see Table 1 ) . Using t h e m u l t i l e v e l model o u t l i n e d above (15), based on t h e n e u t r a l i t y c o n d i t i o n , equ. ( l ) , t h e p o s i t i o n o f t h e Fermi l e v e l as t h e f u n c t i o n o f acceptor concentrations f o r t h e t h r e e d i f f e r e n t c h a r a c t e r i s t i c t r a p p i n g center concentrations can be computed. The r e s u l t s a r e shown i n F i g . 4. The c r i t i c a l acceptor concentrations, where t h e Fermi l e v e l i s c r o s s i n g t h e deep l y i n g donor l e v e l are c o l l e c t e d i n Table 1 under NaS-. The corresponding i o n i z e d deep donor con- c e n t r a t i o n s ~ d d + are g i v e n w i t h t h e average i m p u r i t y separation, R(nm) and t h e mobil- i t y minima, pmin, cm2 s - l , as w i l l be discussed l a t e r .

F i g u r e 4: Fermi energies as t h e func- t i o n o f s h a l l ow-lying accep- t o r concentrations, Nas-, w i t h d i f f e r e n t t r a p p i n g c e n t e r concentrations corre- sponding t o t h e g r a i n sizes of 3, 6 and 12pm, as c o l - l e c t e d i n Table 1.

based on t h i s treatment t h e t y p i c a l l a r g e v a r i a t i o n o f c o n d u c t i b i l i t y o f p o l y s i l i c o n , observed by a number o f i n v e s t i g a t o r s (11 ;13,14,21), c o u l d be c l a r i f ie d q u a n t i t a - t i v e l y (26). Here t h e e x p e r i m e n t a l l y measured and c a l c u l a t e d r e s i s t i v i t i e s as t h e f u n c t i o n o f doping concentrations are depicted. T h i s i s t o v e r i f y whether t h e char- a c t e r i s t i c l a r g e v a r i a t i o n , by a f a c t o r o f

l06(ohm-cmf of

t h e r e s i s t i v i t i e s a r e prop- e r l y r e f l e c t e d by the deep-lying t r a p p i n g centers compensation model. The r e s u l t s a r e shown i n Fig. 5 w i t h t h e ones obtained by Seto ( I l ) , which are t h e p o i n t s of 1.

Curve 2 i s c a l c u l a t e d by t h e same author ( I l ) , w h i l e curve 3 d e p i c t s t h e c a l c u l a t e d values obtained i n t h i s i n v e s t i g a t i o n f o r a p-type f i l m deposited a t 950°C. The p o i n t s 4 are t h e corresponding e x p e r i m e n t a l l y measured data o f t h i s p-type f i l m . Curve 5 represents the c a l c u l a t e d values o f an n-type f i l m (26). I n a l 1 cases good e x p e r i m e n t a l l y measured r e s i s t i v i t i e s can be seen.

10'5 1017 lof9 m21 ACC. Concentration ( c m 3 )

Figure 5: R e s i s t i v i t i e s (ohm-cm) as the f u n c t i o n o f doping con- c e n t r a t i o n (cm-3) f o r 1 : experimental p o i n t o f (10);

2: t h e o r e t i c a l curve of (10);

3: c a l c u l a t e d curve f o r p- type f i l m ; 4: experimental p o i n t s o f p-type f i l m ; 5:

c a l c u l ated curve of n-type f i l m .

(7)

JOURNAL DE PHYSIQUE

TABLE 1

IMPURITY BAND FORMATION

There i s another i n t e r e s t i n g consequence o f t r e a t i n g the t r a p p i n g centers as deep-lying i m p u r i t y - l i k e compensating species. Since t h e i m p u r i t i e s i n cgeneral a r e randomly d i s t r i b u t e d i n the c r y s t a l l a t t i c e t h e average i m p u r i t y separation can be estimated by R = ( 3 / 4 r ~ ~ ~ + ) 1 / 3 , (see Table 1 ) . A c h a r a c t e r i s t i c Bohr radius,

a(*),

representing these ion-ized deep-lying impuri t i e s can be computed by a* = 'fi2K/p*e2 where K i s t h e product o f the absolute and r e l a t i v e d i e l e c t r i c constants and e i s e l e c t r o n i c charge and p* i s t h e h o l e e f f e c t i v e mass. I n a p-type p o l y s i l i c o n , t a k i n g i n t o c o n s i d e r a t i o n t h e above mentioned deep-lying compensating i o n i z e d donor concentrations (see Table 1 )

,

t h e average impuri t y separations a r e R(1) = 3.58, R(2) = 4.58 and R(3) = 5.6 nm f o r c h a r a c t e r i s t i c g r a i n sizes o f 3,6 and 12rim, respec- t i v e l y . The Bohr r a d i u s , c h a r a c t e r i z i n g these deep-lying i o n i z e d States can be given by a(*) = 0.62 nm. Then, f o l l o w i n g t h e arguments of M o t t (8,9), i f the average i m p u r i t y separation, R, and t h e Bohr r a d i u s , a(*), o f t h e i o n i z e d i m p u r i t i e s a r e i n t h e range of: 3a*<R, t h e formation o f a m e t a l l i c i m p u r i t y band can be assumed (9). I n t h i s case t h e overlapping wave f u n c t i o n s o f t h e i o n i z e d i m p u r i t i e s , forming t h e i m p u r i t y band, couTd reach through t h e g r a i n boundaries, s h o r t i n g t h e i r e f f e c t . When t h e Fermi l e v e l i s i n t h e i m p u r i t y band, t h e propagation o f t h e charge c a r r i e r s can be regarded as a d i f f u s i o n process i n a random system. Consequently t h e l a t t i c e p e r i o d i c i t y would l o s e i t s e f f e c t on t h e t r a n s p o r t p r o p e r t i e s r e s u l t i n g i n t h e replacement o f t h e e f f e c t i v e mass w i t h t h e r e s t mass o f t h e charge c a r r i e r s and i n a c h a r a c t e r i s t i c low m o b i l i t y (6,9). I n t h e case o f s i 1 ic o n then t h e c o n d i t i o n o f t h e formation o f an i m p u r i t y band can be given as: 1.19 nm<R. Comparing t h e above mentioned average i m p u r i t y separations (see Table 1) t h e formation o f a m e t a l l i c

i m p u r i t y band can be assumed.

Following M o t t i n t h a t case a c h a r a c t e r i s t i c low m o b i l i t y can be expected t o be approximated by (8,9) :

2a e R~

'min <

6h

Taking i n t o c o n s i d e r a t i o n the above estimated average i m p u r i t y separations these minimum m o b i l i t i e s , i n d i c a t i n g t h e c r o s s i n g o f t h e Fermi l e v e l t h e i m p u r i t y band, would be l e s s than approximately: 32, 53 and 79 c m 2 ~ - 1 s-1 r e s p e c t i v e l y as they are c o l l e c t e d i n Table 1. The e x p e r i m e n t a l l y measured m o b i l i t y minima as i t can be seen i n Fig. 6, are s a t i s f y i n g t h e t r e n d i n d i c a t e d i n Table 1, and Fig. 4 r e l a t e d t o t h e c r o s s i n g o f t h e Fermi l e v e l t h e deep l y i n g l e v e l a t h i g h e r and h i g h e r shallow i m p u r i t y concentrations w i t h decreasing g r a i n sizes. These r e s u l t s m i g h t be considered t o strengthen t h e a p p l i c a b i l i t y o f t h e deep-lying i m p u r i t y nodel and t h e concept o f i m p u r i t y band conduction t o p o l y c r y s t a l l i n e s i l i c o n as w e l l . S i m i l a r phenornena were demonstrated t o e x i s t i n germanium (10,24) and i n mercury t e l l u r i d e

(16).

(8)

,a";@

- # /

-

-

I

:

I

i

I I

- 1 !

1 1 1 1 I I I

lds I d ' Ids

1021 MC. Concentration (cm-3)

t e r i z i n g t h e samples deposited a t 750 and 950°C.

CONCLUSIONS

P o l y c r y s t a l l i n e s i l i c o n f i l m s were deposited by t h e p y r o l y s i s of s i l a n e . A t about 500°C t h e f i l m s were amorphous. I n c r e a s i n g d e p o s i t i o n temperature increased t h e c r y s t a l l i n i t y o f t h e chemical vapor deposited l a y e r s . The t r a n s p o r t p r o p e r t i e s o f these f i l m s were measured t o e l u c i d a t e t h e r o l e o f t h e g r a i n boundaries charac- t e r i z i n g p o l y s i l i c o n f i l m s . The obtained data were analyzed by a deep-lying impu- r i t y l e v e l s model. The g r a i n boundaries introduced dangling bonds were t r e a t e d as compensating d o n o r - l i k e and a c c e p t o r - l i k e i m p u r i t i e s . Then, based on t h e n e u t r a l i t y c o n d i t i o n , t h e p o s i t i o n o f t h e Fermi energy was c a l c u l a t e d , i n t h e case o f d i f f e r e n t deep-lying t r a p p i n g center concentrations, as a f u n c t i o n of s h a l l o w - l y i n g doping concentrations, i n the case o f f i l m s deposited a t 800, 900 and 950°C. T h i s model, accounting s a t i s f a c t o r i l y f o r t h e measured t r a n s p o r t p r o p e r t i e s , l e d t o t h e recogni- t i o n o f t h e p o s s i b l e existance o f m e t a l l i c i m p u r i t y band conduction i n p o l y s i l i c o n . These deep-lying i m p u r i t y bands c o u l d e l u c i d a t e t h e e x p e r i m e n t a l l y observed m o b i l i t y minima, as a f u n c t i o n o f doping concentrations, a t d i f f e r e n t t r a p p i n g center

concentrations. These m o b i l i t y minima, c h a r a c t e r i s t i c t o random systems c o i n c i d e w i t h the crossing o f t h e Fermi l e v e l t h e i m p u r i t y band, created by t h e g r a i n bound- a r i e s introduced t r a p p i n g centers. This model c l a r i f i e s , as w e l l , t h e e x i s t a n c e of s e m i - i n s u l a t i n g p o l y c r y s t a l l i n e s i l i c o n t h e same way as i t was found t o be t h e case i n s e m i - i n s u l a t i n g GaAs.

REFERENCES

T. Yoshihara, A. Yasuoka and H. Abe, J. Electrochem. Soc., Vol. 127, pp. 1603- 1607. (19801.

T.L.-chu, H:C. Mollenkopf and S.S. Chu, J . Electrochem Soc., Vol. 122, pp. 1681- 1689, (1975).

L.M. Eohrath, J. E l e c t r o n i c M a t e r i a l s , Vol. 4, DU. 1207-1227, (1975).

P.H.

an^,

L:M. Ephrath and W.B. ~ o v a k j Appl. Phi;. L e t t . , Vol. -25,

pp.

583- 584. (1974).

T.L: chu, H.C. Mollenkopf and S.S. Chu, J. Electrochem. Soc., Vol. 123, pp. 106- 110, (1976).

K.R. Sarma and M.J. Rice, J r . . J. Electrochem. Soc., Vol. 128, - RP. . . 2647-2650, (1981).

M. Janai, S. Aftergood, R.B. Weil and B. P r a t t , J. Electrochem. Soc., Vol. 128, PP. 2660-2665, ( 1 981

1.

. .

N.F. M o t t and W:D. ~ w o s e , Adv. Phys., Vol. 10, pp. 107-163, (1961).

C. M e r l e t , "Etude Spectroscopique des Niveaux Profonds dans l e s Matériaux a haute r é s i s t i v i t é S i e t GaAsl'. These 3-ième c y c l e . Academie de M o n t p e l l i e r , 10 Ju1 y (1 979).

B.A. Lombos, M. Averous, C. Fau, J . Calas and S. Charar, Can. J . Phys., Vol. 60, pp. 102-108, (1982).

(9)

Cl-206 JOURNAL DE PHYSIQUE

J.Y.W. Seto, J. Appl. Phys., Vol. 46, pp. 5247-5254, (1975).

G. Baccarani, B. Ricco and G. Spadini, J. Appl. Phys., Vol. 49, pp. 5565-5570, ( 1 978).

M.E. Cower and T.O. Sadwick, J. Electrochem. Soc, Vol. 119, pp. 1565-1570, ( 1 972).

A.L. F r i p p , J. Appl

.

Phys., Vol. 46, pp. 1240-1245, (1975).

B.A. Lombos, N.Y. Yemenidjian and M. Averous, Can. J. Phys., Vol. 60, pp. 35- 40, (1982).

B.A. Lombos, M. Averous, C. Fau and J. Calas, Phys. S t a t . S o l . , Vol. 112, ( i n p r i n t ) , (1982).

W. Kern, G.L. Schnable and A.W. F i s h e r , R.C.A. Rev., Vol. 37, pp. 3-7, (1976).

American N a t i o n a l Standard ANSI/ASTM, F76-73, pp. 349-365, (1 975).

M.M. Mandurak, K.C. Saraswat and T . I . Kamins, J. Electrochem. Soc., Vol. 126, pp. 101 9-1 023, ( 1 979).

T . I . Kamins, J. Appl. Phys., Vol. 42, pp. 4357-4365, (1971).

T . I . Kamins, J. Electrochem. Soc., Yol

.

127, pp. 686-690, (1980).

LI. Hwang, J. Appl. Phys., Vol. 36, pp. 315-317, (1980).

N.F. M o t t , J. de Physique Suppl., C5, pp. 51-57, (1980).

A.,G. M i l n e s , "Deep I m p u r i t i e s i n Semiconductors," Publ. Wiley, New York, N.Y.

,

(1 973).

S.M. Sze, "Physics o f Semiconductor Devices," Publ. Wiley, New York, N.Y., (1969).

M.

~ i e t r a n t o n i o , B.A. Lombos and M. Averous, SESCI Montreal-81, ( N a t i o n a l Conference on S o l a r Energy)

,

pp. 71 -76, (1981).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to