• Aucun résultat trouvé

HIGH SPEED InAlAs/InGaAs DOUBLE HETEROSTRUCTURE p-i-n's

N/A
N/A
Protected

Academic year: 2021

Partager "HIGH SPEED InAlAs/InGaAs DOUBLE HETEROSTRUCTURE p-i-n's"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00227967

https://hal.archives-ouvertes.fr/jpa-00227967

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HIGH SPEED InAlAs/InGaAs DOUBLE HETEROSTRUCTURE p-i-n’s

J.-C. Bischoff, T. Hollenbeck, R. Nottenburg, M. Tamargo, J. de Miguel, C.

Moore, H. Schumacher

To cite this version:

J.-C. Bischoff, T. Hollenbeck, R. Nottenburg, M. Tamargo, J. de Miguel, et al.. HIGH SPEED

InAlAs/InGaAs DOUBLE HETEROSTRUCTURE p-i-n’s. Journal de Physique Colloques, 1988, 49

(C4), pp.C4-329-C4-332. �10.1051/jphyscol:1988469�. �jpa-00227967�

(2)

HIGH SPEED InAlAs/InGaAs DOUBLE HETEROSTRUCTURE p-i-n's

J.-6.

B I S C H O F F ( ~ ) , T.H. HOLLENBECK",('), R.N. N O T T E N B U R G * - ( 3 ) ,

M. C. TAMARGO*

,

J. L

.

DE MIGUEL*

,

C. F. MOORE" and H. SCHUMACHER*

Institute for Micro and Optoelectronics, Swiss ~ e d e r a l Institute of Technology, CH-1015 Lausanne, Switzerland

e ell Communications Research Inc., 331, Newman Spring Rd., Red Bank, NJ 07701.

U.S.A.

Resume

-

Des photodiodes p-i-n InAlAs/InGaAs a double heterostructure ont Bte produites p a r MBE e t montees s u r des guides d'onde coplanaires. Deux methodes:

( i ) l'incorporation d e couches InAlAs non dopees e n t r e l a zone d'absorption InGaAs e t l e s couches InAlAs dopees e t ( i i ) l'utilisation d'heterojonctions graduelles o n t e t e utilisbes pour reduire l'accumulation de porteurs a u x interfaces. Bien que les deux methodes ameliorent l e s performances des diodes p-i-n a double heterojonction, les meilleurs r k s u l t a t s o n t e t e o b t e n u s avec l e s heterojonctions graduelles: une efficacite q u a n t i q u e de 238 % a 1.3 um. u n temps de montee de 2 1 ps e t une largeur a mi-hauteur de 40 ps ont e t e obtenus pour une diode a y a n t une surface de 24x24 pmz e t u n e couche d'absoption d'une epaisseur d e 0.5 um.

A b s t r a c t

-

MBE grown double h e t e r o s t r u c t u r e InAlAs/InGaAs p-i-n photodiodes h a v e been flip-chip mounted on coplanar waveguides. Two methods: ( i ) incorporation of doping setbaclt InAlAs l a y e r s between t h e InGaAs absorption region and t h e doped InAlAs l a y e r s and (ii) compositional grading h a v e been used t o reduce c a r r i e r pile-up a t t h e heterointerfaces. Although both methods improve t h e diode performances. t h e b e s t r e s u l t s were obtained with compositional grading: a quantum efficiency of

=38 % a t 1.3 urn, a r i s e time of =21 ps a n d a FWHM of =40 ps h a v e been obtained for a device with a 24x24 urn2 a r e a and a 0.5 pm thick absorption region.

One of t h e most promising approaches for d e t e c t i o n in t h e 1.0

-

1.7 urn wavelength range i s t h e use of a p-i-n photodiode coupled t o a field e f f e c t t r a n s i s t o r amplifier.

Ino.goCa0.47As based p-i-n photodiodes h a v e already shown low d a r k c u r r e n t , good quantum efficiency a n d high speed operation /1//2//3/. Most devices i n v e s t i g a t e d t o d a t e a r e of t h e homojunction t y p e with a p-type l a y e r formed by diffusion of Zn in t h e J I n C a A s layer. In

c o n t r a s t , t h e devices i n v e s t i g a t e d here a r e MBE grown I ~ o . ~ z A ~ o . ~ ~ A ~ / I ~ o . ~ ~ C ~ O . ~ ~ A ~ / I ~ O . ~ A ~ O . ~ ~ A S double h e t e r o s t r u c t u r e p-i-n's.

Immediate a d v a n t a g e s of a double h e t e r o s t r u c t u r e a r e a n excellent control of t h e absorption region t h i c k n e s s and t h e elimination, l n t h e photoresponse, of t h e diffusion t a i l due t o absorption in low field segions. The pulse response of t h e s e devices is however, typically characterized by long t a i l s d u e to carrier pile-up (trapping) a t t h e heterojunction i n t e r f a c e s /4/. We p r e s e n t r e s u l t s of a n investigation o'f two possible methods t o reduce t h e deleterious e f f e c t s of c a r r i e r trapping: ( i ) incorporation of doping setback l a y e r s a t t h e h e t e r o i n t e r f a c e s a n d ( i i ) compositional grading of t h e heterointerfaces.

(')work done while at Bell Comunications Research Inc., Red Bank, NJ 07701. U.S.A.. as a resident visitor (')present address : Princeton University. Princeton. NJ 08544. U.S.A.

(3)~resent address : AT&T Bell Laboratories. Murray Hill, NJ 07974, U.S.A.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1988469

(3)

JOURNAL DE PHYSIQUE

The samples were grown by Molecular Beam Epitaxy (MBE) on InP (Fe-doped) semi-insulating s u b s t r a t e s . Three t y p e s of s t r u c t u r e s were realized. The f i r s t o n e i s a double heterojunction p-i-n s t r u c t u r e with a b r u p t interfaces which consists of an undoped Ino.sctGao.4tAs absorption l a y e r sandwiched by two Ino.szAlo.~eAs layers, one doped with Si (n-type) and t h e o t h e r with Be ( p - t y p e ) . The two o t h e r s a r e s l i g h t l y modified s t r u c t u r e s . One contains 300 A setback layers of undoped In0.s~Alo.4sAs separating t h e doped layers from t h e intrinsic In0.33Ga0.47As a n d t h e o t h e r one, compositionally grzded (In, Ga, Al) As l a y e r s gradually going from t h e Ino.~zAl0.48As composition t o t h e Ino.ssGao.47As. These graded l a y e r s a r e 300 A thick and undoped.

Mesa diodes, designed for back illumination through t h e semi-insulating InP s u b s t r a t e . were fabricated from t h e as-grown wafers and mounted, upside down, on coplanar waveguides. With t h i s technique, t h e losses due to t h e coupling of t h e p-i-n diode to t h e coaxial connector ('Weltron K connector) c a n be maintained below' 3 dB a t 26 GHz.

Dark c u r r e n t s of respectively 328 pA and 537 pA a t 5 V were measured. for devices with compositional grading and a r e a s of respectively 14x14 pm2 a n d 24x24 pmz. For t h e s e devices, whose absorption l a y e r t h i c k n e s s i s 0.5 pm, t h e c a p a c i t a n c e s a t 0 V bias a r e respectively 50 fF a n d 145 fF.

We present in fig. 1 t h e r e v e r s e I-V c h a r a c t e r i s t i c s of double h e t e r o s t r u c t u r e p-i-n diodes with a b r u p t heterointerfaces. i n t h e dark (lower c u r v e ) a n d f r o n t illuminated with white light through t h e prober microscope (upper curve). The photoresponse shows a turn-on voltage a t

=

0.4 V. Dispersion i n t h e c h a r a c t e r i s t i c s of diodes issued from different processing r u n s i n d i c a t e s t h a t t h i s turn-on voltage is s e n s i t i v e t o t h e processing and i s related t o t h e quality of t h e Schottky t y p e Ti-Au contacts. Above t h e turn-on voltage, t h e s e n s i t i v i t y of t h e photodiodes i s f a i r l y independent of t h e applied bias voltage.

In fig. 2, we h a v e reported t h e peak amplitude of t h e response of double h e t e r o s t r u c t u r e p-i-n diodes t o optical pulses generated by a c t i v e mode locking of a l a s e r diode a s a function of t h e r e v e r s e bias voltage ( c h a r a c t e r i s t i c s of pulses generated by l a s e r #1: r i s e time

=

44 ps, FWHM

=

4 5 ~ s . repetition r a t e

=

350 MHz and peak power

=

14.6 mW.). I t a p p e a r s t h a t t h e s e devices h a v e , under pulsed excitation, a behavior which differs significantly from t h a t under continuous illumination. Indeed t h e characteristics reported i n fig. 2 show t h a t our devices do not respond t o f a s t optical pulses when t h e i r reverse bias voltage i s below a threshold v a l u e which depends on t h e type of heterointerface: =1 V for devices with compositionally graded i n t e r f a c e s , ~ 2 . 8 V for devices with doping setback l a y e r s and -5 V for devices with a b r u p t interfaces. Above threshold, t h e peak c u r r e n t of t h e t h r e e t y p e s of devices increases l i n e a r l y with bias i n t h e voltage range shown in f i g . 2 . The b e s t s e n s i t i v i t y , obtained a t 6 V bias for a double h e t e r o s t r u c t u r e p-I-n with a 0.5 vm t h i c k absorption layer, is 0.4 A/W (peak amplitude = 291 mV). At 1.3 pm. t h i s corresponds to a n e x t e r n a l quantum efficiency of 38%.

At higher bias voltages, t h e pulse response peak amplitude levels off (fig. 3, characteristics of pulses g e n e r a t e d by l a s e r #2: r i s e time

=

5.3 ps, FWHM

=

7.4 ps, repetition r a t e

=

440 MHz and peak power

=

6 mW.). Only t h e devices with compositional grading were measured i n t h e higher voltage range. Indeed for devices with a b r u p t interfaces or doping s e t b a c k , t h e breakdown voltage.

=

8 V, was reached before a n y leveling of t h e response could be observed.

Devices with a b r u p t i n t e r f a c e s show a 80 ps r i s e time a n d a 1.4 n s f a l l time a t 5.5 V bias. This long fall time i s s t r o n g l y temperature dependent and c a n be reduced t o 180 ps by elevating t h e d e t e c t o r temperature by directing a h o t a i r flow to t h e d i o d d Devices which employ doping setback a n d compositional grading show threshold response a t bias levels of 3 V and 1.5 V respectively. Operating t h e devices, with doping setback, a t 5.5 V bias, we observe over a n order of magnitude improvement in fall time: 120 p s v e r s u s 1.34 n s for t h e diode with a b r u p t interfaces. The same observation can be made a t 3.3 V bias by comparing t h e devices having compositional grading with t h e ones having doping setback: 110 ps versus 1.02 ns.

(4)

fall time a t 8 V bias for a n a c t i v e a r e a of 24x24 urn2 (fig. 4). Devices of smaller size h a v e not shown a n y speed improvement over t h e largest ones. This i s .due to t h e i r smaller top c o n t a c t to mesa a r e a r a t i o resulting i n a n increased s e r i e s resistance.

To e v a l u a t e t h e i n t r i n s i c rise time and FWHM of our devices, we h a v e made t h e following assumptions: t i ) t h e pulses h a v e a gaussian waveform, ( i i ) t h e S4 sampling head r i s e time is 25 ps and t h e corresponding FWHM is 3 5 ps and (iii) t h e light pulse rise time a n d FWHM a r e 5.3 ps a n d 7.4 p s /5/. Under t h e s e assumptions, we obtain for t h e device whose pulse response a p p e a r s in fig. 4 a n intrinsic rise time of 21 p s and a FWHM of 40 ps.

During t h i s work, we made t h e following observations. The dependence of t h e diode responsivity on bias voltage i s a p p a r e n t only under pulsed excitation. The responsivity of t h e diode i s larger when t h e a r e a l density of carriers trapped a t t h e heterointerface under dark conditions i s low, for example, when t h e band discontinuity i s small (compositional grading of t h e heterointerface) o r when t h e band potential minimum i s above (for electrons) t h e quasi-Fermi level ( s t r u c t u r e with doping setback layers under reverse bias). These observations lead us t o t h e assumption t h a t t h e time s p e n t by a c a r r i e r a t t h e heterointerface, and t h u s t h e probability t o be lost by recombination, decreases when t h e photogenerated c a r r i e r d e n s i t y in t h e well i s large i n comparison with t h e c a r r i e r d e n s i t y i n t h e well under dark conditions. However, f u r t h e r work will be necessary to determine e x a c t l y t h e mechanisms involved i n t h e t r a n s p o r t of carriers through band discontinuities in double h e t e r o s t r u c t u r e p-i-n diodes.

In conclusion, we h a v e presented two methods to reduce carrier trapping a t t h e heterointerfaces i n InAlAs/InGaAs double h e t e r o s t r u c t u r e p-i-n photodiodes: incorporation of doping setback InAlAs l a y e r s and of compositionally graded InAlGaAs layers. The b e s t r e s u l t s h a v e been obtained with devices with compositional grading and a r e very promising: e x t e r n a l quantum efficiency

=

3 8 96, r i s e time

=

21 ps and FWHM

-

40 ps.

The a u t h o r s wish t o acknowledge R. F. Leheny and M. Ilegems for t h e i r s u p p o r t and M.-H. Meynadier, C. Caneau, B. W. Meagher, D. A. Humphrey. R. J. Martin and B. Zimmermann for t h e i r a s s i s t a n c e during t h e course of t h i s work. We a r e particularly g r a t e f u l t o H. Temkin for h i s advise and for providing t h e l a s e r diodes.

References

/1/ J . E. Bowers, C. A. Burrus, "Optoelectronic Components and Systems with Bandwidths i n Excess of 26 Ghz", RCA Review. Vol. 46, pp. 497-509, Dec. 1985.

/2/ J. E. Bowers. C. A. Burrus, "InGaAs PIN Photodetectors with Modulation Response t o Millimetre Wavelengths". Electronics Letters. Vol. 21. pp. 812-814, 29'h August 1985.

/3/ 'H. Temkin, R. E. Frahm, N. A. Olsson, C. A. Burrus, R. J. Mccoy, "Very High Speed Operation of Planar InGaAs/InP Photodiode Detectors", Electronics Letters, Vol. 22, No. 23, pp. 267-269. 6th Nov. 1986.

/4/ Y. Zebda, P. Bhattacharya, M. S. Tobin and T. B. Simpson, "Design and Performance of Very High-Speed I ~ o . ~ ~ G ~ o . ~ ~ A ~ / I ~ o . J z A ~ o . ~ ~ A ~ p-i-n Photodiodes Grown by Molecular Beam Epitaxy", IEEE Electron Device Letters. Vol. EDL-8. No. 12. December 1987. pp. 579-581.

/5/ J. P. v a n d e r Ziel, "Active mode locking of double heterostructure l a s e r s in a n e x t e r n a l cavity", J. Appl. Phys., Vol. 52. No. 7 , pp. 4435-4446, J u l y 1981.

(5)

JOURNAL DE PHYSIQUE

Pig. 1 I-V c h a r a c t e r i s t i c s of a 24x24 pm2 double h e t e r o s t r u c t u r e p-i-n diode with a b r u p t i n t e r f a c e s in t h e dark (lower curve, I = 586 pA for V = 5.0 V) a n d illuminated with white . l i g h t through t h e prober microscope (upper curve).

300

25a

5: E m -

- ij

1 3 -

"

=

2

100-

50

0 -

Fig. 2 Dependence of peak amplitude on bias voltage of 24x24 pm2 diodes with a b r u p t i n t e r f a c e s , doping setback l a y e r s and compositional grading. Optical pulse characteristics: r i s e time

=

44 ps. FWHM

=

45 ps, repetition r a t e

=

350 MHz a n d peak power

=

14.6 mW.

o abrupt interface8 ' ,' ,,

"

i :

I /

- A doping setback .?, .

0 compositional grsd~ng

,:' $

, i

/ A /

-

::4 , o / , , , , .

?,'

"

0.0 1.0 2.0 3.0 4.0 5.0 8.0 7.0 8.0 9.0 10.0 Bias Voltage [VI

Fig. 3 Dependence of peak amplitude.

r i s e time a n d FWHM on bias voltage of a 24x24 prn2 with compositional grading.

Optical pulse characteristics: rise time

=

5.3 ps, FWHM z 7.4 ps, repetition r a t e z 440 MHz and peak power

=

6 mW.

. -"

118 116-

" 4 -

E

112-

g

,I,.

Fig. 4 Pulse response of a 24x24 urnZ diode with compositional grading a t 8 V bias. Optical pulse characteristics: rise time

=

44 ps, FWHM z 45 ps, repetition r a t e

=

350 MHz and peak power

=

14.6 mw.

Scale x: 50 ps/div.

y: 20 mV/div.,

-

o amplitude

A rke time o FWHM

/

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to