• Aucun résultat trouvé

DIFFUSION INDUCED GRAIN BOUNDARY MIGRATION IN Ni(Zn) POLYCRYSTALS

N/A
N/A
Protected

Academic year: 2021

Partager "DIFFUSION INDUCED GRAIN BOUNDARY MIGRATION IN Ni(Zn) POLYCRYSTALS"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00228071

https://hal.archives-ouvertes.fr/jpa-00228071

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DIFFUSION INDUCED GRAIN BOUNDARY MIGRATION IN Ni(Zn) POLYCRYSTALS

R. Fournelle, B. Giakupian, W. Gust, B. Predel

To cite this version:

R. Fournelle, B. Giakupian, W. Gust, B. Predel. DIFFUSION INDUCED GRAIN BOUNDARY

MIGRATION IN Ni(Zn) POLYCRYSTALS. Journal de Physique Colloques, 1988, 49 (C5), pp.C5-

593-C5-598. �10.1051/jphyscol:1988574�. �jpa-00228071�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, suppl6ment au nO1O, Tome 49, octobre 1988

DIFFUSION INDUCED GRAIN BOUNDARY MIGRATION IN Ni(Zn) POLYCRYSTALS

R.A. FOURNELLE, B. GIAKUPIAN*

,

W. GUST" and B. PREDEL*

Dept. of Mechanical Engineering, Marquette University, Milwaukee, WI 53233, U.S.A.

ax-~lanck-~nstitut

fiir Metallforschung and Institut fiir Metallkunde, Seestrasse 92, 0-7000 Stuttgart 1, F.R.G.

A b s t r a c t

-

D i f f u s i o n induced g r a i n boundary m i g r a t i o n (DIGM) has been i n v e s t i g a t e d i n t h e Ni(Zn)system f o r t h e f i r s t time by z i n c i f i c a t i o n o f pure Ni p o l y c r y s t a l s . The morphology o f t h e r e a c t i o n has been s t u d i e d on s e c t i o n s p a r a l l e l and perpendicular t o t h e specimen surface. I n a d d i t i o n t o DIGM, d i f f u s i o n induced r e c r y s t a l l i z a t i o n (DIR) has a l s o been observed. The experimental r e s u l t s show t h a t t h e boundary m i g r a t i o n v e l o c i t y d u r i n g DIGM i s s t r o n g l y dependent on t h e annealing temperature. Also, t h e v e l o c i t y depends on t h e depth below t h e n i c k e l surface. The g r e a t e r t h e depth, t h e s m a l l e r t h e v e l o c i t y . Concentration p r o f i l e s have been measured by energy d i s p e r s i v e X-ray a n a l y s i s (EDX). The Zn c o n c e n t r a t i o n depends on both t h e annealing c o n d i t i o n s and t h e depth below t h e surface. The c o n c e n t r a t i o n p r o f i l e s were used as t h e b a s i s f o r c a l c u l a t i n g t h e d r i v i n g force, t h e g r a i n boundary d i f f u s i v i t y and t h e g r a i n boun- dary m o b i l i t y .

1. I n t r o d u c t i o n

-

Under c e r t a i n c o n d i t i o n s t h e d i f f u s i o n o f s o l u t e atoms i n t o a pure metal along a g r a i n boundary (GB) can cause t h e boundary t o m i g r a t e l e a v i n g behind an a l l o y e d zone (AZ). This phenomenon, which i s r e f e r r e d t o as d i f f u s i o n induced g r a i n boundary m i g r a t i o n (DIGM), has a l r e a d y been s t u d i e d i n several b i n a r y systems; e.g., Fe(Zn) C1,21, Cu(Zn) C33, Cu(Au), Ag(Au) C41, W(Cr) C51 and Ag(Pd) [63.

A t t h e s t a r t o f DIGM, a l l o y e d zones (AZs) i n t h e form o f bulges growing i n t o g r a i n i n t e r i o r s a r e observed t o form a t v a r i o u s places along GBs near t o o r a t t h e metal surface. W i t h i n t h e AZs t h e enrichment o f a l l o y element, which i s u s u a l l y t r a n s p o r t e d t o t h e GBs through t h e vapor phase, i s d e t e c t a b l e by means o f c o n c e n t r a t i o n measure- ments. How h i g h t h i s c o n c e n t r a t i o n i s depends on t h e experimental c o n d i t i o n s .

GB m i g r a t i o n d u r i n g DIGM can be d i v i d e d i n t o two types, t h a t i n which o n l y forward m i g r a t i o n occurs and t h a t i n which an o s c i l l a t i n g back and f o r t h motion i s observed [7]. I n a d d i t i o n , t h e phenomenon o f d i f f u s i o n induced r e c r y s t a l l i z a t i o n (DIR), i n which f i n e g r a i n s w i t h a h i g h s o l u t e atom concentration form on t h e metal surface, has been found t o occur. These f i n e g r a i n s grow i n t h e same way as t h e AZs f o r DIGM, exhi b i t i n g both forward and o s c i 1 la t i n g GB motion. The GB m i g r a t i o n v e l o c i t i e s have been measured f o r v a r i o u s systems as a f u n c t i o n o f t h e annealing temperatures and times [I-3,8], and i t has been found t h a t t h e v e l o c i t y increases w i t h i n c r e a s i n g tem- perature. No d e f i n i t e i n f o r m a t i o n on t h e i n f l u e n c e o f t h e depth below t h e metal s u r - f a c e on the GB m i g r a t i o n e x i s t s . This has been s t u d i e d f o r t h e f i r s t time i n t h e pre- s e n t work.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988574

(3)

C5-594 JOURNAL DE PHYSIQUE

Concentration p r o f i l e s have been determined f o r t h i n f o i l s as w e l l as f o r t h i c k sam- p l e s . A c l e a r decrease o f t h e s o l u t e atom c o n c e n t r a t i o n w i t h i n c r e a s i n g depth below t h e s u r f a c e has been shown [I-31. The GB d i f f u s i v i t y and m o b i l i t y i n DIGM boundaries have been c a l c u l a t e d using t h e c o n c e n t r a t i o n p r o f i l e s f o r v a r i o u s systems [I-31. Both q u a n t i t i e s increase e x p o n e n t i a l l y w i t h temperature. With reference t o t h e d r i v i n g f o r c e f o r DIGM, no d e f i n i t i v e statements have y e t been made. It has been proposed t h a t t h e d r i v i n g f o r c e f o r GB m i g r a t i o n i s m a i n l y o f chemical n a t u r e [9].

2. Experimental D e t a i l s

-

The p o l y c r y s t a l l i n e Ni (3N7 m e t a l l i c p u r i t y , 3N4 t o t a l p u r i t y ) used was i n t h e form of 9 mm diameter d i s k s about 1 mm t h i c k . The d i s k s were c u t from a Ni r o d by spark erosion, cleaned, ground and polished. They were then annealed f o r 18 h a t 1073 K i n q u a r t z g l a s s capsules evacuated t o 1 x Pa ( 8 x 1 0 ' ~ T o r r ) and subsequently cooled s l o w l y i n a i r . With t h i s treatment t h e g r a i n s a t t a i n e d a s i z e s u i t a b l e f o r DIGM measurements. Powder o f a s i n t e r e d Ni

-

50 a t . % Zn a l l o y served as a Zn source.

The p o l y c r y s t a l l i n e Ni specimens and t h e Zn source were annealed i n evacuated q u a r t z g l a s s capsules a t v a r i o u s temperatures i n t h e range from 721 t o 973 K f o r v a r i g u s l e n g t h s of time. The capsules were quenched i n water w i t h o u t breaking i n o r d e r t o a v o i d p o s s i b l e undesirable influences o f water on t h e specimen surface. For f u r t h e r s t u d i e s t h e samples were c a r e f u l l y p o l i s h e d and subsequently etched ( 7 ml a c e t i c acid, 27 ml 65% n i t r i c acid, 7 ml d i s t i l l e d water

[lo])

f o r examination by l i g h t and scanning e l e c t r o n microscopy (LM, SEM)

.

3. Experimental Results

-

M i g r a t i o n o f GBs c o u l d c l e a r l y be seen on a l l samples w i t h t h e t y p e o f m i g r a t i o n being o f two main types, o r d i n a r y and o s c i l l a t i n g . For o r d i n a r y m i g r a t i o n , t h e GB can m i g r a t e i n e i t h e r one (Fig.1) o r b o t h (Fig.2) d i r e c t i o n s away from i t s o r i g i n a l l o c a t i o n . For t h e l a t t e r case t h e m i g r a t i n g GB o f t e n e x h i b i t e d an

"S" shape (Fig.2). For t h e o s c i l l a t i n g t y p e o f m i g r a t i o n an a l t e r n a t i n g f o r w a r d and backward m i g r a t i o n o f t h e GB occurs.

I n a d d i t i o n t o t h e above two types o f GB m i g r a t i o n , DIR was observed d u r i n g sample p r e p a r a t i o n . The r e g i o n s i n which DIR had occurred c o n s i s t e d o f f i n e Zn r i c h g r a i n s d i s t r i b u t e d over t h e e n t i r e sample s u r f a c e and c o u l d a l r e a d y be seen w i t h t h e l i g h t microscope a f t e r a l i g h t p o l i s h . With f u r t h e r p o l i s h i n g t h e DIGM morphology appeared a b r u p t l y a t a c e r t a i n depth z below t h e sample surface. Some f i n e DIR g r a i n s c o u l d s t i l l be seen i n t h e m i c r o s t r u c t u r e w i t h most o f these b e i n g on t h e GBs (Fig.3). The number o f Zn r i c h DIR g r a i n s became smaller and s m a l l e r w i t h f u r t h e r p o l i s h i n g , and t h e o r i g i n a l GBs c o u l d be more and more c l e a r l y seen. F i n a l l y , none o f t h e o r i g i n a l f i n e g r a i n e d s t r u c t u r e was l e f t , and o n l y t h e o r i g i n a l GBs w i t h t h e i r AZs remained.

For t h e d e t e r m i n a t i o n o f t h e t r u e average AZ w i d t h i ( d i s t a n c e from o r i g i n a l GB l o c a - t i o n t o t h e m i g r a t i n g boundary) t h e method o f Luck [ll] was used. According t o t h i s method

where R 1 i s t h e average o f t h e apparent AZ w i d t h s w'.

The GB m i g r a t i o n v e l o c i t y v was determined from t h e slopes o f t h e i4 versus t graphs (Fig.4), where t i s t h e annealing time. Because d i f f e r e n t average w i d t h s fi a r e ob- served f o r d i f f e r e n t depths z, t h e average AZ w i d t h was f i r s t determined as a f u n c - t i o n o f t h e depth below t h e sample s u r f a c e (Fig.5). Subsequently, t h e GB m i g r a t i o n v e l o c i t y a t v a r i o u s temperatures f o r d i f f e r e n t depths was determined from these curves (Fig.6). For a given temperature t h e v e l o c i t y v decreases w i t h i n c r e a s i n g depth z such t h a t a l i n e a r r e l a t i o n s h i p between v and t h e f u n c t i o n l/(az+b) i s found.

Here a and b a r e a d j u s t a b l e parameters.

(4)

F i g . 1 Fig.2 Fig.3

Micrograph showing DIGM i n Micrograph showing t h e DIR. Fine grained s u r f a c e o n l y one d i r e c t i o n from t h e S-mechanism f o r DIGM. 18 h l a y e r along g r a i n bounda- o r i g i n a l g r a i n boundary. a t 775 K, z = 10 vm. r i e s observed a t a depth

195 h a t 721 K, z = 10 vm. z = 5 pm below t h e surface.

AZ = a l l o y e d zone. 1080 min a t 775 K.

Fig.4

Measurements o f t h e m i g r a t i o n d i s t a n c e as a f u n c t i o n of t h e annealing t i m e f o r several d i f f e r e n t depths below t h e specimen s u r f a c e a t 911 K.

t 9 I

Fig.5

Measurements o f t h e m i g r a t i o n d i s t a n c e as a f u n c t i o n o f t h e depth below t h e specimen s u r f a c e a t 911 K.

Concentration p r o f i l e s , which g i v e t h e Zn c o n c e n t r a t i o n i n t h e AZs as a f u n c t i o n o f t h e depth below t h e sample surface, were determined u s i n g energy d i s p e r s i v e X-ray a n a l y s i s (EDX). The p r o f i l e s (Fig.7) show an exponential decrease w i t h i n c r e a s i n g depth. I n each AZ t h r e e measurements, from which i t was hoped t h a t a d d i t i o n a l i n f o r - mation about whether and how t h e Zn c o n c e n t r a t i o n w i t h i n a c e r t a i n a l l o y e d zone changed, were made. However, these measurements d i d n o t p r o v i d e any e x a c t d e t a i l s about whether t h e Zn content w i t h i n an AZ remains constant o r whether i t changes

r e g u l a r l y i n any way.

(5)

C5 -5 96 JOURNAL

DE

PHYSIQUE

Fig.6

M i g r a t i o n v e l o c i t y as a f u n c t i o n o f t h e depth below t h e ~ u r - f a c e a t several annealing tempe- r a t u r e s .

Fig.7

Concentration p r o f i l e s o f specimens z i n c i f i d a t several annealing temperatures and times.

xo Iwt?/~Zn)

973K 2h L6.8

o 911K 5h 5.5

A 858K 10h 9.1 n 721K 195h 19.8

* o A exp.

caIc.

0

0 53 100 150

z (pml

*---I

-

-1co

I

i --'\--fl=\ 7 ( 3 rn)

I

Fig.8

\'

D r i v i n g f o r c e as a f u n c t i o n o f t h e annealing temperature f o r several d i f f e r e n t depths below t h e sur- f ace.

25 -300

700 800 900 1000

T (Kl

With t h e a i d o f t h e c o n c e n t r a t i o n p r o f i l e s , t h e d r i v i n g force, d i f f u s i v i t y and m o b i l - i t y can be determined. For t h e d e t e r m i n a t i o n of t h e d r i v i n g force AG t h e r e l a t i o n - ship,

was used [2]. Here xzn i s t h e mole f r a c t i o n o f Zn a t v a r i o u s depths. Fig.8 g i v e s t h e dependence of t h i s d r i v i n g force on t h e temperature f o r v a r i o u s depths.

A mass balance equation was used by A. Bogel f o r c a l c u l a t i n g t h e d i f f u s i v i t y as t h e t r i p l e product s6Db [12]. From t h i s equation t h e f o l l o w i n g equation r e s u l t s :

(6)

1

l o g x ( z ) = l o g xo

- mb m

. z .

I n 10

Here x ( z ) i s t h e s o l u t e atom c o n c e n t r a t i o n immediately behind t h e GB a t a depth z,xo i s t h e s o l u t e atom c o n c e n t r a t i o n on t h e surface, v(z! i s t h e m i g r a t i o n v e l o c i t y a t t h e depth z, s i s t h e segregation f a c t o r , 6 i s t h e g r a i n boundary w i d t h and Db i s t h e g r a i n boundary d i f f u s i o n c o e f f i c i e n t . Consequently a l o g x ( z ) versus

z

p l o t should g i v e a s t r a i g h t l i n e from whose slope t h e s6Db values can be determined.

Values o f s6Db obtained i n t h i s way a r e presented i n Fig.9.

The c a l c u l a t i o n o f t h e m o b i l i t y M i s c a r r i e d o u t u s i n g t h e equation,

where Vm i s t h e molar volume [2]. The Arrhenius p l o t (Fig.9) shows t h e temperature dependence o f M.

4. Discussion

-

Consideration o f t h e R versus z diagram (Fig.5) shows unexpectedly t h a t two of t h e curves i n t e r s e c t one another. T h i s i n t e r s e c t i o n may be caused by t h e o s c i l l a t i n g mechanism of GB m i g r a t i o n mentioned p r e v i o u s l y , o r by t h e i n f l u e n c e o f oxygen. When t h e GB m i g r a t i o n o s c i l l a t e s t h e GB f i r s t migrates i n one d i r e c t i o n en- r i c h i n g t h e AZ i n Zn. Then i t pauses, migrates backward, pauses, and then m i g r a t e s forward again, e t c . If t h e time and t h e temperature of t h e f i r s t pause a r e d i f f e r e n t from sample t o sample f o r t h i s process, then i t would be imaginable t h a t t h e R versus z curves c o u l d i n t e r s e c t one another. The presence o f t h e oxygen d u r i n g t h e e x p e r i - ment i s h a r d l y avoidable. I t i s presumed t h q t h e t h i n water s k i n on t h e i n n e r w a l l s o f t h e q u a r t z capsules and t h e oxygen absorbed around each powder p a r t i c l e a c t as.

oxygen sources [13]. Therefore, one c o u l d imagine t h a t v a r i o u s oxygen c o n c e n t r a t i o n s c o u l d e x i s t on t h e m i g r a t i n g GBs and cause them t o m i g r a t e d i f f e r e n t l y , l e a d i n g t o an i n t e r s e c t i o n o f t h e R versus

z

curves.

-

t

a Fig.9

2

Arrhenius p l o t o f t h e g r a i n bound-

VJ a r y d i f f u s i v i t v and t h e a r a i n

(7)

C5-598 JOURNAL

DE

PHYSIQUE

Considerations o f t h e fi versus t graph (Fig.4) shows immediately t h a t t h e b e s t f i t l i n e s do n o t pass through t h e o r i g i n . On t h e c o n t r a r y , t h e y i n t e r s e c t t h e 4 a x i s a t some f i n i t e v a l u e o f t h e AZ w i d t h 4. T h i s c o u l d mean t h a t t h e m i g r a t i o n o f c e r t a i n GBs would have a l r e a d y occurred a t zero time. T h i s , o f course, does n o t correspond t o t h e f a c t s . One p o s s i b l e e x p l a n a t i o n f o r t h i s i s t h a t a t t h e s t a r t o f GB m i g r a t i o n t h e v e l o c i t y v i s h i g h e r than a f t e r t h e GB has m i g r a t e d a d i s t a n c e o f about 1 t o 2 pm and a t t a i n e d a steady s t a t e . Our measurements a r e r e l a t e d t o t h e steady s t a t e case. For an unknown reason t h e GB m i g r a t i o n apparently occurred v e r y r a p i d l y a t t h e s t a r t o f anneal i n g

.

T h i s r a p i d m i g r a t i o n was b a r e l y measureable and, t h e r e f o r e , was n o t con- s i d e r e d i n t h i s study.

I n order t o determine a mathematical expression f o r t h e v versus z curve, which completely d e s e r i bes t h e dependence o f t h e m i g r a t i o n v e l o c i t y on t h e depth, t h e f o l l o w i n g f a c t o r s must be taken i n t o c o n s i d e r a t i o n (A. Bogel [12]):

1. The expression z i s a m o n o t o n i c a l l y i n c r e a s i n g f u n c t i o n . 2. For z

-*

0, X ( Z ) -t x0.

3. For z -+ 0 t h e f u n c t i o n v ( z ) must y i e l d a f i n i t e value f o r v.

4. For z - > a , v -t 0.

A f u n c t i o n , which f u l f i l l s t h e above c o n d i t i o n s and agrees w i t h t h e experimental v versus z curve, i s

where a and b a r e a d j u s t a b l e parameters. As a consequence a l / v ( z ) versus z p l o t e x h i b i t s a s t r a i g h t l i n e , from whose slope and i n t e r c e p t a and b can be determined.

By i n t e r p o l a t i o n o f t h e l / v ( z ) versus z diagram f o r equal depths t h e v versus z diagram (Fig.6) can be determined f o r a l l samples.

I n Fig.7 t h e c a l c u l a t e d c o n c e n t r a t i o n p r o f i l e s f o r t h e f o u r d i f f e r e n t temperatures a r e shown. The c a l c u l a t i o n was accomplished by means o f Eqs.(3) and ( 5 ) . Thus, f o r every depth z t h e corresponding Zn c o n t e n t and f o r every temperature t h e correspond-

i n g c o n c e n t r a t i o n p r o f i l e c o u l d be determined. With reference t o t h i s f i g u r e , i t should be mentioned t h a t f o r depths z

<

10 pm, the c a l c u l a t i o n o f t h e Zn concentra- t i o n c o u l d n o t be c a r r i e d out, because Eq.(5) f a i l s i n t h i s range. However, t h e con- c e n t r a t i o n a t xo i s g i v e n by Eq.(3) f o r z = 0, so t h a t t h e p r o f i l e i n t h i s range can a t l e a s t be presented g r a p h i c a l l y .

References

[l] M. H i l l e r t and G.R. Purdy, Acta Met. 26 (1978) 333.

[2] L i Chongmo and M. H i l l e r t , Acta Met. 29 (1981) 1949.

[3] L i Chongnio and M. H i l l e r t , Acta Met. 30 (1982) 1133.

[[I] J.W. Cahn, J.D. Pan and R.W. B a l u f f i , S c r i p t a Met. 1 3 (1979) 503.

[5] F . J . A . den Broeder, Acta Met. 20 (1972) 319.

[6] K.N. Tu, J. Appl. Phys. 48 (1977) 3400.

[7] L i Chongmo, Scand. J. M e t a l l u r g y 11 (1982) 179.

[8] F.J.A. don Broeder, S c r i p t a Met. 17 (1983) 399.

[9] M. H i l l e r t , The Mechanism o f Phase Transformations i n C r y s t a l l i n e S o l i d s , Mono graph and Report Series No. 33, The I n s t i t u t e o f Metals, London (1969) 231.

[lo]

G. Petzow, Metallographisches ~ t z e n , Materialkundlich-Technische Reihe 1, Gebruder Borntraeger, B e r l i n (1976) 81.

[ll] R. Luck, 2 . M e t a l l k . 66 (1975) 488.

[12] 6. Giakupian, Diploma Thesis, U n i v e r s i t y o f S t u t t g a r t (1987) 59.

[ I 3 1 T . J . Picc:one, D.B. Butrymowicz, D.E. Newbury, J.R. Manning and J.W. Cahn, S c r i p t a Plet. 16 (1982) 839.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to