• Aucun résultat trouvé

ANALYSIS OF MULTIPLE SLIP IN COPPER TRICRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "ANALYSIS OF MULTIPLE SLIP IN COPPER TRICRYSTALS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00230362

https://hal.archives-ouvertes.fr/jpa-00230362

Submitted on 1 Jan 1990

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ANALYSIS OF MULTIPLE SLIP IN COPPER TRICRYSTALS

T. Ohashi

To cite this version:

T. Ohashi. ANALYSIS OF MULTIPLE SLIP IN COPPER TRICRYSTALS. Journal de Physique

Colloques, 1990, 51 (C1), pp.C1-593-C1-598. �10.1051/jphyscol:1990193�. �jpa-00230362�

(2)

COLLOQUE DE PHYSIQUE

Colloque Cl, supplement au nol, Tome 51, janvier 1990

ANALYSIS OF MULTIPLE SLIP IN COPPER TRICRYSTALS

T. OHASHI

Hitachi Research Laboratory, Hitachi, Ltd. 4 0 2 6 , Kuji, Hitachi, 3 1 9 - 1 2 , Japan

A b s t r a c t - . . -..-- Non-uniform m u l t i p l e s l i p i n t r i c r y s t a l s i s analysed by a method o f continuum mechanics. A n a l y s i s r e s u l t s show t h a t compat i b i l i t y requirements on t h e g r a i n boundary planes and on the e n t i r e t r i c r y s t a l specimen lead t o d i f f e r e n t types o f m u l t i p l e s l i p . A mechanism f o r m u l t i p l e s l i p i s discussed from t h e view p o i n t o f excess s t r e s s which i s generated by t h e s l i p on t h e primary system.

1. I n t r o d u c t i o n

-.-p. - -. . - .

M u l t i p l e s l i p near g r a i n boundaries p l a y s an Important r o l e I n d e t e r n i n a t i c n o f the mechanical p r o p e r t i e s o f p o l y c r y s t a l s . So f a r , t h e m u l t i p l e s l i p phenomenon has been s t u d i e d mainly w i t h bicrystals/l/-/4/; but, s l i p near j u n c t ~ o n s o f g r a i n boundaries, such as g r a i n boundary t r i p l e l i n e s o r quadruple p o i n t s , i s more complicated and d i v e r s i f i e d than t h a t i n b i c r y s t a l s / 5 / , / 6 / . I n t h e present paper, s l i p deformation o f copper t r i c r y s t a l s i s n u m e r i c a l l y analysed t o examine shear s t r a i n d i s t r i b u t i o n on p r i m a r y and secondary s l i p systems. S t r e s s f i e l d caused by non-uniform s l i p i s discussed, too.

2. Method o f numerical analys_ls

- -- --

The Schmid's law i s used as t h e a c t ~ v a t i o n c o n d i t i o n f o r twelve s l i p systems Cl113 - i110). I f t h e s t r e s s components i n the g l o b a l c o o r d ~ n a t e system a r e denoted as o

,

a n d ' t h e c r i t i c a l resolved shear s t r e s s (abbreviated as CUSS) f o r the s l i p system n i s w r i t t e n as 8'"'

,

the Schmid c o n d i t i o n I S given by t h e f o l l o w i n g equations.

where

P,':: ,,,

= 112 {

67;

(kl + U':!

b'rt

( h ,

I

( 3 )

S u b s c r i p t s and s u p e r s c r i p t s i n parentheses denote t h e g r a i n number and s l i p system, r e s p e c t ~ v e l y . I f r o t a t i o n o f t h e c r y s t a l o r i e n t a t i o n i s neglected, which i s acceptable w h i l e the deformation i s small, the c o n s t i t u t i v e equation f o r each c r y s t a l g r a i n i s w r i t t e n as f o l l o w s / W , / ? / .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1990193

(3)

Cl-594 COLLOQUE DE PHYSIQUE

Here, S,

,'EJ,

denotes e l a s t i c compl iance.

GPmJ

I S t h e s t r a i n hardenrns c o e f f i c i e n t which d e f i n e s t h e r e l a t i o n between increments o f t h e CRSS and p l a s t i c shear s t r a i n on s l i p systems.

The CRSS i s assumed t o be a f u n c t i o n o f d i s l o c a t i o n d e n s i t r e s on t h e twelve s l i p systems p'"' ( m= I -12

1.

Here, 9 o i s a constant and '""'is a constant m a t r i x which i s determined i n accordance w i t h t h e v a r i a t i o n o f r e a c t i o n between d i s l o c a t i o n s on s l i p systems n and m. The f u n c t i o n G i s g i v e n b y :

Here,

-

b i s t h e magnitude o f Burgers vector, i s e l a s t i c shear modulus and a i s a numerical f a c t o r o f o r d e r 0. l.

I t i s assumed t h a t d i s l o c a t i o n sources on a c t i v e s l i p systems e m i t d i s l o c a t i o n loops, and they move f r e e l y i n t h e manner o f f r e e f l i g h t motion u n t i l they a r e trapped by o b s t a c l e s /8/. I f i t i s a l s o assumed t h a t the shape o f the trapped d i s l o c a t i o n loops IS r e c t a n g l a r w i t h aspect r a t i o a , then t h e increment o f shear s t r a i n and d i s l o c a t i o n d e n s i t y on t h e s l i p system a r e c o r r e l a t e d as f o l lows.

L denotes t h e mean f r e e f l i g h t d i s t a n c e o f t h e d i s l o c a t i o n segments. For t h e mean f r e e f l i g h t distance, Seeger's model i s used w i t h a smal l m o d i f i c a t i o n .

- . . - - - s i n g l e s l i p region

(10) A / { Z 7'"' - ( 7'-

A

/ L , )

1 ...

m u l t i p l e s l i p region

Here, CO and A a r e constants. 7 D denotes t h e shear s t r a i n a t which m u l t i p l e s l i p occurs. From equat rons (7)-(9)

h"''

i s given as :

The f i n i t e element method i s used f o r numerical analysis. Fundamental equations f o r the method are.

c

K

l {h

=

{h. C K 1

= Z Ckl,

where.

;

and denote increments o f nodal displacement and nodal force. M a t r i x B i s a shape f u n c t i o n o f each element. D i s t h e matrrx expression o f

D,:,;

which i s given by equation (5).

Propagation o f s l i p i s analysed by an incremental procedure.

(4)

Fig. l Geometries o f t r i c r y s t a l s . (a) Symmetric type and (b) pseudo-compat i b l e type.

Fig. 2(a) Crystal o r i e n t a t ions for symmetric t r i c r y s t a l . Primary and c r i t i c a l s l i p

A systems are indicated by sets o f black and open symbols.

Fig. 2(b) Crystal o r i e n t a t ions f o r pseuao-compat i b l e t r i c r y s t a l S. Primary and conjugate s l i p systems are indicated by s e t s o f black and open symbols.

3. T r i c r y s t a l models

------p

Two special t r i c r y s t a l s are considered. The f i r s t one i s shown i n f i g u r e l(a). Crystal o r i e n t a t i o n s f o r i t s grains a r e given i n f i g u r e 2(a). The c r y s t a l o r i e n t a t i o n f o r g r a i n 2 has m i r r o r symmetry w i t h g r a i n I, w i t h respect t o the yz plane. Normal vector o f the s l i p plane and s l i p d i r e c t i o n f o r the primary s l i p syste-ms p of grains 1 and 2 l i e on the x y plane. Moreover,

Here, U , and b , denote u n i t vectors o f the s l i p plane normal and s l i p d i r e c t on, respect lvely. When o n l y the'primary s l i p system i s active. s t r a i n component is,

(5)

Cl-596 COLLOQUE DE PHYSIQUE

According t o equations (3) and (14) a l l s t r a i n components a r e i d e n t i c a l f o r b o t h g r a i n s when 7

:!:

=

( 0 1

7 This means t h a t the compat i b i l i t y requl rement i s n a t u r a l l y s a t i s f i e d and no mutual c o n s t r a i n t o f deformation between g r a i n s 1 and 2 w i l l occur.

C r y s t a l o r i e n t a t i o n o f g r a i n 3 i s t h a t f o r a n / 2 r o t a t i o n o f g r a i n 1 about the y axis.

S l i p plane normal and s l ~ p d i r e c t i o n a r e p a r a l l e l t o t h e yz plane. Therefore, t h e primary system i n g r a i n 3 i s n e i t h e r continuous t o t h a t i n the g r a i n 1, nor symmetric t o i t w i t h respect t o the g r a i n boundary between g r a i n s 1 and 3 ( a b b r e v i a t e d as g r a i n boundary 1-3, h e r e a f t e r ). Therefore, c o m p a t i b i l i t y requirements w i l l cause m u l t i p l e s l i p i n t h e v i c i n i t i y o f t h i s g r a i n boundary plane.

The same w i l l occur between g r a i n s 3 and 2. On t h e o t h e r hand, as a whole, t h e geometrical

r e l a t i o n s h i p of t h e 3 p r i m a r y s l i p systems i n each g r a i n have a symmetric r e l a t i o n s h i p w i t h respect t o yz plane. Then, t h i s t r i c r y s t a l i s r e f e r r e d t o as a symmetric type.

T h e s e c o n d c r y s t a l o r i e n t a t i o n c o n s i d e r e d h e r e i s s h o w n i n f i g u r e 2(b). I n t h i s c a s e , t h e o r i e n t a t i o n r e l a t i o n s h i p s between g r a i n s 1 and 2 and between 2 and 3 a r e symmetric w i t h respect t o t h e yz and zx planes, r e s p e c t i v e l y . The primary system f o r g r a i n 3 c o i n c i d e s w i t h t h a t f o r g r a i n 1.

Therefore, i f t h e s t r u c t u r e o f t r i c r y s t a l model i s chosen as i n f i g u r e 1 (b), compatibi l i t y c o n d i t i o n i s s a t i s f i e d on a l l g r a i n boundary planes. This t r i c r y s t a l i s r e f e r r e d t o as a pseudo- compat i b l e type.

The f o l l o w i n g data a r e used f o r b o t h types o f t r i c r y s t a l s .

E l a s t ~ c constants A = 4 p m

S,, = 5, S,, = 1.5 p . = 1 x 1 0 9 / m 2

s4*

= 13 X l o - " m ' / N

e o

=

o

b

= 2.556 x 1 0 - ' ~ m

R'""'=

l ( n,m = l

...

12 )

a = l L, = 1000 p m

The t r i c r y s t a l s a r e d i v i d e d i n t o 784 composite elements w i t h e i g h t nodes. The g r a i n boundary planes a r e t r e a t e d as zero t h i c k n e s s ~ n t e r f a c e s on which c o n t i n u i t y of displacement and t r a c t i o n a r e maintained. External load i s given t o t h e specimens by a p p l i c a t i o n o f u n i f o r m displacement i n t h e y d i r e c t i o n on t h e i r upper and bottom surfaces.

4.1 Symmetric t r ~ c r y s t a l a) Ear l y deformat ion

D i s t r i b u t i o n o f shear s t r a i n on t h e primary s l i p system i n an e a r l y stage o f deformation i s shown i n f i g u r e 3(a). The shear s t r a i n I S small i n t h e v i c i n i t y o f t h e t r i p l e j u n c t i o n and increases a l o n g t h e g r a i n boundary 1-2. The minimum and maximum o f t h e shear s t r a i n a r e 0.33x10-\and

2 . 5 7 ~ 1 0 , r e s p e c t i v e l y . The r a t i o o f t h e maximum t o t h e minimum i s about 7.8.

The process f o r f o r m a t i o n o f t h i s d i s t r i b u t i o n rs thought t o be as f o l l o w s ; on t h e g r a i n

boundaries 2-3 and 1-3, lack o f c o m p a t i b i l i t y causes supression o f a c t i v a t i o n o f t h e primary s l i p systems near t h e g r a i n boundaries and r e s u l t s i n d i s t r i b , u t i o n o f s m a l l e r shear s t r a i n around t h e t r i p l e j u n c t i o n . As compensation f o r t h i s . a b i g g e r shear occurs along t h e g r a i n boundary 1-2.

F i g u r e 3(b) shows d i s t r i b u t i o n o f von Mises's e q u i v a l e n t s t r e s s . This s t r e s s i s a measure o f e l a s t i c s t r a i n energy. Figures 3 (a) and (b) i n d i c a t e t h a t t h e von Mises's s t r e s s r e f l e c t s t h e e x t e n t o f shear s t r a i n g r a d i e n t on t h e primary s y s t e m .

b) Subsequent deformatlon

D ~ s t r i b u t ~ o n s o f shear s t r a l n on t h e prlmary and c r i t ~ c a l system a t a l a t e r stage o f deformatlon a r e glven ~n f l g u r e s 4(a) and (b). The q ~ a l ~ t a t i v e aspect of t h e shear s t r a ~ n

d ~ s t r ~ b u t i o n on t h e prlmary system remains unchanged. The minlmum and maxlmum o f t h e st:a,n a r e l. 04x10-" and 6 . 8 6 x 1 0 - ~

.

The r a t 1 0 of t h e max lmum t o the mlnlmum I s a b o u t 6.6.

Regard~ng th e c r ~ t r c a l system w h ~ c h I S activated along t h e g r a i n b o u n d a r ~ e s 1-3 and 2-3, the magn~tude o f the shear s t r a ~ n I S one o r d e r s m a l l e r than t h a t on t h e prlmary system. Compar~son o f f ~ g u r e s 3(b) and 4(b) suggests t h a t a c t ~ v a t r o n o f t h e c r ~ t i c a l system p r o v ~ d e s a release mechanism f o r s t r a ~ n energy t h a t I S accumulated through the n o n - u n ~ f o r m s l ~ p on t h e prlmary systems.

(6)

No. Y 1 0.33 X 1 0 - '

2 0.58

3 0 . 8 3

4 1.08

5 1 . 3 3

6 1.58

7 1.83

8 2 . 0 7

9 2.32

10 2.57

No. U

1 1 . 5 1 HPa 2 1 . 5 2 3 l. 54

4 1.56

5 1 . 5 7

6 1.59

Fig.3 (a) Shear s t r a i n on t h e primary s l i p system and (b) e q u i v a l e n t s t r e s s i n the

symmetric t r i c r y s t a l a t an e a r l y stage of deformation. The mean s t r e s s and t h e mean s t r a i n i n t h e Y d i r e c t ion a r e 1.52 MPa and 1.31 X 10-" r e s p e c t i v e l y .

No. 7

1 1.04 X 1 0 . ~ 2 1 . 6 9

3 2.33

4 2 . 9 8

5 3.63

6 4 . 2 7 7 4 . 9 2 8 5 . 5 7 9 6. 21

10 6.86

No.

1 0.23TX 1 0 - ~

2 0.46

3 0.68

4 0 . 9 1 5 1 . 1 4 6 1 . 3 7

7 1.59

8 1.82

9 2.06

10 2. 28

Fig.4 (a) Shear s t r a i n on t h e primary s l i p system and (b) t h e c r i t i c a l s l i p system i n t h e symmetric t r i c r y s t a l a t a l a t e r stage o f deformatron. The mean s t r e s s and t h e mean s t r a i n i n t h e Y d i r e c t ion a r e 1.55 MPa and 2.49 X 10-5, respect i v e l y .

4 . 1 Pseudo-compatible t r i c r y s t a l

Figures 5(a) and (b) show d i s t r i b u t i o n s o f shear s t r a i n on t h e primary and conjugate system i n t h e pseudo-compatible type t r i c r y s t a l . As a l r e a d y mentioned, deformation c o m p a t i b i l i t y on t h e g r a i n boundary planes i s assured through t h e symmetry o r c o n t i n u i t y o f t h e primary s l i p systems

i n t h r e e c r y s t a l grains. The reason f o r t h e non-uniform d i s t r i b u t i o n o f t h e shear s t r a i n on t h e primary system and a c t i v a t i o n o f t h e secondary one i s discussed below.

Because t h e s l i p d i r e c t i o n s f o r t h e primary systems i n t h e t h r e e g r a i n s a r e p a r a l l e l t o t h e xy plane, on l y t h r e e s t r a i n components E *,, E and E

..

should be considered. When the shear s t r a i n on t h e p r i m a r y s l i p systems i n t h r e e g r a i n s are i d e n t i c a l , magnitudes o f t h e s t r a i n components

E x i and E

..

,in each g r a i n a r e i d e n t i c a l ( r e f e r t o equat ions (3) and (15) ). But, from equation (15)

and f i g u r e 2(b) E

..

i s d e r i v e d as:

Generation o f t h i s d l s c o n t l n u l t y and t h e c o n d ~ t l o n t h a t t h e upper and lower surfaces o f t h e specimen a r e kept f l a t b r i n g s about the non-uniform slip on the primary system. W i t h a symmetr~c b ~ c r y s t a l , Hook and H i r t h / 3 / have a l r e a d y r e p o r t e d t h e e f f e c t o f t h e ~ n - p l a n e shear s t r a l n component. The,;

experimental r e s u l t s f o r s l i p I lne d r s t r i b u t Ion and the present r e s u l t s a r e essent ~ a l l y t h e same.

The d l s c o n t l n u l t y o f the in-plane shear s t r a ~ n causes a mechanrcal t n t e r a c t ~ o n betueen the component gralns, too. For d ~ s c u s s l o n , assume t h a t g r a i n 2 i s c u t out o f the specimen and u n i f o r m shear on t h e prlmary s i i p systems occurs I n t h r e e grains. Because t h e i n - p l a n e shear s t r a l n i n g r a l n 2 occurs In t h e opposrte d i r e c t r o n t o t h a t i n t h e remaining p a r t , then t h e shape o f g r a i n 2 i s not t h e same as t h e shape o f t h e space i t once o c c u p ~ e d next t o g r a i n s 1 and 3. Thrs disagreement I n shear d e f o r m a t ~ o n causes g r a r n 2 be cramped by g r a i n 1 and 3 when t h e t r ~ c r y s t a l I S deformed as one c o n t ~ n u o u s body. Thrs cramping e f f e c t produces an i n t e r n a l s t r e s s f i e l d .

(7)

COLLOQUE DE PHYSIQUE

No. 7

1 3 . 0 4 X 1 0 ' ~

2 3.32

3 3 . 6 0

4 3.88

5 4.16

6 4.44

7 4.72

8 5 . 0 0

9 5.28

No. 7

1 0.10 10.'

2 0.21

3 0.31

4 .0.41

5 0.52

6 0.62

7 0.73

8 0.83

9 0.93

Fig.5 (a) Shear s t r a i n on t h e primary s l i p system and (b) the conjugate s l i p system i n the pseudo-compatible t r i c r y s t a l . The mean s t r e s s and the mean s t r a i n i n the y

d i r e c t ion a r e 1.74 MPa and 2.31 X 10-5, respectively.

Fig.6 Stress d i s t r i b u t i o n i n t h e unloaded pseudo-compatible t r i c r y s t a l . (a) Tensile s t r e s s and (b) compress i v e stress.

To examine t h e i n t e r n a l stress, the specimen i s unloaded u n t i l the t o t a l f o r c e on the loading surfaces decreases t o zero. D i s t r i b u t i o n o f the maximum and minimum p r i n c i p a l stresses i n the unloaded specimen i s given i n f i g u r e 6. Through t h e t r i p l e j u n c t i o n there a r e s l a n t ~ n g bands i n which t e n s i l e s t r e s s p a r a l l e l t o the bands occur. The d i r e c t i o n of the i n t e r n a l s t r e s s i n the t e n s i l e band r o t a t e s toward t h e X and - X axes. On t h e other hand. Figure 2(b) shows t h a t i n g r a i n s 1 and 3, r o t a t i o n o f t h e s t r e s s a x i s toward t h e X a x i s favors the a c t i v a t i o n o f the conjugate system. And a c t u a l l y . i n the v i c ~ n i t i e s o f t h e t r i p l e line, the d i r e c t i o n o f t h e region o f double s l i p coincides w i t h t h e d i r e c t ion o f the band. These f a c t s suggest t h a t the secondary s l i p system i n t h i s t r i c r y s t a l i s a c t i v a t e d on account o f t h i s i n t e r n a l stress.

Zaoui and CO-workers/5/./6/ have reported a j u n c t i o n type m u l t i p l e s l i p regton which i s not generated along the g r a i n boundary plane, but propagates i n t o t h e g r a i n i n t e r i o r from g r a i n boundary junctions. The Region o f secondary s l i p shown i n f i g u r e 5(b) i s s i m i l a r t o the j u n c t i o n t y p e m u l t i p l e s l i p region. Thus, n o t o n l y t h e c o m p a t i b i l i t y requirementon g r a i n boundaries, but a l s o the cramping e f f e c t which causes p l a s t i c m u l t i p l e s l i p i n p o l y c r y s t a l s must be taken note of.

5. Reference - -. .

/l/ Livingston, J.D. and Chalmers,

B.,

Acta Met., 5(1957), 322.

/2/ Hauser, J.J., and Chalmers, B., ibid., 9(1961), 802.

/3/ Hook,

R.E.,

and H i r t h , J.P., ibid., 15(1967), 535.

/4/ Ohashi. T.. Trans. Japan I n s t . Met., 28(1987), 906.

/5/ Zaoui, A., Model l in9 smal l deformat ions o f p o l y c r y s t a l s , ed. Gi t t u s , j. and Zarka. J., El sev i e r Appl Sci. Pub., London(1986), 187.

/6/ Rey, C., Mussot. P., and Zaoui, A., Grain boundary s t r u c t u r e and r e l a t e d phenomena. Suppl.

Trans. Japan Inst. Met.. 27(1986). 867.

/7/ H i l l , R.. J. Mech. Phys. Sol.. 14(1966). 95.

/8/ Kuhlmann-Wi lsdorf, D.. Met. Trans.. 16A(1985). 2091.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to