• Aucun résultat trouvé

$\overline m_c$ and $\overline m_b$ from $M_{Bc}$ and improved estimates of $f_{Bc}$ and $f_{Bc(2S)}$

N/A
N/A
Protected

Academic year: 2021

Partager "$\overline m_c$ and $\overline m_b$ from $M_{Bc}$ and improved estimates of $f_{Bc}$ and $f_{Bc(2S)}$"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-02166575

https://hal.archives-ouvertes.fr/hal-02166575

Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

m_c and m_b from M _Bc and improved estimates of

f _Bc and f _Bc(2S)

Stephan Narison

To cite this version:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

m

c

and

m

b

from

M

B

c

and

improved

estimates

of

f

B

c

and

f

B

c

(

2S

)

Stephan Narison

LaboratoireParticulesetUniversdeMontpellier,CNRS-IN2P3,Case070,PlaceEugèneBataillon,34095,Montpellier,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received19December2019

Receivedinrevisedform11January2020 Accepted12January2020

Availableonline15January2020 Editor:J.Hisano

Keywords:

QCDspectralsumrules Perturbativeandnon-perturbative calculations

Hadronandquarkmasses Gluoncondensates

We extract(forthefirsttime) thecorrelated valuesofthe runningmassesmc andmb from MBc using QCDLaplacesumrules(LSR)withinstabilitycriteriawhereperturbative (PT) expressionsatN2LOand non-perturbative(NP)gluoncondensatesatLOareincluded.Allowingthevaluesofmc,b(mc,b)tomove

inside the enlarged rangeofrecent estimates fromcharmonium and bottomiumsum rules (Table 1) obtained using similar stability criteria, we deduce: mc(mc)=1286(16) MeV and mb(mb)=4202(8)

MeV. Combined with previous estimates (Table 2), we deduce a tentative QCD Spectral Sum Rules (QSSR)average: mc(mc)=1266(6) MeVand mb(mb)=4197(8) MeVwherethe errorscomefrom the

precisedeterminationsfrom J/ψ and ϒsumrules.Asaresult,wepresentanimprovedpredictionof

fBc=371(17)MeVandthetentativeupperbound fBc(2S)≤139(6)MeV,whichareusefulforafurther

analysisofBc-decays.

©2020TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Extractions of the perturbative (quark masses,

α

s) and

non-perturbative quark and gluon condensates QCD parameters are very important as they will serve as inputs in different phe-nomenological applications of the (non)-standard model. Lattice calculationsare an useful tool fora such project but alternative analyticalapproachesbasedonQCDfirstprinciples(Chiral pertur-bation, effective theory and QCD spectral sum rules (QSSR)) are usefulcomplementandindependentcheckoftheprevious numer-icalsimulationsastheygiveinsightsforabetterunderstandingof the(non)-perturbativephenomenainsidethehadron“blackbox”.

Inthis note,1 we shall use theLaplace version [27] of QSSR introducedby Shifman-Vainshtein-Zakharov(SVZ)[2,3,8–21] fora newextractionoftherunningquark massesmc andmb fromthe

Bc

(

0−+

)

-mesonmass whichwe shall usefor improvingthe

pre-diction on its decay constant fBc done previously using similar

approachesin [22–27] and for deriving a tentative upper bound on fBc(2S).

2. TheQCDLaplacesumrules

TheQCDinterpolatingcurrent

We shall be concerned with the following QCD interpolating current:

E-mailaddress:snarison@yahoo.fr.

1 Somepreliminaryresultsofthisworkhasbeenpresentedin [1].



0

|

J5

(

x

)

|

P

 =

fPM2P

:

J5

(

x

)

≡ (

mc

+

mb

)

c

¯

(

i

γ

5

)

b

,

(1)

where: J5

(

x

)

isthelocalheavy-lightpseudoscalarcurrent;mc,bare

renormalized mass ofthe QCD Lagrangian; fP isthe decay

con-stant related to theleptonic widths



[

P

l+

ν

l

]

andnormalised

as

=

132 MeV.

Formofthesumrules

We shall work with the Finite Energy version of the QCD Laplacesumrules(LSR)andtheirratios:

L

c n

(

τ

,

μ

)

=

tc



(mc+mb)2 dt tne 1

π

Im

ψ

5

(

t

,

μ

) ,

R

c n

(

τ

)

=

L

c n+1

L

c n

,

(2)

where

τ

is the LSR variable,n is the degree of moments, tc is

the thresholdof the “QCD continuum” whichparametrizes, from the discontinuityof theFeynman diagrams, thespectral function Im

ψ

5

(

t

,

m2Q

,

μ

)

where

ψ

5

(

t

,

m2Q

,

μ

)

isthe(pseudo)scalar

correla-tor:

ψ

5

(

q2

)

=

i



d4x eiqx



0

|

T

J5

(

x

) (

J5

(

0

))

|

0

.

(3)

3. QCDexpressionofthetwo-pointfunction

Usingthe SVZ[2] OperatorProductExpansion(OPE),the two-pointcorrelatorcanbewrittenintheform:

https://doi.org/10.1016/j.physletb.2020.135221

(3)

2 S. Narison / Physics Letters B 802 (2020) 135221

ψ

5

(

q2

)

=



(mc+mb)2 dt t

q2 1

π

Im

ψ

5

(

t

,

μ

)

|

P T

+ 

α

sG2



CG2

(

q2

,

μ

)

+ 

g3G3



CG3

(

q2

,

μ

)

+ · · · ,

(4)

where

μ

isthesubtractionscale; Im

ψ

5

(

t

,

μ

)

|

P T isthe

perturba-tivepartofthespectralfunction;CG2 andCG2 are(perturbatively)

calculableWilsoncoefficients;



α

sG2



and



g3G3



arethe

non-per-turbative gluon condensate of dimensionsd

=

4

,

6 contributions where: G2

Gaμν Gμνa and g3G3

g3fabcGaμν Gνρ,bGμ,

c

ρ .As

explic-itlyshowninRef. [23],CG2 andCG2 includetheonesofthequark

andmixedquark-gluoncondensatethroughtherelation[2,28,29]:

 ¯

Q Q

 = −

1 12

π

mQ



α

sG2

 −



g3G3



1440

π

2m3 Q

,

 ¯

Q G Q

 =

mQ

π



logmQ

μ





α

sG2

 −



g3G3



48

π

2m Q

,

(5)

fromtheheavyquarkmassexpansion.

q2

=

0 behaviourofthecorrelator

ToNLO,theperturbativepartof

ψ

5

(

0

)

reads[6,10,11,30]:

ψ

5

(

0

)

|

P T

=

3 4

π

2

(

mb

+

mc

)



m3bZb

+

m3cZc



,

(6) with: Zi

=



1

logm 2 i

μ

2

 

1

+

10 3 as



+

2aslog2 m2i

μ

2

,

(7)

wherei

c

,

b;

μ

istheQCDsubtractionconstantandas

α

s

/

π

is

theQCDcoupling.ThisPTcontributionwhichispresentherehas tobeaddedtothewell-knownnon-perturbativecontribution:

ψ

5

(

0

)

|

N P

= −(

mb

+

mc

)

cc

+ ¯

bb

 ,

(8)

for absorbing logn

(

m2

i

/

q2

)

mass singularities appearing during

theevaluationofthe PTtwo-point function,atechnicalpointnot oftencarefullydiscussedinsome papers.Workingwith

ψ

5

(

q2

)

is

safeas

ψ

5

(

0

)

,whichdisappears aftersuccessive derivatives,does

not affectthe pseudoscalar sumrule.This is not the caseofthe longitudinal part of the axial-vector two-point function

(A0)

(

q2

)

builtfromtheaxial-vectorcurrent:

A

≡ ¯

c

(

γ

μ

γ

5

)

b

,

(9)

whichisrelatedto

ψ

5

(

q2

)

throughtheWardidentity[6,10,11]:

(A0)

(

q2

)

=

1 q2

ψ

5

(

q2

)

− ψ

5

(

0

)

,

(10)

andwhichisalsooften(uncorrectly)usedinliterature.

LOandNLOPerturbativecontributionatlargeq2

Thecompleteexpressions ofthePT spectralfunction hasbeen obtained to LO in [31], to NLO in [30] and explicitly written in [23].Itreads(i

c

,

b): Im

ψ

5

(

t

)

|

P T

=

3

(

mb

+

mc

)

2 8

π

t q

¯

4v

1

+

4 3



¯

α

s

π



3 8

(

7

v 2

)

+

i=b,c

(

v

+

v−1

) (

L2

(

α

1

α

2

)

L2

(

α

i

)

log

α

1log

β

i

)

+

Ailog

α

i

+

Bilog

β

i



+

O

(

α

2 s

)



(11) where L2

(

x

)

= −

x



0 dy y log

(

1

y

)

(12) and Ai

=

3 4 3mi

+

mj mi

+

mj

19

+

2v2

+

3v4 32v

mi

(

mi

mj

)

¯

q2v

(

1

+

v

)



1

+

v

+

2v 1

+

α

i



;

Bi

=

2

+

2 m2i

m2j

¯

q2v

;

(13)

α

i

=

mi mj 1

v 1

+

v

;

β

i

=



1

+

α

i

(

1

+

v

)

2 4v

¯

q2

=

t

− (

mb

mc

)

2

;

v

=



1

4mbmc

¯

q2

,

wheremiistheon-shell/polemass.

Higher OrdersPerturbativecontributionsatlargeq2

In the absence of a complete result to order

α

2

s, we shall

approximatively use the expression of the spectral function for

mc

=

0: Im

ψ

5

(

t

)

|

N2L OP T



mb2t 8

π



¯

α

s

π



2 R2s

,

(14)

where R2s has been obtained semi-analytically in [32,33] and is

availableasaMathematicapackageprogramRvs.m.

Weexpectthatitisagoodapproximationbecauseweshallsee that theNLOcontributionsinduce(asexpected) smallcorrections intheratioofmomentsusedtodeterminemc,bduetothepartial

cancellationofthiscontribution.

We estimatethe accuracyofthisapproximationby comparing thisN2LO approximation withtheone obtainedassuming a geo-metricgrowthofthePTcoefficients[34].

We estimate the error dueto the truncation of the PT series fromtheN3LOcontributionestimated,asabove,fromageometric growth of the PT series which is expected to mimic the phe-nomenological1

/

q2 dimension-twocontributionparametrizingthe uncalculatedlargeordertermsofPTseries[35–38].

• 

α

sG2



contributionatlargeq2

We shall use the complete expression of the gluon conden-sate



α

sG2



contributiontothetwo-point correlatorgivenin[23],

whichagreeswithknownresultsformb

=

mc [10,11].TheWilson

coefficient reads: CG2

(

q2

,

μ

)

=

1

π



(mb+mc)2

mbmct



t

m2b

mbmc

mc2



2

(

Q2

+

t

)

[

t

−(

m b

mc

)

2

]

3/2

mbmc

(

mb

+

mc

)

2

[

t

−(

mb

+

mc

)

2

]

16

[

Q2

+ (

m b

+

mc

)

2

]

2

1 16

[

Q2

+(

m b

+

mc

)

2

]

×

(

mb

+

mc

)

2

+

(

5m2 b

+

18mbmc

+

5m2c

)

[

t

− (

mb

+

mc

)

2

]

8mbmc



×

dt

[

t

−(

mb

+

mc

)

2

]

5/2

,

(15)

(4)

• 

g3G3



contributionatlargeq2

A similar (but lengthy) expression of the



g3G3



condensate

contribution can also be obtained from [23], where it has been checked that it agrees with known result for mb

=

mc [29]. It

reads: CG3

(

q2

)

=

1

π



2 dt

[

t

2

]

9/2

mbmct 6

(

t

+

Q2

)

[

t

− (

m b

mc

)

2

]

7/2

×



3t4

2

(

3m2b

+

2mbmc

+

3m2c

)

t3

+(

5m3bmc

+

18m2bm2c

+

5mbm3c

)

t2

+2

(

3m6b

+

m5bmc

6m4bm2c

6m3bm3c

6mb2m4c

+

mbm5c

+

3m6c

)

t

3

(

m8b

+

m7bmc

m5bm3c

2mb4m4c

mb3m5c

+

mbm7c

+

mc8

)



mbmc



7

4

(

t

2

)

3 192

(

Q2

+

2

)

4

+



7

2

(

t

2

)

2 192

+

A

(

t

2

)

3 1536mbmc



2

(

Q2

+

2

)

3

+



7

4

(

t

2

)

192

2A

(

t

2

)

2 1536mbmc

+

B

(

t

2

)

3 24576m2 bm2c



×

1

(

Q2

+

2

)

2

+



7

4 192

+

2A

(

t

2

)

1536mbmc

B

(

t

2

)

2 24576mb2m2c

C

(

t

2

)

3 196608m3bm3c



×

1 Q2

+

2

 

,

with:

=

mb

+

mc A

=

51mb2

+

166mbmc

+

51m2c B

=

31m4b

836m3bmc

1862mb2m2c

836mbm3c

+

31m4c C

=

277m4b

+

596mb3mc

514m2bm2c

+

596mbm3c

+

277m4c

.

(16)

FromOn-shelltotheM S-scheme

We transform the pole masses mQ to the running masses

mQ

(

μ

)

using theknown relationin the M S-scheme to order

α

2s

[39–47]: mQ

=

mQ

(

μ

)

1

+

4 3as

+ (

16

.

2163

1

.

0414nl

)

a 2 s

+

ln

μ

2 m2Q



as

+ (

8

.

8472

0

.

3611nl

)

a2s



+

ln2

μ

2 m2Q

(

1

.

7917

0

.

0833nl

)

a 2 s

...



,

(17)

fornl

=

3 lightflavours.Inthefollowing,weshallusenf

=

5 total

numberofflavoursforthenumericalvalueof

α

s. 4. QCDinputparameters

TheQCDparameterswhichshallappearinthefollowing anal-ysiswillbe the charmandbottom quark massesmc,b,the gluon

condensates



α

sG2



and



g3G3



.

Table 1

QCD inputparametersfromrecentQSSRanalysisbased onstability criteria.The valuesofmc(mc)andmb(mb)comefromrecentmomentsSRandtheirratios[48]

wheretheerrorshavebeenmultipliedbyafactor2tobeconservative. Parameters Values Sources Ref.

αs(MZ) 0.1181(16)(3) Mχ0c,b−Mηc,b Ratios of LSR [49]

mc(mc) 1264(12)MeV J/ψfamily Mom. [48]

mb(mb) 4188(16)MeV ϒfamily Mom. [48]

αsG2 (6.35±0.35)×10−2GeV4 Hadrons QSSR average [49]

g3G3 (8.2±2.0)GeV2× α

sG2 J/ψfamily Mom. [50,51]

Ratios of LSR [52]

QCDcoupling

α

s

WeshallusefromtheMχ0c

Mηc mass-splittingsumrule[49]:

α

s

(

2

.

85

)

=

0

.

262

(

9

)

;

α

s

(

)

=

0

.

318

(

15

)

;

α

s

(

MZ

)

=

0

.

1183

(

19

)(

3

)

(18)

whichismoreprecisethantheonefromMχ0b

Mηb [49]:

α

s

(

9

.

50

)

=

0

.

180

(

8

)

;

α

s

(

)

=

0

.

312

(

27

)

;

α

s

(

MZ

)

=

0

.

1175

(

32

)(

3

).

(19)

TheseleadtothemeanvaluequotedinTable1,whichisin com-pleteagreementwiththeworldaverage[53]:

α

s

(

MZ

)

=

0

.

1181

(

11

),

(20)

butwithalargererror.

c andb quarkmasses

For the c and b quarks, we shall use the recent

determina-tions [48] of therunning massesandthe corresponding value of

α

sevaluatedatthescale

μ

obtainedusingthesamesumrule

ap-proach from charmonium and bottomium systems. The range of valuesgiveninTable1enlargedbyafactor2are withinthePDG average[53].

Gluonandquark-gluonmixedcondensates

Forthe



α

sG2



condensate,weusetherecentestimateobtained

fromacorrelationwiththevaluesoftheheavyquark massesand

α

s whichcanbe compared withthe QSSRaveragefromdifferent

channels[49].

Theoneof



g3G3



comesfromaQSSRanalysisofcharmonium systems.TheirvaluesaregiveninTable1.

5. Parametrisationofthespectralfunction

–Inthepresentcase,wherenocompletedataontheBc

spec-tralfunctionareavailable,weusethedualityansatz:

Im

ψ

5

(

t

)



f2PM4P

δ(

t

M2P

)

+ (

t

tc

)

“Q C D continuum”

,

(21)

forparametrizingthespectralfunction. MP and fP arethelowest

groundstatemassandcouplinganalogueto fπ .The“QCD contin-uum”is theimaginarypart oftheQCD two-point function while

tc isitsthreshold.Withinasuchparametrization,oneobtains:

R

c

n

R



M2P

,

(22)

indicating that the ratioof moments appears to be a usefultool forextractingthemassofthehadrongroundstate[10–14].

– This simple model has been tested in different channels where complete dataare available (charmonium, bottomium and

(5)

4 S. Narison / Physics Letters B 802 (2020) 135221

model,thesumrulereproduces well theone usingthecomplete data,whilethemassesofthelowestgroundstatemesons( J

/ψ,

ϒ

and

ρ

) havebeenpredictedwithagoodaccuracy.Intheextreme caseoftheGoldstonepion,the sumrule usingthespectral func-tionparametrizedbythissimplemodel[10,11] andthemore com-plete oneby ChPT[54] leadto similarvalues ofthesumoflight quark masses

(

mu

+

md

)

indicating the efficiency of this simple

parametrization.

–An eventual violationof thequark-hadron duality (DV)[55, 56] has been frequently tested in the accurate determination of

α

s

(

τ

)

fromhadronic

τ

-decaydata[56–58], whereitsquantitative

effectinthespectralfunctionwasfoundtobelessthan1%. Typi-cally,theDVhastheform:



Im

ψ

5

(

t

)

∼ (

mc

+

mb

)

2t eκtsin

(

α

+ β

t

)θ (

t

tc

) ,

(23)

where

κ

,

α

,

β

are model-dependent fitted parameters but not basedfrom first principles. Withinthismodel, wherethe contri-bution isdoubly exponential suppressedin theLaplace sumrule analysis, we expect that in the stability regions where the QCD continuumcontributiontothesumruleisminimalandwherethe optimalresultsinthispaperwillbeextracted, suchduality viola-tionscanbesafelyneglected.

– Therefore,we (apriori) expect that one can extract witha goodaccuracythec andb runningquarkmassesandtheBc decay

constantwithintheapproach.Aneventualimprovementofthe re-sultscan bedone after amore completemeasurement ofthe Bc

pseudoscalar spectral function which is not an easy task though therecentdiscovery byCMS[59] ofthe Bc

(

2S

)

state at6872(1.5)

MeVisagoodstartingpointinthisdirection.

–Inthefollowing,inordertominimizetheeffectsofunknown higherradialexcitationssmearedbytheQCDcontinuumandsome eventual quark-duality violations,we shallwork withthe lowest ratioofmoments

R

c0forextractingthequarkmassesandwiththe lowestmoment

L

c0forestimatingthedecayconstant fBc.Moment

withnegative n willnot beconsideredduetotheir sensitivityon thenon-perturbativecontributionssuchas

ψ

5

(

0

)

.

6. Optimizationcriteria

For extractingthe optimal results fromthe analysis, we shall useoptimizationcriteria(minimumsensitivity)oftheobservables versus the variation of the external variables namelythe

τ

sum ruleparameter,theQCD continuumthresholdtc andthe

subtrac-tionpoint

μ

.

Results based on these criteria have led to successful predic-tions inthe current literature [10,11].

τ

-stability hasbeen intro-ducedand testedby Bell-Bertlmann usingthe toy model of har-monic oscillator [9] and applied successfully inthe heavy [4,5,9, 60–68] and light quarks systems [2,3,10–14,69]. It has been ex-tended later on to thetc-stability [10–13] andto the

μ

-stability

criteria[27,49,63,69,70].

Stability onthe numbern ofheavy quark moments have also beenused[48,50–52].

One cannotice inthe previous worksthat these criteriahave ledto moresolidtheoreticalbasisandnoticeableimprovedresults fromthesumruleanalysis.

7. mcandmbfromMBc

Inthefollowing,welookforthestabilityregionsoftheexternal parameters

τ

,

tcand

μ

whereweshallextractouroptimalresult.

τ

stability

Fig. 1. MBc asfunctionofτfordifferentvaluesoftc,forμ=7.5GeVandforgiven

valuesofmc,b(mc,b)inTable1.

Fig. 2. MBcasfunctionoftcforμ=7.5 GeVandfortherangeofτ-stabilityvalues.

Weusethecentralvaluesofmc,b(mc,b)giveninTable1.

Ina firststep,fixingthevalue of

μ

=

7

.

5 GeVwhichweshall justifylaterandwhichisthecentralvalueof

μ

= (

7

.

5

±

0

.

5

)

GeV obtainedin [27],weshowinFig.1thebehaviourofMBc for

differ-entvaluesoftcwherethecentralvaluesofmc

(

mc

)

=1264MeVand

mb

(

mb

)

=4188 MeV giveninTable1havebeen used.Weseethat

the inflexion points at

τ

 (

0

.

30

0

.

32

)

GeV−2 appear fortc

52 GeV2. The smallest value of

tc is around the Bc

(

2S

)

mass

of 6872(1.5) MeV recently discovered by CMS[59] but does not necessarilycoïncide withit asthe QCDcontinuum isexpectedto smear all higherstatescontributions to thespectral function. In-stead,itsvalueisrelatedbydualitytothegroundstateparameters asdiscussedin[71] fromaFESRanalysisofthe

ρ

-mesonchannel.

tcstability

WeshowinFig.2thebehaviourofMBc versustc whichisvery

stable. For definiteness, we take tc in the range 52 to 79 GeV2

wherewehaveaslightmaximumattc



60 GeV2.Atthisrangeof

tc values,onecaneasily checkthattheQCD continuum

contribu-tion tothesumruleis(almost) negligible.Tohavemoreinsights onthiscontribution,weshowinFig.3theratioofthecontinuum overthelowestgroundstatecontributionaspredictedbyQCD:

rc



tc dte



Im

ψ

cont 5



tc (mc+mb)2dte



Im

ψ

Bc 5 (24)

whereonecanindeedseethattheQCDcontinuumtothemoment sumrule

L

c0 isnegligibleinthisrangeoftc values.This

(6)

Fig. 3. Ratiorcofthecontinuumoverthelowestgroundstatecontributionas

func-tionoftc at thecorrespondingτ-stabilitypoints forμ=7.5 GeVandfor given

valuesofmc,b(mc,b)inTable1.Thedashed-dottedlineisthecontributionfora

VectorMesonDominance(VDM)assumptionofthespectralfunction.

Fig. 4. mc(mc)as functionofμ forτ0.32 GeV2 and forthe centralvalue of

mb(mb)giveninTable1.

Givene.g.the centralvalueofmb

(

mb

)

=

4188 MeVfromTable1

andusing

τ

= .

32 GeV−2 andt

c

=

60 GeV2,weshowinFig.4the

correlated values of mc

(

mc

)

at different values of

μ

needed for

reproducingMBc.Weobtainaninflexionpointat:

μ

= (

7

.

5

±

0

.

1

)

GeV

,

(25)

which we shall use in the following. Thisvalue agrees with the one

μ

= (

7

.

5

±

0

.

5

)

GeVquotedin[27] usingdifferentways.

Extractingtheset

(

mc

,

mb

)

Inthefollowing,we studythecorrelationbetweenmc andmb

neededforreproducingtheexperimentalmass[53]:

MexpB

c

=

6275

.

6

(

1

.

1

)

MeV

,

(26)

fromthe ratio

R

c0 of Laplace sum rules defined in Eqs. (2) and (22).

–Allowingmc

(

mc

)

tomoveintherange:

mc

(

mc

)

 (

1252

1282

)

MeV (27)

fromthe J

and Mχ0cMηc mass-splitting sumrules, we show

in Fig. 5, the predictions for MBc as a function of mb

(

mb

)

. The

bandistheerrorinducedbythechoiceofthestabilitypoints

τ

=

(

0

.

30

0

.

32

)

GeV−2 whichisabout(12-13) MeV,whiletheerror duetosomeotherparametersarenegligible.Then,wededuce:

mb

(

mb

)

= (

4195

4245

)

MeV

,

(28)

whichleadstothecorrelatedsetofvaluesinunitsofMeV:

[

mb

(

mb

),

mc

(

mc

)

] = [

4195

,

1282

] ... [

4245

,

1252

] .

(29)

Fig. 5. MBc asfunctionofmb(mb)fordifferentvaluesofmc(mc),forμ=7.5 GeV

andfortherangeofτ-stabilityvaluesτ= (0.30−0.32)GeV−2.

Thisresultshowsthatasmallvalueofmc iscorrelatedtoalarge

valueofmb andvice-versa.

– Scrutinizing Fig. 5, one can see that, atfixed mb, e.g. 4220

MeV, MBc increaseswiththemc valuesgiveninthelegend

(verti-cal line),asintuitivelyexpected. Ontheother,fixing thevalue of

mc attheoneinthelegendsay1282MeV,onecan see

(straight-linewithapositive slope)that MBc increaseswhenmb increases

onthemb-axisasalsointuitivelyexpected.

–Consideringthatthevaluesofmb

(

mb

)

areinsidetherange:

mb

(

mb

)

= (

4176

4209

)

MeV

,

(30)

allowedfromthe

ϒ

sumrulesasgiveninTable2,wecandeduce fromFig.5strongerconstraintsonmb

(

mb

)

:

mb

(

mb

)

= (

4195

4209

)

MeV

=

4202

(

7

)

MeV

,

(31)

wherethe errorissimilar to theaccurate value fromthe

ϒ

sum ruleinTable2.Thisisduetothesmallintersectionregionofthe resultsfromthe J

/ψ,

ϒ

andtheBc sumrules.Withthisrangeof

values,wededuce:

mc

(

mc

)

=

1286

(

8

)

f ig.4

(

14

)

τ

(

1

)

tc MeV

,

=

1286

(

16

)

MeV

,

(32)

wheretheerrorsduetosomeotherparametersandtothe trunca-tionofthePTseriesarenegligible.Thesusbscript f ig

.

4 indicates that theerrorcomesfromtheintersectionregion betweenthe

ϒ

andBc sumrulesinFig.5.

We consider thevalues inEqs. (31) and (32) as ourfinal de-terminationsofmb

(

mb

)

andmc

(

mc

)

fromMBc andcombined

con-straintsfromthe J

and

ϒ

sumrules.

Comments

–Onecannoticethat theeffectofthePTradiativecorrections are quite smallin theratio ofmoments becausethe onesof the absolutemoments

L

0,1 tendtocompensate eachothers.Thisfact

can be checkedfrom a numericalparametrization ofthe LSR ra-tio.Attheoptimizationscale

τ



0

.

32 GeV−2and

μ

=

7

.

5 GeV,it reads(as

α

s

/

π

):

R

0

|

N2L OP T



R

0

|

L OP T

(

1

0

.

16as

0

.

42a2s

) ,

(33)

whiletheLSRlowestmomentis:

L

0

|

N2L OP T



L

0

|

L OP T

(

1

+

6as

+

26

.

4a2s

) .

(34)

(7)

6 S. Narison / Physics Letters B 802 (2020) 135221

Table 2

Valuesofmc(mc)andmb(mb)comingfromourrecentQSSRanalysisbasedon

sta-bilitycriteria.Someotherdeterminationscanbefoundin[53]. Parameters Values [MeV] Sources Ref.

mc(mc) 1256(30) J/ψfamily Ratios of LSR17 [49]

1266(16) Mχ0c−Mηc Ratios of LSR [49]

1264(6) J/ψfamily MOM & Ratios of MOM [48] 1286(66) MD Ratios of LSR [70]

1286(16) MBc Ratios of LSR (This work)

1266(6) Average This work mb(mb) 4192(17) ϒfamily Ratios of LSR [49]

4188(8) ϒfamily MOM & Ratios of MOM [48] 4236(69) MB Ratios of MOM & of LSR [70]

4213(59) MB Ratio of HQET-LSR [63]

4202(7) MBc Ratios of LSR (This work)

4196(8) Average This work

theone 36a2s whichone wouldobtain using a geometric growth oftheas PT coefficients[36].Therefore,theerrorinduced by the

differenceofthetwoN2LOapproximationsisnegligible.

–Thecontributionofthegluoncondensatesisalsosmallatthe optimizationscaleas



α

sG2



increasesMBc byabout5MeVwhile



g3G3



decreases itby 1MeV. Thesecontributions are smalland

alsoshow thegoodconvergenceofthe OPE.Then, itsinduces an increaseofabout6MeV inthequark massvaluesandintroduces anegligible errorof1MeV.However,thenon-perturbative contri-butionsareimportantforhavingthe

τ

-stabilityregion.

– As the QCD continuum contribution which is expected to smearall radial excitation contributions is negligible atthe opti-mizationregionduetotheexponentialdumpingfactorofthesum rule, we expect that some eventual DV discussed previously can be safely neglected dueto its doubly exponential suppression in theLSR analysis. We alsoexpect that the effectsof higherradial excitationscanbesimilarlyneglectedliketheoneoftheQCD con-tinuum.

8. ComparisonwithsomeotherQSSRdeterminations

Wecomparetheprevious resultswiththeonesinTable2 ob-tained from some other QSSR analysis using the same stability criteria. A tentative average of the central values and using the errorfromthemostprecise predictionsfrom J

and

ϒ

families leadstotheaveragesquotedinTable2.

9. Revisiting fBc

Usingthepreviouscorrelatedvaluesof

(

mc

,

mb

)

,wereconsider

theestimateof fBc recentlydoneinRef. [27].

τ

andtcstabilities

Weshowthe

τ

-behaviourof fBc inFig.6fordifferentvaluesof tc for

μ

=

7

.

5 GeV andfor

[

mc

(

mc

),

mb

(

mb

)

]

= [

1264

,

4188

]

MeV

fromTable1.We start tohave

τ

-stability (minimum)fortheset [tc

,

τ

]=[47GeV2,0.22GeV−2]andtc-stabilityfortheset[60 GeV2,

(

0

.

30

0

.

32

)

GeV−2].Onecannoticethatthe

τ

-stabilitystarts

ear-lierforsmallertc-value thantothecaseoftheratioofmoments

usedin thepreceding sections.Tobe conservative, weshall con-siderthevalueof fBc obtainedinsidethislargerrangeoftc-values

andtakeasafinal valueits mean.In thisrange,thevalue of fBc

increasesbyabout15MeV.

μ

stability

Westudytheinfluenceof

μ

on fBc inFig.7giventhevaluesof

τ

andmb,c.Weseeaclearstabilityfor

μ

= (

7

.

2

7

.

5

)

GeVwhich

isconsistent withtheone forMBc andwiththeone obtainedin

[27] indicatingtheself-consistency oftheanalysis.

Fig. 6. fBc versusτ givenμ=7.5 GeVand[mc(mc),mb(mb)]= [1264,4188]MeV

fromTable1.

Fig. 7. fBc as function ofμ for τ0.31 GeV−2 and for the central value of

mc,b(mc,b)giveninEqs. (31) and(32).

Higherorders(HO)PTcorrections

– The N2LO contribution increases the prediction fromLO

NLOby24MeV.Weestimatetheerrorinducedbyusingtheresult atmc

=

0 bycomparingitwiththeoneobtainedfromtheestimate

oftheN2LOcoefficient usingageometricgrowthofthePTseries (see Eq. (34)). The difference induces an error of

±

9

.

6a2s which

correspondsto

±

9 MeV.

– Weestimate the errorduetothe uncalculated higherorder (HO) partof thePT seriesfromthe N3LO contributionestimated byusingthegeometricgrowthofthecoefficientsgiveninthe nu-merical expression in Eq. (34) which is

±

158a3s. Itintroduces an errorofabout10MeV.

Gluoncondensatecontributions

The inclusion of the



α

sG2



condensate increases the sum of

thePT contributionsby 3MeV,whiletheinclusionofthe



g3G3



decreases the prediction by 1 MeV. These contributions and the inducederrorarenegligible.

Result

–TheresultoftheanalysisinunitsofMeVis:

fBc

=

368

(

1

)

τ

(

8

)

tc

(

7

)

mc

(

5

)

mb

(

1

)

αs

(

1

)

μ9

)

N2L O

(

10

)

H O

=

368

(

18

)

MeV

,

(35)

ifoneusesthemassvaluesobtainedinEqs. (31) and(32),whileit is:

fBc

=

381

(

1

)

τ

(

8

)

tc

(

3

)

mc

(

5

)

mb

(

1

)

αs

(

1

)

μ

(

9

)

N2L O

(

10

)

H O

(8)

ifone usesthetentativemassaverages giveninTable 2.We take asafinalresultthemeanofthetwodeterminations:

fBc

=

371

(

17

)

MeV

.

(37)

Thisresultimprovesthepreviousone fBc

=

436

(

40

)

MeVobtained

recentlyin Ref. [27] and the earlierresults in [22,24,25]. It con-firms and improves the one fBc

=

388

(

29

)

MeV averaged from

moments and LSR in [23] where the values of the pole masses havebeenused.However,itdisagreeswithsomeresultsincluding the lattice one reviewed in Table 3 of [27]. New estimates from thelattice approachisneededforclarifyingthe issue.Comments relatedtosomeofthepreviousworkshavebeenalreadyaddressed in [27] andcanbeconsultedthere.

10. Attemptedupperboundfor fBc(2S)

We attempt to give an upper bound to fBc(2S) by using a

“two resonances +QCD continuum”parametrization ofthe spec-tralfunction. However,we are aware onthe factthat dueto the exponential suppression of the Bc

(

2S

)

contribution compared to

Bc

(

1S

)

and of its eventual smaller couplingas expected for the

observed radial excitations in some other channels, we may not extractwithagoodprecisionthe Bc

(

2S

)

decayconstantfromthis

approach. Instead by using the positivity of the QCD continuum contributionfortc

47 GeV2 justabove M2Bc(2S),one obtainsthe

semi-analyticexpressionfrom

L

c0:

ρ

Bc



fBc(2S) fBc



2



M Bc(2S) MBc



4 e−  M2Bc(2S)M2Bcτ

3

.

6%

,

(38)

atthe

τ

-stability of about 0

.

22 GeV−2 as can be deduced from Fig.3.Usingthepreviousvalueof fBc inEq. (37),wededuce:

fBc(2S)

≤ (

139

±

6

)

MeV

,

(39)

indicatingthat the radial excitation couplesweaker to the corre-sponding quark current than the ground state meson. This fea-turehasbeenalreadyobservedexperimentallyinthecaseoflight (

π

,

ρ

)andheavy(

ψ,

ϒ

)mesons.

11. Summaryandconclusions

mcandmb

We have used QCD Laplace sum rules to estimate (for the firsttime) the correlated values ofmc

(

mc

)

and mb

(

mb

)

from the

Bc-mesonmassallowingthemtomoveinsidetheextended

(mul-tipliedbyafactor2:seeFig.5andTable1)rangeofvaluesallowed bycharmoniumandbottomiumsumrules.Thesevalues:

mb

(

mb

)

=

4202

(

7

)

MeV

(

Eq. (31)

),

mc

(

mc

)

=

1286

(

16

)

MeV

(

Eq. (32)

),

agreewithpreviousrecentonesfromcharmoniumandbottomium systemsquotedinTable2.Theerrorsaresimilartotheonesfrom

J

and

ϒ

sum rules. They have been relatively reduced com-paredtotheonesfromthe D andB mesonmassesthankstothe extraconstraintson therange ofvariations ofmc,b

(

mc,b

)

usedin

Fig.5from J

and

ϒ

sumrules.Usingthesevaluesandtheones fromrecentdifferentQSSRdeterminationscollectedinTable2,we deducetheQSSRaverage:

mc

(

mc

)

=

1266

(

6

)

MeV and mb

(

mb

)

=

4196

(

8

)

MeV

,

wheretheerrorcomesfromthemostaccuratedeterminations.

Decayconstants fBcandfBc(2S)

Using the new results in Eqs. (31) and (32), we improve our previous predictionsof fBc [22,23,27] whichbecomes more

accu-ratedueto the inclusionof HO PT correctionsandto theuse of modernvaluesoftheQCDinputparameters:

fBc

=

371

(

17

)

MeV

(

Eq. (37)

)

AnupperboundfortheBc

(

2S

)

decayconstantisalsoderived:

fBc

(

2S

)

≤ (

139

±

6

)

MeV

(

Eq. (39)

) .

Thesenewresultswillbe usefulforfurther phenomenological analysis.

Improvement ofour results requiresa complete evaluation of the spectral function at N2LO and a future measurement of the

Bc

(

2S

)

decayconstant.Weplantoextendtheanalysisinthis

pa-pertosomeother Bc-likemesonsinafuturework. References

[1]S. Narison,PlenarytalkspresentedatQCD19-Montpellier-FR(2-5 July 2019) and atHEPMAD19-Antananarivo-MG(14-19 October 2019),Nucl.Part.Phys. Proc.(2020),inpress.

[2]M.A.Shifman,A.I.Vainshtein,V.I.Zakharov,Nucl.Phys.B147(1979)385.

[3]M.A.Shifman,A.I.Vainshtein,V.I.Zakharov,Nucl.Phys.B147(1979)448.

[4]J.S.Bell,R.A.Bertlmann,Nucl.Phys.B177(1981)218.

[5]J.S.Bell,R.A.Bertlmann,Nucl.Phys.B187(1981)285.

[6]C.Becchi,S.Narison,E.deRafael,F.J.Yndurain,Z.Phys.C8(1981)335.

[7]S.Narison,E.deRafael,Phys.Lett.B522(2001)266.

[8]Forareview,seee.g.:V.I.Zakharov,TalkgivenattheSakurai’sPrice,Int.J. Mod.Phys.A14(1999)4865.

[9]Forareview,seee.g.:R.A.Bertlmann,ActaPhys.Austriaca53(1981)305.

[10]Forareview,seee.g.:S.Narison,Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol. 17(2004)1–778,arXiv:hep-ph/0205006.

[11]Forareview,seee.g.:S.Narison,WorldSci.Lect.NotesPhys.26(1989)1.

[12]Forareview,seee.g.:S.Narison,Phys.Rep.84(1982)263.

[13]Forareview,seee.g.:S.Narison,ActaPhys.Pol.B26(1995)687.

[14]Forareview,seee.g.:S.Narison,Nucl.Part.Phys.Proc.258–259(2015)189.

[15]Forareview,seee.g.:B.L.Ioffe,Prog.Part.Nucl.Phys.56(2006)232.

[16]For areview,seee.g.:L.J. Reinders,H. Rubinstein,S.Yazaki,Phys. Rep.127 (1985)1.

[17]Forareview,seee.g.:E.de Rafael,lesHouchessummerschool,arXiv:hep-ph/ 9802448,1998.

[18]Forareview,seee.g.:F.J.Yndurain,TheTheoryofQuarkandGluon Interac-tions,3rdedition,Springer,1999.

[19]Forareview,seee.g.:P.Pascual,R.Tarrach,QCD:Renormalizationfor Practi-tioner,Springer,1984.

[20]Forareview,seee.g.:H.G.Dosch,in:Narison(Ed.),Non-Perturbative Methods, WorldScientific,1985.

[21]For areview,seee.g.: P.Colangelo, A.Khodjamirian, arXiv:hep-ph/0010175, 2000.

[22]S.Narison,Phys.Lett.B210(1988)238.

[23]E.Bagan,H.G.Dosch,P.Gosdzinsky,S.Narison, J.-M.Richard,Z.Phys. C64 (1994)57.

[24]M.Chabab,Phys.Lett.B325(1994)205.

[25]P.Colangelo,G.Nardulli,N.Paver,Z.Phys.C57(1993)43.

[26]M.Baker,etal.,J.HighEnergyPhys.07(2014)032.

[27]S.Narison,Int.J.Mod.Phys.A30 (20)(2015)1550116,andreferencestherein.

[28]D.Broadhurst,C.Generalis,Phys.Lett.B139(1984)85; D.Broadhurst,C.Generalis,Phys.Lett.B165(1985)175.

[29]E.Bagan,J.I.Latorre,P.Pascual,R.Tarrach,Nucl.Phys.B254(1985)55; E.Bagan,J.I.Latorre,P.Pascual,R.Tarrach,Z.Phys.C32(1986)43.

[30]S.C.Generalis,PhDthesis,OpenUniv.report,OUT-4102-13,1982,unpublished.

[31]E.G.Floratos,S.Narison,E.deRafael,Nucl.Phys.B155(1979)155.

[32]K.G.Chetyrkin,M.Steinhauser,Phys.Lett.B502(2001)104.

[33]K.G.Chetyrkin,M.Steinhauser,arXiv:hep-ph/0108017.

[34]S.Narison,V.I.Zakharov,Phys.Lett.B679(2009)355.

[35]K.G.Chetyrkin,S.Narison,V.I.Zakharov,Nucl.Phys.B550(1999)353.

[36]S.Narison,V.I.Zakharov,Phys.Lett.B522(2001)266.

[37]Forreviews,seee.g.:V.I.Zakharov,Nucl.Phys.,Proc.Suppl.164(2007)240.

[38]S.Narison,Nucl.Phys.,Proc.Suppl.164(2007)225.

[39]R.Tarrach,Nucl.Phys.B183(1981)384.

[40]R.Coquereaux,Ann.Phys.125(1980)401.

(9)

8 S. Narison / Physics Letters B 802 (2020) 135221

[42]S.Narison,Phys.Lett.B197(1987)405.

[43]S.Narison,Phys.Lett.B216(1989)191.

[44]N.Gray,D.J.Broadhurst,W.Grafe,K.Schilcher,Z.Phys.C48(1990)673.

[45]J.Fleischer,F.Jegerlehner,O.V.Tarasov,O.L.Veretin,Nucl.Phys.B539(1999) 671.

[46]K.G.Chetyrkin,M.Steinhauser,Nucl.Phys.B573(2000)617.

[47]K.Melnikov,T.vanRitbergen,arXiv:hep-ph/9912391.

[48]S.Narison,Phys.Lett.B784(2018)261.

[49]S.Narison,Int.J.Mod.Phys.A33 (10)(2018)1850045,andreferencestherein; S.Narison,Int.J.Mod.Phys.A33 (33)(2018)1892004(Addendum).

[50]S.Narison,Phys.Lett.B693(2010)559; S.Narison,Phys.Lett.B705(2011)544(Erratum).

[51]S.Narison,Phys.Lett.B706(2011)412.

[52]S.Narison,Phys.Lett.B707(2012)259.

[53]M.Tanabashi,etal.,ParticleDataGroup,Phys.Rev.D98(2018)030001,and 2019update.

[54]J.Bijnens,J.Prades,E.deRafael,Phys.Lett.B348(1995)226.

[55]M.A.Shifman,arXiv:hep-ph/0009131.

[56]O.Catà,M.Golterman,S.Peris,Phys.Rev.D77(2008)093006.

[57]S.Narison,Phys.Lett.B673(2009)30.

[58]A.Pich,A.Rodriguez-Sanchez,Phys.Rev.D94(2016)034027.

[59]TheCMScollaboration,Phys.Rev.Lett.122(2019)132001.

[60]S.Narison,Phys.Lett.B387(1996)162.

[61]S.Narison,Nucl.Phys.A,Proc.Suppl.54(1997)238.

[62]S.Narison,Phys.Lett.B707(2012)259.

[63]S.Narison,Phys.Lett.B721(2013)269.

[64]R.A.Bertlmann,Nucl.Phys.B204(1982)387.

[65]R.A.Bertlmann,in:Narison(Ed.),Non-PertubativeMethods,WSC,1985.

[66]R.A.Bertlmann,Nucl.Phys.B,Proc.Suppl.23(1991)307.

[67]R.A.Bertlmann,H.Neufeld,Z.Phys.C27(1985)437.

[68]J.Marrow,J.Parker,G.Shaw,Z.Phys.C37(1987)103.

[69]S.Narison,Phys.Lett.B738(2014)346.

[70]S.Narison,Phys.Lett.B718(2013)1321.

Références

Documents relatifs

Dans un triangle, si la longueur du grand côté est égale à la somme des longueurs des deux autres côtés, le triangle est plat.. C’est l’égalité triangulaire,

The discrimination between the b → ` and b → c → ` processes is good enough to allow a simultaneous measurement of their branching ratios with the heavy flavour asymmetries. If

In order to calculate the contribution of each resonance as a function of dP T , the waves have been fitted in three dP T intervals with the parameters of the resonances fixed to

Dans toutes les configurations de Thalès, on retrouve des triangles aux cotés parallèles et dont les longueurs sont proportionnelles... Calculer BN , AN

L’angle de réflexion est égal chaque fois à l’angle d’incidence... (voir animation GeoGebra, http:

[r]

Un nouveau terme qui prend une signification très précise dans le supérieur (Réduction des

Tracer la courbe représentative de f dans le repère donné en ANNEXE au verso en utilisant les valeurs du tableau6. Contrôler sur le graphique la cohérence des réponses aux