• Aucun résultat trouvé

THE DEGREE OF PHASE COMPENSATION OF LASER BEAMS USING GAS JETS

N/A
N/A
Protected

Academic year: 2021

Partager "THE DEGREE OF PHASE COMPENSATION OF LASER BEAMS USING GAS JETS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00220612

https://hal.archives-ouvertes.fr/jpa-00220612

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

THE DEGREE OF PHASE COMPENSATION OF

LASER BEAMS USING GAS JETS

W. Christiansen, E. Wasserstrom, A. Hertzberg

To cite this version:

(2)

THE DEGREE

OF

PHASE COMPENSATION OF LASER BEAMS USING GAS JETS

W.H. Christiansen, E. ~asserstrom* and A. Hertzberg

Department o f Aeronautics and Astronautics, University of Washington, S e a t t l e , Washington 98195 U.S.A.

RCsum6.

--

Lors de l a propagation d'un faisceau l a s e r dans l'atmosphGre, des distorsions de phase

peuvent apparaitre, s o i t de fason passive

b

cause de l a turbulence, s o i t de fafon a c t i v e 3 causede l a dC-

focalisation thermique.

I1 a e t 6 prouv6 q u ' i l e s t possible de compenser partiellement ces Ccarts de

phase en modifiant physiquement 1 'optique de transmission. L ' u t i l i s a t i o n de j e t s de gaz avec des

gradients de densitd adgquats, convenablement interposEs dans l e faisceau, e s t pr6sent6e i c i comme

une a u t r e mdthode d'introduction de facteurs c o r r e c t i f s . Le degrE de compensation de phase susceptible

d 1 6 t r e a t t e i n t en principe a 6t6 6tudi6 pour des j e t s id6aux. On montre que 1 'd c a r t quadratique moyen

peut d t r e r6duit consid6rablement dans l e cas de l a dMocalisation thermique.

Abstract.

--

When a l a s e r beam propagates in the atmosphere, i t s phase can be distorted e i t h e r

passively, due t o turbulence, or actively, due t o thermal blooming.

I t has been demonstrated t h a t i t

i s possible t o p a r t i a l l y compensate f o r these phase e r r o r s by physically d i s t o r t i n g the transmitting

optics. The use of gas j e t s , w i t h controllable density variation, t h a t a r e suitably interposed i n the

beam

is investigated as another method of adding the correcting elements. The degree of phase compen-

sation, which may be achieved in principle, has been studied using ideal j e t s .

I t i s shown t h a t f o r

t h e thermal blooming case t h e mean square phase e r r o r can be s u b s t a n t i a l l y reduced.

1. Introduction.

--

Active optics r e f e r s t o

a detector or t a r g e t . Usually t h i s i s done by

optical components whose c h a r a c t e r i s t i c s a r e con-

physically d i s t o r t i n g mirrors in the transmitting

t r o l l e d during actual operation, in order

t o

modify

optics

[2]

and thus varying the optical paths of

wavefronts.

While the concept of a c t i v e optics

the various rays of the beam.

Good improvements

has been known f o r some time, only recently i s t h e

have been achieved with low-power v i s i b l e l a s e r

technology emerging t h a t will influence the design

propagation in the atmosphere. Correction f o r

of high performance l a s e r systems

[I

,2].

Phase

high-power infrared l a s e r s i s more d i f f i c u l t be-

variations produced by internal cavity d i s t u r -

cause of the need f o r larger amplitude mirror

bances, atmospheric turbulence, or thermal

deflections and heating of the a c t i v e mirror

blooming impose severe

1

imitations on del ivering

surfaces.

a high irradlance l a s e r beam a t a distance. One

A

new method of phase compensation using

of t h e main applications of a c t i v e optics i s the

gaseous optics i s described here as an a l t e r n a t i v e

compensation of these wavefront d i s t o r t i o n s in

method f o r phase f r o n t control. Gaseous optics

order t o enhance the i n t e n s i t y of a l a s e r beam on

o f f e r s a potentially e f f i c i e n t technique f o r phase

a d i s t a n t t a r g e t . I t i s possible t o correct t o a

control of the beam because of small l i g h t losses,

substantial degree f o r these d i s t o r t i o n s by pas-

tolerance of extremely high power l e v e l s , and a

sing the beam i n question through an array of

c h a r a c t e r i s t i c rapid response.

I f many gas j e t s

elements which impose controlled phase variations

w i t h

d i f f e r e n t optical properties and with s u f f i -

which compensate f o r the d i s t o r t i o n . This involves

c i e n t optical depth a r e placed in the path of the

the measurement and control of wavefronts often in

l a s e r , then the gas j e t s produce phase s h i f t s in

real time i n order to concentrate the energy on t o

the beam i t s e l f . The geometry required t o bring

+

Present address : Technion, Israel Institute of

Technology, Haifa, Israel.

(3)

C9-432 JOURNAL DE PHYSIQUE

about l o c a l i z e d phase compensation i n t h e l a s e r beam i s p o s s i b l e by using independent j e t s o f gas. A c t i v e l y changing t h e gas index o f r e f r a c t i o n using f l o w

w i l l

p e r m i t t h e c o n t r o l necessary t o achieve phase compensation.

In

o r d e r t o i l l u s t r a t e t h e concept, consider a u n i f o r m l y i l l u m i n a t e d l a s e r beam propagating i n t h e

z d i r e c t i o n as shown i n F i g . 1. Fig. l a shows t h r e e views o f an a r r a y o f f i v e r e c t a n g u l a r phase- s h i f t i n g elements assembled t o form an a p e r t u r e through which a l a s e r beam i s passed. Each phase- s h i f t i n g element can be independently c o n t r o l 1 ed t o produce any d e s i r e d phase s h i f t (up t o a c e r t a i n maximum value). The p h a s e - s h i f t i n g elements a r e gas j e t s w i t h v a r i a b l e r e f r a c t i v e i n d i c e s . Fig. l ( b ) shows t h e a r r a y i n o p e r a t i o n w i t h t h e phase- s h i f t i n g elements producing l i n e a r l y decreasing phase delays from element 1 t o element 5. The approximate r e s u l t o f o p e r a t i n g t h e a r r a y i n t h i s manner would be t o t i l t t h e o u t p u t beam as shown. The f i g u r e i l l u s t r a t e s one p a r t i c u l a r type o f l a s e r beam c o n t r o l , chosen as an i n t r o d u c t o r y example because o f i t s s i m p l i c i t y . However, t h e same technique can be a p p l i e d using crossed j e t arrays t o a d j u s t the phase f r o n t s o f a l a s e r beam d i f - f e r e n t l y .

,AREA O r LASER BEAM

-

APPROXIMATE OUTPUT LASER BEAU

- PHASE-SHIFTED UAYE FRONTS PHASE-SHIFTING ELEHENTI (GAS OF DIFFERENT INDICLS OF REFPACTION1

3 V I E U S 01 PHASE-SHIFTING ARRAY EACH RECTANGLE REPRESENTS A FREE JET

l n p m LUIER BEAH (YAVEFIIONTI NOT

ra S c a L r l

Fig. 1. Beam T i l t i n g Using Free J e t Phase- S h i f t i n g Elements.

Suppose now t h a t t h e phase d i s t r i b u t i o n over t h e l a s e r beam i s o r i g i n a l l y $(x,y). The r e d u c t i o n i n l i g h t i n t e n s i t y on t h e c e n t e r l i n e o f t h e undis- turbed beam i n the f a r f i e l d i s given by [31

where I.i s t h e i n t e n s i t y f o r a p e r f e c t (unaber- r a t e d ) beam and

?

i s t h e mean square e r r o r o f phase over t h e beam cross section. I n d e r i v i n g Eq. ( I ) , i t has been assumed t h a t t h e a b e r r a t i o n s a r e small, say

7

j (,/5l2. I n order t o reduce t h i s phase d i s t o r t i o n (and thus increase t h e l i g h t i n t e n s i t y ) , gas j e t s are passed through t h e beam i n two orthogonal d i r e c t i o n s , as shown i n F i g . 2. I f

t h e d e n s i t y v a r i a t i o n o f an i d e a l j e t ( d e f i n e d as

a

j e t i n which d i f f u s i o n and entrainment a r e absent) i n the y d i r e c t i o n i s denoted by p(x,z), then t h e r e l a t i v e phase change o f t h e l a s e r beam t r a v e r s i n g t h e j e t i s given by [4]

0

where A i s t h e wavelength o f the l a s e r l i g h t , t i s t h e thickness of the j e t , pr i s some reference den- s i t y and B i s t h e Gladstone-Dale constant. Simi- l a r l y , t h e phase change due t o t h e j e t i n t h e x

LASER- &X BEAM

(4)

changes due t o t h e two j e t s a r e a d d i t i v e , t h e phase o f t h e l a s e r beam a f t e r passing t h e two crossed j e t s i s

$(X,Y) = $(X,Y)

-

f ( x )

-

g ( y ) . ( 3 )

The main problem addressed i n t h i s paper i s t h e determination o f t h e f u n c t i o n s f ( x ) and g ( y ) such t h a t

7,

t h e mean square o f t h e new phase func- t i o n , i s minimized. For purposes o f simp1 i c i t y ,the j e t s a r e assumed t o be i n v i s c i d f o r these c a l c u l a - t i o n s . Both d i s c r e t e and continuous j e t cases have been studied. I t i s recognized t h a t f e a l j e t s w i l l have an e f f e c t on t h e performance o f t h e f l u i d a r l a p - t i v e o p t i c s scheme since j e t s can cause o p t i c a l ab- e r r a t i o n s o f t h e i r own. Thus, what i s analyzed here i s the best phase compensation which may be achieved using i d e a l j e t s .

2. A Simple Minimization.

- -

I n t h i s s e c t i o n t h e cross s e c t i o n o f t h e l a s e r beam i s assumed t o be a r e c t a n g l e D. The phase c o r r e c t i o n i s per- formed by M constant d e n s i t y j e t s i n t h e x d i r e c - t i o n and N constant d e n s i t y j e t s i n t h e y d i r e c t i o n (see Fig. 3 ) . The i n t e r s e c t i o n o f t h e boundaries o f

minimizes J, where

2 J =

1

A . . ( $ . . - f . - 9 . )

,

1J 1 J 1 J ( 5 )

i ,j

The Aij a r e t h e areas of t h e r e c t a n g l e s .

To minimize J we must have aJ/afi = aJ/ag. = 0,

J

where a l l Aij were assumed t o be equal. Thus, t h e a n a l y s i s i s r e s t r i c t e d t o equal w i d t h j e t s . J e t s o f d i f f e r e n t widths a r e a p o s s i b i l i t y , b u t have n o t been considered i n t h i s o r insubsequent c a l c u l a t i o n s .

The M+N equations (6,7) f o r t h e unknowns fi and g. have a non-unique s o l u t i o n , s i n c e i f fi and g. i s

J J

a s o l u t i o n so i s fi + C, g

.

-

C, where C i s an a r b i -

J

t r a r y constant. I n o r d e r t o make t h e s o l u t i o n u n i - que we r e q u i r e t h e m i n i m i z a t i o n o f t h e f u n c t i o n

s u b j e c t t o t h e c o n s t r a i n t s given by eqs. ( 6 ) and ( 7 ) . This problem i s solved by the method o f La- grange mu1 t i p 1 ie r s by d e f i n i n g

these j e t s as viewed by t h e l a s e r subdivide D i n t o

s

2

= Efi t zgj2 + C x i ( ~ f i + ,7gj - I $ i j ) t

MxN s m a l l e r r e c t a n g l e s i n each o f which t h e phase 1 3 1

J

J

$ . . i s assumed constant. The problem i s t o d e t e r -

lj

pj(Mgj +

Ifi

-

1 1

( 9 )

1

J

mine f i and g j so t h a t where

xi

and p . a r e t h e Lagrange mu1 t i p l i e r s . Hence

J

GAS JETS

(5)

C9-434 JOURNAL DE PHYSIQUE

3. A Continuous Case.-- Here t h e cross sec- t i o n o f the l a s e r beam i s assumed t o be a convex domain D i n which i t s phase e r r o r $(x,y) i s c o n t i n - uously given. This phase e r r o r i s t o be decreased by two crossed j e t s o f v a r i a b l e index o f r e f r a c - t i o n i n t h e x and y d i r e c t i o n s , as described i n th e i n t r o d u c t i o n , so t h a t

2

J =

jj

[$(x,y)

-

f ( x )

-

g ( y ) ] dxdy = min. (14)

D

Equation (14) i s solved by standard v a r i a t i o n a l methods [5]. One o b t a i n s two i n t e g r a l equations which a r e analogous t o eqs. (6) and ( 7 ) f o r t h e f i - n i t e d i f f e r e n c e s scheme [6].

Again, t h e s o l u t i o n o f these two i n t e g r a l equ- a t i o n s i s n o t unique, and t o make i t so we r e q u i r e t h e m i n i m i z a t i o n o f t h e f u n c t i o n a l

As i n t h e previous section, t h e problem i s solved by u s i n g Lagrange mu1 t i p l i e r s h ( x ) and ~ ( y ) . A f t e r some manipulations one can show t h a t

b d

1

f ( x ) d x =

I

g(y)dy

i

.

(16)

a c

where a, b, c, d a r e t h e extreme l i m i t s o f t h e con- vex domain. A d d i t i o n a l d e t a i l s r e q u i r e t h e speci- f i c a t i o n o f t h e geometry o f t h e domain.

For t h e s p e c i a l case where t h e domain i s a rec- tangle, t h e equation can be solved e x p l i c i t l y t o

y i e l d d 1 f ( x ) = ;FT (

1

$ ( x , Y ) ~ Y

-

i

.

b ~ ( Y I = ( j $ ( x y y ) d x

-

i ) , (18) a where (19) ca

which i s s i m i l a r t o t h e s o l u t i o n obtained previous- l y i n eqs. ( l l ) , (12), and (13).

Unfortunately, i t i s n o t p o s s i b l e t o w r i t e an e x p l i c i t s o l u t i o n f o r t h e general case, where t h e

domain i s n o t a rectangle. One way t o proceed i s t o s o l v e t h e equation i t e r a t i v e l y [6]. This method has been used s u c c e s s f u l l y f o r t h e case o f t h e c i r c u l a r a p e r t u r e and t h e r e s u l t s w i l l be described i n t h e n e x t s e c t i o n .

4. A Numerical Example

Recently, Bushnell and Skogh [7] have computed t h e phase compensation which can be achieved f o r a thermal l y bloomed l a s e r beam by m i r r o r deformation. A s i m i l a r problem has been solved, except t h a t now t h e compensation i s achieved by means o f d i s c r e t e gas j e t s , as described above. Here we w i l l g i v e r e - s u l t s which a r e a p p l i c a b l e t o a square a r r a y o f f r e e j e t s .

The phase d i s t o r t i o n o f a t h e r m a l l y bloomed beam i s given i n p o l a r coordinates [8] by

3

$(r,0) =

1

f n ( r ) c o s n(O - 8,)

n=O (20)

where r = E 1, 0 = tan-' [ y l and Qo i s t h e

d i r e c t i o n o f t h e wind. The f u n c t i o n s f n ( r ) a r e given by

where C1 i s a non-dimensional c o e f f i c i e n t equal t o 3/4 i n t h e c a l c u l a t i o n s . This c o e f f i c i e n t i s equal t o t h e constant C (eq. (11) o f [7]) d i v i d e d by t h e wave number f o r C02 l a s e r r a d i a t i o n . The z ( i ) a r e Zernike polynomials and a r e d e f i n e d i n [3], [7] o r [8]. F i n a l l y , t h e c o e f f i c i e n t s A.. i n eq. (21)

1 J

t h a t were used i n t h e c a l c u l a t i o n a r e given i n [7] as AZ0 = -0.053 A4, = -0.050 AsO = t0.021

All = t0.440 Agl z t 0 . 0 7 2 A5] = -0.061 (22) The f i r s t exercise considered was t o reduce t h e phase e r r o r $(r,Q) o f a c i r c u l a r l a s e r beam by

(6)

I

tfl

I f 2 I f 3

If,

GAS JETS

Fig.

4

A Circular Laser Beam Covered by Discrete J e t s

width j e t s i n t h e y direction in an optimal manner ( s e e Fig. 4 ) . The solution obtained in Sec. 2 can- not be applied i n a straightforward manner since t h e domain

D

i s now c i r c u l a r r a t h e r than rectangular, and, secondly, the phase i s not constant over the sub-rectangles generated by the intersection o f t h e j e t s . The problem was solved by rewriting the func- tional

J

i n eq. (14) a s

where $(x,y) i s the cartesian equivalent of eq. (20). I t should be noted t h a t

3

used i n eq. (1) i s equal t o (3/0j2

1

$2 dxdy divided by the area. Hence,

= (9/16)JN/*, where the area of a c i r c u l a r beam of normalized radius i s s . The minimization of J N ( f i g j ) was carried out by using t h e general pur- pose minimization program MIN written by Professor Carl E. Pearson of the University of Washington. The r e s u l t s of these calculations for

Qo

= 0 and N = 1 ,

--

J 7 . 0 0131

able

1 . Exact Numerical Results f o r

NxN

J e t s with Q o = O . N varies from 1 t o 7 .

2,.. . , 7 a r e shown in Table 1 and f o r 8, = ~ / 4 and N = 1,2,.

. .

,5 i n Table 2. As was noted i n Sections 2 and 3 , the solution of t h i s problem i s not uni- que, and the data presented in Tables 1 and 2 i s obtained by s h i f t i n g the computed data so t h a t eq.

(13) i s s a t i s f i e d . The main conclusion t o be drawn from these calculations i s about the r a t e of decrease of J N with

N ,

where J N i s a measure o f t h e loss in the maximum i n t e n s i t y , which can be achie- ved by focusing the l a s e r beam. I t i s seen t h a t most of the compensation i s achieved by using a small matrix, say of 2x2 o r 3x3 j e t s . The varia- tion of JN/J1 as function of

N

i s shown in Fig.

5.

The asymptotic value of JN/J1+0.040 was computed by substituting the solutions f ( x ) and g(y) of the continuous case in eq. (14).

The phase d i s t o r t i o n has been expressed in terms of Zernike c i r c l e polynomials (eq. ( 2 0 ) ) , each

(7)

C9-436 JOURNAL DE PHYSIQUE

term o f which corresponds t o i n d i v i d u a l abberations such as t i l t , focus, coma, and so f o r t h [7,81. I n order t o compare t h e r e s u l t s o f those o f [7], t h e f u n c t i o n a l J has been recomputed f o r t h e case o f no t i l t a b e r r a t i o n (Al1 s e t equal t o zero i n eq.(21)). A c t u a l l y , a p r a c t i c a l adaptive o p t i c s system may be one i n which t i 1 t (and focus too) can be c o r r e c t e d by t h e t r a n s m i t t e r i t s e l f . I n p r a c t i c e , t h i s may be done by simply p o i n t i n g t h e l a s e r i n a s l i g h t l y d i f f e r e n t d i r e c t i o n . Since t h e polynomials a r e o r - thonormal over t h e range o f i n t e r e s t , 0 _< r _< 1, 0 <_

Q 5 2 ~ , t h i s does n o t a f f e c t t h e o t h e r h i g h e r order a b e r r a t i o n s and i s e q u i v a l e n t t o using a plane m i r - r o r t o c o r r e c t f o r t i l t . These c a l c u l a t i o n s were c a r r i e d o u t and t h e r e s u l t s f o r JN a r e given i n Table 3 f o r Elo =O. The value o f the rms phase

Table 3. JN versus NxN Jets w i t h T i l t A b e r r a t i o n Set Equal t o Zero f o r Elo = 0.

e r r o r

m=

3/4

v,

versus N i s shown i n F i g . 6 f o r Qo = 0, I t i s seen t h a t t h e r e l a t i v e improve- ments, w h i l e s u b s t a n t i a l , a r e n o t as good as those which i n c l u d e tilt ( F i g . 5). I n f a c t , f o r a small m a t r i x o f 2x2 j e t s , t h e mean square o f t h e e r r o r i s n o t decreased a t a l l . This i s because o n l y a t i l t

SINGLE ARRAY DOURLE ARRAY o LIMITING VALUE 0 035

e,

= 0 A,, = 0 0 : 2 3 4 5 6 7 8 9 ' ! 3 I I I I I I I I N

Fig. 6 RMS Phase Compensation E r r o r Versus t h e Number o f Crossed J e t s f o r a S i n g l e & Double Array. T i l t A b e r r a t i o n Set Equal t o Zero. Q o = 0.

c o r r e c t i o n i s p o s s i b l e w i t h a small number o f j e t s . Figure 6 may be used t o compare w i t h F i g . 9 i n [7], where a s i m i l a r e f f e c t o f reducing the phase e r r o r i s achieved by deforming t h e m i r r o r . By m u l t i p l y - i n g t h e rms phase e r r o r by X/2a = 10.6p/2a, the o r - d i n a t e s o f t h e two f i g u r e s a r e made i d e n t i c a l .While a comparison o f the r e l a t i v e improvement between [7) and t h i s work i s d i f f i c u l t due t o the d i f f e r e n t methods o f approach, i t should be remembered t h a t t h e number o f a c t u a t o r s w i t h the f r e e j e t system i s 2N. The rms phase e r r o r i s reduced by 28% f o r N =7,

(8)

N

Fig. 7 R e l a t i v e Improvement i n RMS E r r o r f o r Aberrations a t 8, = 0.

While t h i s i s an approximated r e s u l t s u b j e c t t o a number o f p o s s i b l e e r r o r s such as t h e curve f i t t i n g procedure and non-optimized r e s u l t s , the c a l c u l a- t i o n shows t w i c e t h e improvement o f a s i n g l e a r r a y .

5. Improvement o f I n d i v i d u a l Abberation E r r o r s

I n t h i s s e c t i o n i n d i v i d u a l a b e r r a t i o n s a r e ex- amined t o see how each o f them i s minimized by a s i n g l e crossed j e t a r r a y . A s e r i e s o f c a l c u l a t i o n s was c a r r i e d o u t i n which t h e phase e r r o r was taken t o be a s i n g l e c l a s s i c a l a b e r r a t i o n . That i s , o n l y one Ai c o e f f i c i e n t i n eq. (20) was taken t o be non- zero and then t h e o p t i m i z a t i o n scheme was a p p l i e d f o r d i f f e r e n t numbers o f j e t s . The r e l a t i v e im- provement i n was noted and i s p l o t t e d i n Fig. 7 as a f u n c t i o n o f t h e a b e r r a t i o n and N f o r 8, =

0.

The numbers f o r each l i n e r e f e r t o thesub- s c r i p t on t h e A.

.

f a c t o r s . The lowest o r d e r aber-

1 J

r a t i o n s are 11 ( t i l t ) , 20 ( f o c u s ) , 22 (astigmatism), 40 ( s p h e r i c a l ) , and 31 (coma), f o r example. Except f o r some minor i r r e g u l a r i t i e s a t low values o f N, a l l a b e r r a t i o n s showed improvement w i t h t h e c r o s s e d j e t p r i n c i p l e . The most dramatic improvement was i n tilt, as expected, although a l l t h e lowest o r - der a b e r r a t i o n s a r e improved g r e a t l y . There i s a systematic progression i n l o s s o f a b i l i t y t o remove modal e r r o r s as t h e o r d e r o f t h e r a d i a l coordinate

F i g . 8 Basis o f T i l t Correction Using I d e a l J e t s f o r 8, = 0.

( r ) increases. That i s , simple f u n c t i o n s can be minimized e a s i l y w i t h small values o f N whereas complex f u n c t i o n s having many maxima and minima across t h e beam r e q u i r e l a r g e r values o f N t o re- duce t h e phase e r r o r . Somewhat s i m i l a r r e s u l t s e x i s t

far

t h e case o f 9, = 4 5 O .

The case o f t i l t about t h e y ( o r x ) a x i s f o r a square l a s e r beam i s easy t o examine i n d e t a i l . The phase e r r o r i s given as

4, = CA 11 rcose = CAl lx

.

(24) The phase c o r r e c t i o n s a r e discontinuous changes i n @a, each of which i s 2CA11/N d i f f e r e n t from i t s neighbor and s e t a t the l o c a l mean value o f $c. A sketch o f t h e idea i s given i n Fig. 8. Equation (23) becomes f o r t h i s case

1 1/2N

2

JN = 2N

1 1

(2CAllx) dxdy

.

(25)

0 0

(9)

C9-438 JOURNAL DE PHYSIQUE

Acknowledqements.

--

The authors wish t o

was supported by t h e Department o f t h e Air Force

thank Robin Insuik f o r her a b l e and w i l l i n g a s s i s -

Office of S c i e n t i f i c Research under AFOSR Contract

tance with t h e numerical c a l c u l a t i o n s . This work

#F49620- 79- C-0020.

References.

[ I ] Hardy, J.W., Proc. of t h e IEEE

66

(1978) 651.

[21 Pearson, J . E . , Bridges,

W.

B . , Hansen, S . ,

Nussmeier, T.

A .

and Pedinoff, M. E . , Appl Dpt.

15 (1976) 611.

-

[3]

Born,

M.

and Wolf, E . , P r i n c i p l e s of Optics,

2nd ed., (Pergamon P r e s s , New York) 1959,

p. 462.

[4]

Liepmann, H .

W .

and Roshko,

A . ,

Elements of

Gasdynamics, (John Wiley, New York) 1957,

p.

154.

[5]

Courant,

R.

and Hi1 b e r t , H., Methods of

Mathematical Physics, ( I n t e r s c i e n c e P u b l i s h e r s ,

New York) 1953, Vol. 1 , Chapter IV.

[6]

Wasserstrom,

E.

and C h r i s t i a n s e n ,

W .

H . , t o

be pub1 ished i n t h e AIAA

J .

[7]

Bushnell

,

D. and Skogh, J . , AIAA

J .

17 (1979)

288.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to