• Aucun résultat trouvé

Effects of neuronal polypeptides on intestinal smooth muscle

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of neuronal polypeptides on intestinal smooth muscle"

Copied!
17
0
0

Texte intégral

(1)

1. A. N. Drury and A. Szent-Györgyi. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 25, 213–

237.

2. Burnstock, G. Geoffrey Burnstock: most highly cited scientist. Mol. Interv. 4, 192–195 (2004).

3. Cocks, T. & Burnstock, G. Effects of neuronal polypeptides on intestinal smooth muscle; a comparison with non-adrenergic, non-cholinergic nerve stimulation and ATP. Eur. J. Pharmacol. 54, 251–259 (1979).

4. Burnstock, G., Satchell, D. G. & Smythe, A. A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and

exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br. J. Pharmacol. 46, 234–242 (1972).

5. Burnstock, G., Campbell, G., Satchell, D. & Smythe, A. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non- adrenergic inhibitory nerves in the gut. Br. J. Pharmacol. 40, 668–688 (1970).

6. Burnstock, G. Historical review: ATP as a neurotransmitter. Trends Pharmacol. Sci.

27, 166–76 (2006).

7. Burnstock, G. Discovery of purinergic signalling, the initial resistance and current explosion of interest. Br. J. Pharmacol. 167, 238–55 (2012).

8. Abbracchio, M. P. & Burnstock, G. Purinoceptors: Are there families of {P2X} and {P2Y} purinoceptors? Pharmacol. Ther. 64, 445–475 (1994).

9. Bar, I. et al. Knockout mice reveal a role for P2Y6 receptor in macrophages, endothelial cells, and vascular smooth muscle cells. Mol. Pharmacol. 74, 777–784 (2008).

10. Fabre, A. C. et al. P2Y13 receptor is critical for reverse cholesterol transport.

Hepatology 52, 1477–1483 (2010).

11. Robaye, B. et al. Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol. Pharmacol. 63, 777–783 (2003).

12. Bassil, A. K. et al. UDP-glucose modulates gastric function through P2Y14 receptor- dependent and -independent mechanisms. Am. J. Physiol. Gastrointest. liver Physiol.

296, G923–G930 (2009).

13. Léon, C. et al. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J. Clin. Invest. 104, 1731–1737 (1999).

(2)

79 14. Homolya, L., Watt, W. C., Lazarowski, E. R., Koller, B. H. & Boucher, R. C.

Nucleotide-regulated calcium signaling in lung fibroblasts and epithelial cells from normal and P2Y(2) receptor (-/-) mice. J. Biol. Chem. 274, 26454–26460 (1999).

15. Born, G. V & Kratzer, M. A. Source and concentration of extracellular adenosine triphosphate during haemostasis in rats, rabbits and man. J. Physiol. 354, 419–429 (1984).

16. Lazarowski, E. R., Sesma, J. I., Seminario-Vidal, L. & Kreda, S. M. Molecular mechanisms of purine and pyrimidine nucleotide release. Adv. Pharmacol. 61, 221–

261 (2011).

17. Yegutkin, G. G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta 1783, 673–694 (2008).

18. Vasileiou, E., Montero, R. M., Turner, C. M. & Vergoulas, G. P2X(7) receptor at the heart of disease. Hippokratia 14, 155–163 (2010).

19. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

20. Rudnick, G. Vesicular ATP transport is a hard (V)NUT to crack. Proc. Natl. Acad. Sci.

105 , 5949–5950 (2008).

21. Sabirov, R. Z. & Okada, Y. ATP release via anion channels. Purinergic Signal. 1, 311–328 (2005).

22. Ahmad, S. Pannexin-1: the missing link? Nat Rev Immunol 7, 418–419 (2007).

23. Penuela, S., Gehi, R. & Laird, D. W. The biochemistry and function of pannexin channels. Biochim. Biophys. Acta - Biomembr. (2012).

doi:10.1016/j.bbamem.2012.01.017

24. Celetti, S. J. et al. Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J. Cell Sci. 123, 1363–1372 (2010).

25. Chekeni, F. B. et al. Pannexin 1 channels mediate “find-me” signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

26. Schwiebert, E. M. ABC transporter-facilitated ATP conductive transport. Am. J.

Physiol. 276, C1–C8 (1999).

27. Yegutkin, G. G. Nucleotide- and nucleoside-converting ectoenzymes: Important modulators of purinergic signalling cascade. Biochim. Biophys. Acta 1783, 673–694 (2008).

28. Kukulski, F. et al. Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal. 1, 193–204 (2005).

(3)

29. Robson, S. C., Sévigny, J. & Zimmermann, H. The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance. Purinergic Signal. 2, 409–430 (2006).

30. Stefan, C., Jansen, S. & Bollen, M. NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem. Sci. 30, 542–550 (2005).

31. Thorn, J. A. & Jarvis, S. M. Adenosine transporters. Gen. Pharmacol. Vasc. Syst. 27, 613–620 (1996).

32. Burnstock, G. & Verkhratsky, A. Long-term (trophic) purinergic signalling:

purinoceptors control cell proliferation, differentiation and death. Cell death Dis. 1, e9 (2010).

33. Burnstock, G. Introductory overview of purinergic signalling. Front. Biosci. Elit. Ed.

3, 896–900 (2011).

34. Abbracchio, M. P. et al. International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev. 58, 281–341 (2006).

35. Inscho, E. W., Cook, A. K., Imig, J. D., Vial, C. & Evans, R. J. Renal autoregulation in P2X1 knockout mice. Acta Physiol. Scand. 181, 445–453 (2004).

36. Mulryan, K. et al. Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature 403, 86–89 (2000).

37. Oury, C. et al. Overexpression of the platelet P2X1 ion channel in transgenic mice generates a novel prothrombotic phenotype. Blood 101, 3969–3976 (2003).

38. Ren, J. et al. P2X2 subunits contribute to fast synaptic excitation in myenteric neurons of the mouse small intestine. J. Physiol. 552, 809–821 (2003).

39. Custer, E. E., Knott, T. K., Cuadra, A. E., Ortiz-Miranda, S. & Lemos, J. R. P2X Purinergic Receptor Knockout Mice Reveal Endogenous ATP Modulation of Both AVP and OT Release from the Intact Neurohypophysis. J. Neuroendocrinol. 24, 674–

80 (2012).

40. Shimizu, I. et al. Enhanced thermal avoidance in mice lacking the ATP receptor P2X3.

Pain 116, 96–108 (2005).

41. Bian, X. et al. Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit. J. Physiol. 551, 309–322 (2003).

42. Baxter, A. W., Choi, S. J., Sim, J. A. & North, R. A. Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur. J. Neurosci. 34, 213–220 (2011).

43. Shen, J.-B., Pappano, A. J. & Liang, B. T. Extracellular ATP-stimulated current in wild-type and P2X4 receptor transgenic mouse ventricular myocytes: implications for

(4)

80 a cardiac physiologic role of P2X4 receptors. FASEB J. Off. Publ. Fed. Am. Soc. Exp.

Biol. 20, 277–284 (2006).

44. Hansen, R. R. et al. P2X7 receptor-deficient mice are susceptible to bone cancer pain.

Pain 152, 1766–1776 (2011).

45. Gartland, A., Buckley, K. A., Hipskind, R. A., Bowler, W. B. & Gallagher, J. A. P2 receptors in bone--modulation of osteoclast formation and activity via P2X7

activation. Crit. Rev. Eukaryot. Gene Expr. 13, 237–242 (2003).

46. Syberg, S. et al. Genetic Background Strongly Influences the Bone Phenotype of P2X7 Receptor Knockout Mice. J. Osteoporos. 2012, 391097 (2012).

47. Jarvis, M. F. & Khakh, B. S. ATP-gated P2X cation-channels. Neuropharmacology 56, 208–215 (2009).

48. Burnstock, G. Overview. Purinergic mechanisms. Ann. N. Y. Acad. Sci. 603, 1–17;

discussion 18 (1990).

49. Volonté, C., Amadio, S., D’Ambrosi, N., Colpi, M. & Burnstock, G. P2 receptor web:

complexity and fine-tuning. Pharmacol. Ther. 112, 264–280 (2006).

50. Surprenant, A. & North, R. A. Signaling at purinergic P2X receptors. Annu. Rev.

Physiol. 71, 333–359 (2009).

51. Erb, L., Liao, Z., Seye, C. I. & Weisman, G. A. P2 receptors: intracellular signaling.

Pflugers Arch. Eur. J. Physiol. 452, 552–562 (2006).

52. Rodrigues, M., Griffith, L. G. & Wells, A. Growth factor regulation of proliferation and survival of multipotential stromal cells. Stem cell Res. Ther. 1, 32 (2010).

53. Von Kügelgen, I. & Wetter, A. Molecular pharmacology of P2Y-receptors.

NaunynSchmiedebergs Arch. Pharmacol. 362, 310–323 (2000).

54. Boeynaems, J.-M., Communi, D., Gonzalez, N. S. & Robaye, B. Overview of the P2 receptors. Semin. Thromb. Hemost. 31, 139–149 (2005).

55. Von Kügelgen, I. & Harden, T. K. Molecular pharmacology, physiology, and structure of the P2Y receptors. Adv. Pharmacol. 61, 373–415 (2011).

56. Zhong, X., Kriz, R., Seehra, J. & Kumar, R. N-linked glycosylation of platelet P2Y12 ADP receptor is essential for signal transduction but not for ligand binding or cell surface expression. FEBS Lett. 562, 111–117 (2004).

57. Preininger, A. M. & Hamm, H. E. G protein signaling: insights from new structures.

Sci. STKE signal Transduct. Knowl. Environ. 2004, re3 (2004).

58. Cabrera-Vera, T. M. et al. Insights into G protein structure, function, and regulation.

Endocr. Rev. 24, 765–781 (2003).

(5)

59. Van Kolen, K. & Slegers, H. Integration of P2Y receptor-activated signal transduction pathways in G protein-dependent signalling networks. Purinergic Signal. 2, 451–469 (2006).

60. Cheng, X., Ji, Z., Tsalkova, T. & Mei, F. Epac and PKA: a tale of two intracellular cAMP receptors. Acta Biochim. Biophys. Sin. (Shanghai). 40, 651–662 (2008).

61. Roscioni, S., Elzinga, C. S. & Schmidt, M. Epac: effectors and biological functions.

Naunyn. Schmiedebergs. Arch. Pharmacol. 377, 345–357 (2008).

62. Clapham, D. E. & Neer, E. J. G PROTEIN βγ SUBUNITS. Annu. Rev. Pharmacol.

Toxicol. 37, 167–203 (1997).

63. Kim, Y. B., Jin, J., Dangelmaier, C., Daniel, J. L. & Kunapuli, S. P. The P2Y1 receptor is essential for ADP-induced shape change and aggregation in mouse platelets. Platelets 10, 399–406 (1999).

64. Hechler, B. et al. Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double- knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors.

Circulation 118, 754–63 (2008).

65. Vanderstocken, G. et al. P2Y2 receptor regulates VCAM-1 membrane and soluble forms and eosinophil accumulation during lung inflammation. J. Immunol. 185, 3702–

3707 (2010).

66. Müller, T. et al. The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy 65, 1545–1553 (2010).

67. Matos, J. E., Robaye, B., Boeynaems, J. M., Beauwens, R. & Leipziger, J. K+

secretion activated by luminal P2Y2 and P2Y4 receptors in mouse colon. J. Physiol.

564, 269–279 (2005).

68. Horckmans, M. et al. P2Y(4) nucleotide receptor: a novel actor in post-natal cardiac development. Angiogenesis (2012). doi:10.1007/s10456-012-9265-1

69. Kunapuli, S. P. et al. ADP receptors--targets for developing antithrombotic agents.

Curr. Pharm. Des. 9, 2303–2316 (2003).

70. Ben Addi, A., Cammarata, D., Conley, P. B., Boeynaems, J.-M. & Robaye, B. Role of the P2Y12 receptor in the modulation of murine dendritic cell function by ADP. J.

Immunol. 185, 5900–5906 (2010).

71. Jacobson, K. A., Balasubramanian, R., Deflorian, F. & Gao, Z.-G. G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal. 8, 419–36 (2012).

72. Boeynaems, J.-M., Communi, D. & Robaye, B. Overview of the pharmacology and physiological roles of P2Y receptors. Wiley Interdiscip. Rev. Membr. Transp. Signal.

1, 581–588 (2012).

(6)

81 73. Magni, G. & Ceruti, S. P2Y purinergic receptors: new targets for analgesic and

antimigraine drugs. Biochem. Pharmacol. 85, 466–77 (2013).

74. Communi, D. et al. Identification of a novel human ADP receptor coupled to G(i). J.

Biol. Chem. 276, 41479–85 (2001).

75. Marteau, F. et al. Pharmacological Characterization of the Human P2Y13 Receptor.

Mol. Pharmacol. 64 , 104–112 (2003).

76. Zhang, F. L. et al. P2Y13: Identification and Characterization of a Novel Gαi-Coupled ADP Receptor from Human and Mouse. J. Pharmacol. Exp. Ther. 301 , 705–713 (2002).

77. Malaval, C. et al. RhoA/ROCK I signalling downstream of the P2Y13 ADP-receptor controls HDL endocytosis in human hepatocytes. Cell. Signal. 21, 120–127 (2009).

78. Jacquet, S. et al. The nucleotide receptor P2Y13 is a key regulator of hepatic high- density lipoprotein (HDL) endocytosis. Cell. Mol. life Sci. C. 62, 2508–2515 (2005).

79. Nicholas, R. A. Identification of the P2Y12 Receptor: A Novel Member of the P2Y Family of Receptors Activated by Extracellular Nucleotides. Mol. Pharmacol. 60 , 416–420 (2001).

80. Bodor, E. T. et al. Purification and functional reconstitution of the human P2Y12 receptor. Mol. Pharmacol. 64, 1210–1216 (2003).

81. Andre, P. et al. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Invest. 112, 398–406 (2003).

82. Damman, P., Woudstra, P., Kuijt, W. J., Winter, R. J. & James, S. K. P2Y12 platelet inhibition in clinical practice. J. Thromb. Thrombolysis 33, 143–153 (2012).

83. Denham, M., Conley, B., Olsson, F., Cole, T. J. & Mollard, R. Stem cells: an overview. Curr. Protoc. cell Biol. Editor. board Juan S Bonifacino al Chapter 23, Unit 23.1 (2005).

84. Frenette, P. S., Pinho, S., Lucas, D. & Scheiermann, C. Mesenchymal stem cell:

keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).

85. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

86. Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9, 204 (2007).

87. Pountos, I. & Giannoudis, P. V. Biology of mesenchymal stem cells. Injury 36 Suppl 3, S8–S12 (2005).

(7)

88. Saraswati, S., Bastakoty, D. & Young, P. in Stem Cells Cancer Stem Cells, Vol. 6 SE - 12 (Hayat, M. A.) 6, 131–141 (Springer Netherlands, 2012).

89. Kuhn, N. Z. & Tuan, R. S. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J. Cell.

Physiol. 222, 268–277 (2010).

90. Cho, H. H. et al. Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng 12, 111–

121 (2006).

91. Tsai, C.-C., Su, P.-F., Huang, Y.-F., Yew, T.-L. & Hung, S.-C. Oct4 and Nanog Directly Regulate Dnmt1 to Maintain Self-Renewal and Undifferentiated State in Mesenchymal Stem Cells. Mol. Cell 47, 169–182 (2012).

92. Greco, S. J., Liu, K. & Rameshwar, P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25, 3143–

3154 (2007).

93. Wei, X. & Shen, C.-Y. Transcriptional regulation of oct4 in human bone marrow mesenchymal stem cells. Stem Cells Dev. 20, 441–449 (2011).

94. Cai, J., Weiss, M. L. & Rao, M. S. In search of “stemness”. Exp. Hematol. 32, 585–

598 (2004).

95. Tuan, R. S., Boland, G. & Tuli, R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 5, 339–361 (2003).

96. Beauséjour, C. Bone marrow-derived cells: the influence of aging and cellular senescence. Handb. Exp. Pharmacol. 67–88 (2007). at

<http://www.ncbi.nlm.nih.gov/pubmed/17554505>

97. Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue- derived MSC. Cell Commun. Signal. CCS 9, 12 (2011).

98. Bianco, P., Robey, P. G. & Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2, 313–319 (2008).

99. Asumda, F. Z. & Chase, P. B. Age-related changes in rat bone-marrow mesenchymal stem cell plasticity. BMC Cell Biol. 12, 44 (2011).

100. Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue- derived MSC. Cell Commun. Signal. CCS 9, 12 (2011).

101. Kolf, C. M., Cho, E. & Tuan, R. S. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9, 204 (2007).

(8)

82 102. Afanasyev, B. V et al. A . J . Friedenstein , founder of the mesenchymal stem cell

concept. Cell. Ther. Transplant. 1, 35–38 (2010).

103. Fridenshteĭn, A. I. Osteogenic stem cells of the bone marrow. Ontogenez 22, 189–197 (1990).

104. Lalykina, K. S., Latsinik, N. V, Epikhina, S. I. & Fridenshteĭn. Self-maintenance of induced bone tissue. Biulleten Eksp. Biol. I Meditsiny 81, 239–242 (1976).

105. Riddle, R. C., Taylor, A. F., Rogers, J. R. & Donahue, H. J. ATP release mediates fluid flow-induced proliferation of human bone marrow stromal cells. J. bone Miner.

Res. Off. J. Am. Soc. Bone Miner. Res. 22, 589–600 (2007).

106. Eriksen, E. F. Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord.

11, 219–227 (2010).

107. Yoshikawa, H. Regulatory mechanisms of bone remodeling. Nippon Rinsho 56, 1400–

1405 (1998).

108. Katagiri, T. & Takahashi, N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 8, 147–159 (2002).

109. Weir, E. C., Insogna, K. L. & Horowitz, M. C. Osteoblast-like cells secrete

granulocyte-macrophage colony-stimulating factor in response to parathyroid hormone and lipopolysaccharide. Endocrinology 124, 899–904 (1989).

110. Huang, J. C. et al. PTH differentially regulates expression of RANKL and OPG. J.

bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 19, 235–244 (2004).

111. Lian, J. B. & Stein, G. S. Development of the osteoblast phenotype: molecular

mechanisms mediating osteoblast growth and differentiation. Iowa Orthop. J. 15, 118–

140 (1995).

112. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89, 747–54 (1997).

113. Komori, T. Runx2, a multifunctional transcription factor in skeletal development. J.

Cell. Biochem. 87, 1–8 (2002).

114. Huang, W., Yang, S., Shao, J. & Li, Y.-P. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front. Biosci. a J. virtual Libr. 12, 3068–

3092 (2007).

115. Matsubara, T. et al. BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J. Biol. Chem. 283, 29119–25 (2008).

116. Alfaro, M. P., Saraswati, S. & Young, P. P. Molecular mediators of mesenchymal stem cell biology. Vitam Horm 87, 39–59 (2011).

(9)

117. Lin, G. L. & Hankenson, K. D. Integration of BMP, Wnt, and Notch signaling pathways in osteoblast differentiation. J. Cell. Biochem. 112, 3491–501 (2011).

118. Ryoo, H.-M., Lee, M.-H. & Kim, Y.-J. Critical molecular switches involved in BMP- 2-induced osteogenic differentiation of mesenchymal cells. Gene 366, 51–57 (2006).

119. Komiya, Y. & Habas, R. Wnt signal transduction pathways. Organogenesis 4, 68–75 (2008).

120. Jonason, J. H., Xiao, G., Zhang, M., Xing, L. & Chen, D. Post-translational Regulation of Runx2 in Bone and Cartilage. J. Dent. Res. 88, 693–703 (2009).

121. Khatiwala, C. B., Kim, P. D., Peyton, S. R. & Putnam, A. J. ECM compliance regulates osteogenesis by influencing MAPK signaling downstream of RhoA and ROCK. J. Bone Miner. Res. 24, 886–898 (2009).

122. Wang, Y. K. et al. Bone morphogenetic protein-2-induced signaling and osteogenesis is regulated by cell shape, RhoA/ROCK, and cytoskeletal tension. Stem Cells Dev 21, 1176–1186 (2012).

123. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Dev. Cell 6, 483–495 (2004).

124. Greenblatt, M. B. et al. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J. Clin. Invest. 120, 2457–2473 (2010).

125. Chen, G., Deng, C. & Li, Y.-P. TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int. J. Biol. Sci. 8, 272–88 (2012).

126. Ge, C. et al. Interactions between extracellular signal-regulated kinase 1/2 and p38 MAP kinase pathways in the control of RUNX2 phosphorylation and transcriptional activity. J. Bone Miner. Res. 27, 538–51 (2012).

127. Marie, P. J. Transcription factors controlling osteoblastogenesis. Arch. Biochem.

Biophys. 473, 98–105 (2008).

128. Miyazono, K., Maeda, S. & Imamura, T. Coordinate regulation of cell growth and differentiation by TGF-beta superfamily and Runx proteins. Oncogene 23, 4232–7 (2004).

129. Komori, T. et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764 (1997).

130. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

131. Hong, S. H. H., Lu, X., Nanes, M. S. & Mitchell, J. Regulation of osterix (Osx, Sp7) and the Osx promoter by parathyroid hormone in osteoblasts. J. Mol. Endocrinol. 43, 197–207 (2009).

(10)

83 132. Zhang, C. Transcriptional regulation of bone formation by the osteoblast-specific

transcription factor Osx. J. Orthop. Surg. Res. 5, 37 (2010).

133. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

134. Franz-Odendaal, T. A., Hall, B. K. & Witten, P. E. Buried alive: how osteoblasts become osteocytes. Dev. Dyn. an Off. Publ. Am. Assoc. Anat. 235, 176–190 (2006).

135. Dallas, S. L. & Bonewald, L. F. Dynamics of the transition from osteoblast to osteocyte. Ann. N. Y. Acad. Sci. 1192, 437–443 (2010).

136. Bonewald, L. F. The amazing osteocyte. J. bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 26, 229–238 (2011).

137. Jaiswal, N., Haynesworth, S. E., Caplan, A. I. & Bruder, S. P. Osteogenic

differentiation of purified, culture-expanded human mesenchymal stem cells in vitro.

J. Cell. Biochem. 64, 295–312 (1997).

138. Tang, Q. Q. & Lane, M. D. Adipogenesis: From Stem Cell to Adipocyte. Annu. Rev.

Biochem. 81, 1–22 (2012).

139. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat.

Rev. Mol. Cell Biol. 7, 885–896 (2006).

140. Saely, C. H., Geiger, K. & Drexel, H. Brown versus White Adipose Tissue: A Mini- Review. Gerontology 58, 15–23 (2012).

141. Bonen, A., Tandon, N. N., Glatz, J. F. C., Luiken, J. J. F. P. & Heigenhauser, G. J. F.

The fatty acid transporter FAT/CD36 is upregulated in subcutaneous and visceral adipose tissues in human obesity and type 2 diabetes. Int. J. Obes. (Lond). 30, 877–883 (2006).

142. Frayn, K. N. & Langin, D. Triacylglycerol metabolism in adipose tissue. Adv. Mol.

Cell Biol. 33, 337–356 (2004).

143. Lepperdinger, G. Inflammation and mesenchymal stem cell aging. Curr. Opin.

Immunol. 23, 518–524 (2011).

144. Rosen, C. J., Ackert-Bicknell, C., Rodriguez, J. P. & Pino, A. M. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications.

Crit. Rev. Eukaryot. Gene Expr. 19, 109–124 (2009).

145. Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol.

Metab. 89, 2548–56 (2004).

146. Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab. 4, 263–273 (2006).

(11)

147. Gregoire, F. M., Smas, C. M. & Sul, H. S. Understanding adipocyte differentiation.

Physiol. Rev. 78, 783–809 (1998).

148. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out. Nat.

Rev. Mol. Cell Biol. 7, 885–896 (2006).

149. Tang, Q. Q. & Lane, M. D. Adipogenesis: From Stem Cell to Adipocyte. Annu. Rev.

Biochem. 81, 1–22 (2012).

150. Darlington, G. J., Ross, S. E. & MacDougald, O. A. The Role of C/EBP Genes in Adipocyte Differentiation . J. Biol. Chem. 273 , 30057–30060 (1998).

151. Jens P Berg. Pluripotent PPARg polymorphisms. Eur. J. Endocrinol. 293–295 (1999).

152. Werman, A. et al. Ligand-independent activation domain in the N terminus of

peroxisome proliferator-activated receptor gamma (PPARgamma). Differential activity of PPARgamma1 and -2 isoforms and influence of insulin. J. Biol. Chem. 272, 20230–

20235 (1997).

153. Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

154. Sugimura, R. & Li, L. Shifting in balance between osteogenesis and adipogenesis substantially influences hematopoiesis. J. Mol. Cell Biol. 2, 61–62 (2010).

155. Takada, I., Yogiashi, Y. & Kato, S. Signaling Crosstalk between PPARγ and BMP2 in Mesenchymal Stem Cells. PPAR Res. 2012, 607141 (2012).

156. Cawthorn, W. P. et al. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 50, 477–89 (2012).

157. Longo, K. A. et al. Wnt10b inhibits development of white and brown adipose tissues.

J. Biol. Chem. 279, 35503–35509 (2004).

158. Liu, Y. et al. Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J. Clin. Invest. 122, 3101–13 (2012).

159. Thomas, T. et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes.

Endocrinology 140, 1630–1638 (1999).

160. Kershaw, E. E. & Flier, J. S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol.

Metab. 89, 2548–56 (2004).

161. Liu, L.-F., Shen, W.-J., Zhang, Z. H., Wang, L. J. & Kraemer, F. B. Adipocytes decrease Runx2 expression in osteoblastic cells: roles of PPARγ and adiponectin. J.

Cell. Physiol. 225, 837–845 (2010).

(12)

84 162. Viccica, G., Francucci, C. M. & Marcocci, C. The role of PPARγ for the osteoblastic

differentiation. J. Endocrinol. Invest. 33, 9–12 (2010).

163. Kassem, M., Abdallah, B. M. & Saeed, H. Osteoblastic cells: differentiation and trans- differentiation. Arch. Biochem. Biophys. 473, 183–187 (2008).

164. Savopoulos, C., Dokos, C., Kaiafa, G. & Hatzitolios, A. Adipogenesis and

osteoblastogenesis: trans-differentiation in the pathophysiology of bone disorders.

Hippokratia 15, 18–21 (2011).

165. Skillington, J., Choy, L. & Derynck, R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J. Cell Biol.

159, 135–146 (2002).

166. Ehninger, A. & Trumpp, A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med. 208, 421–428 (2011).

167. Adams, G. B. & Scadden, D. T. The hematopoietic stem cell in its place. Nat.

Immunol. 7, 333–337 (2006).

168. Li, T. & Wu, Y. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res. 2011, 353878 (2011).

169. Xie, T. & Li, L. Stem cells and their niche: an inseparable relationship. Dev.

Cambridge Engl. 134, 2001–2006 (2007).

170. Schofield, R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25 (1978).

171. Frenette, P. S., Pinho, S., Lucas, D. & Scheiermann, C. Mesenchymal stem cell:

keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31, 285–316 (2013).

172. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

173. Mercier, F. E., Ragu, C. & Scadden, D. T. The bone marrow at the crossroads of blood and immunity. Nat Rev Immunol 12, 49–60 (2012).

174. Sugiyama, T., Kohara, H., Noda, M. & Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25, 977–988 (2006).

175. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–30 (2013).

176. Sugiyama, T. & Nagasawa, T. Bone marrow niches for hematopoietic stem cells and immune cells. Inflamm. allergy drug targets 11, 201–6 (2012).

(13)

177. Guerrouahen, B. S., Al-Hijji, I. & Tabrizi, A. R. Osteoblastic and vascular endothelial niches, their control on normal hematopoietic stem cells, and their consequences on the development of leukemia. Stem Cells Int. 2011, 375857 (2011).

178. Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

179. Spiegel, A., Kalinkovich, A., Shivtiel, S., Kollet, O. & Lapidot, T. Stem cell regulation via dynamic interactions of the nervous and immune systems with the

microenvironment. Cell Stem Cell 3, 484–492 (2008).

180. Jung, Y. et al. Hematopoietic stem cells regulate mesenchymal stromal cell induction into osteoblasts thereby participating in the formation of the stem cell niche. Stem Cells 26, 2042–2051 (2008).

181. Chang, M. K. et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J.

Immunol. 181, 1232–1244 (2008).

182. Champagne, C. M., Takebe, J., Offenbacher, S. & Cooper, L. F. Macrophage cell lines produce osteoinductive signals that include bone morphogenetic protein-2. Bone 30, 26–31 (2002).

183. Kreutz, M. et al. 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 82, 1300–1307 (1993).

184. Takahashi, F. et al. Osteopontin is strongly expressed by alveolar macrophages in the lungs of acute respiratory distress syndrome. Lung 182, 173–185 (2004).

185. Assoian, R. K. et al. Expression and secretion of type beta transforming growth factor by activated human macrophages. Proc. Natl. Acad. Sci. U. S. A. 84, 6020–6024 (1987).

186. Satija, N. K. et al. Mesenchymal stem cells: molecular targets for tissue engineering.

Stem Cells Dev. 16, 7–23 (2007).

187. Caplan, A. I. Adult Mesenchymal Stem Cells for Tissue Engineering Versus Regenerative Medicine. J. Cell. Physiol. 213, 341–347 (2007).

188. Marion, N. W. & Mao, J. J. Mesenchymal stem cells and tissue engineering. Methods Enzymol. 420, 339–361 (2006).

189. Marolt, D., Knezevic, M. & Novakovic, G. V. Bone tissue engineering with human stem cells. Stem Cell Res. Ther. 1, 10 (2010).

190. Schubert, T. et al. Critical size bone defect reconstruction by an autologous 3D osteogenic-like tissue derived from differentiated adipose MSCs. Biomaterials 34, 4428–38 (2013).

(14)

85 191. Al-Khaldi, A. et al. Postnatal bone marrow stromal cells elicit a potent VEGF-

dependent neoangiogenic response in vivo. Gene Ther. 10, 621–629 (2003).

192. Gao, F. et al. A promising strategy for the treatment of ischemic heart disease:

Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. Can J Cardiol 23, 891–898 (2007).

193. Shyu, K.-G., Wang, B.-W., Hung, H.-F., Chang, C.-C. & Shih, D. T.-B. Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction. J. Biomed. Sci. 13, 47–58 (2006).

194. Ferrari, D. et al. Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and

production of proinflammatory cytokines. Exp. Hematol. 39, 360–374, 374.e1–e5 (2011).

195. Zippel, N. et al. Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev. 21, 884–900 (2012).

196. Kawano, S. et al. ATP autocrine/paracrine signaling induces calcium oscillations and NFAT activation in human mesenchymal stem cells. Cell Calcium 45, 18–28 (2006).

197. Wang, L., Jacobsen, S. E. W., Bengtsson, A. & Erlinge, D. P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol. 5, 16 (2004).

198. Noronha-Matos, J. B. et al. Role of ecto-NTPDases on UDP-sensitive P2Y(6) receptor activation during osteogenic differentiation of primary bone marrow stromal cells from postmenopausal women. J. Cell. Physiol. 227, 2694–709 (2012).

199. Coppi, E. et al. ATP Modulates Cell Proliferation and Elicits Two Different

Electrophysiological Responses in Human Mesenchymal Stem Cells. Stem Cells 25, 1840–1849 (2007).

200. Roszek, K., Błaszczak, A., Wujak, M. & Komoszyński, M. Nucleotides metabolizing ectoenzymes as possible markers of mesenchymal stem cell osteogenic differentiation.

Biochem. Cell Biol. 91, 176–181 (2013).

201. Orriss, I. et al. Bone phenotypes of P2 receptor knockout mice. Front. Biosci. Sch. Ed.

3, 1038–1046 (2011).

202. Orriss, I. R. et al. The P2Y(6) receptor stimulates bone resorption by osteoclasts.

Endocrinology 152, 3706–16 (2011).

203. Su, X. et al. The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest 122, 3579–92. doi: 10.1172/JCI38576. Epub 2012 Sep 17. (2012).

(15)

204. Wang, N. et al. Reduced bone turnover in mice lacking the P2Y(13) receptor of ADP.

Mol. Endocrinol. Balt. Md 26, 142–52 (2012).

205. Ciciarello, M. et al. Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages.

Stem Cells Dev. 22, 1097–111 (2013).

206. Rossi, L., Salvestrini, V., Ferrari, D., Di Virgilio, F. & Lemoli, R. M. The sixth sense:

hematopoietic stem cells detect danger through purinergic signaling. Blood (2012).

doi:10.1182/blood-2012-04-422378

207. Jonason, J. H., Xiao, G., Zhang, M., Xing, L. & Chen, D. Post-translational Regulation of Runx2 in Bone and Cartilage. J. Dent. Res. 88, 693–703 (2009).

208. Costessi, A. et al. Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts’

response. Bone 36, 418–432 (2005).

209. Mabuchi, Y., Houlihan, D. D., Akazawa, C., Okano, H. & Matsuzaki, Y. Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int. 2013, 507301 (2013).

210. Kawano, S. et al. {ATP} autocrine/paracrine signaling induces calcium oscillations and {NFAT} activation in human mesenchymal stem cells. Cell Calcium 39, 313–324 (2006).

211. Turner, C. H. & Robling, A. G. Mechanical loading and bone formation. IBMS Bonekey 1, 15–23 (2004).

212. Rumney, R. M. H., Sunters, A., Reilly, G. C. & Gartland, A. Application of multiple forms of mechanical loading to human osteoblasts reveals increased ATP release in response to fluid flow in 3D cultures and differential regulation of immediate early genes. J. Biomech. 45, 549–554 (2012).

213. Li, J., Liu, D., Ke, H. Z., Duncan, R. L. & Turner, C. H. The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J. Biol. Chem. 280, 42952–42959 (2005).

214. Sun, D. et al. Shockwaves Induce Osteogenic Differentiation of Human Mesenchymal Stem Cells through ATP Release and Activation of P2X7 Receptors. Stem cells Dayt.

Ohio (2013). doi:10.1002/stem.1356

215. Yu, T. et al. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation. Am. J. Physiol. Cell Physiol. 298, C457–C464 (2010).

216. Jia, B. et al. Activation of Protein Kinase A and Exchange Protein Directly Activated by cAMP Promotes Adipocyte Differentiation of Human Mesenchymal Stem Cells.

PLoS One 7, e34114 (2012).

(16)

86 217. Yamashita, T., Takahashi, N. & Udagawa, N. New roles of osteoblasts involved in

osteoclast differentiation. World J. Orthop. 3, 175–81 (2012).

218. Kameda, T. et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J. Exp. Med. 186, 489–495 (1997).

219. Syberg, S. et al. Clopidogrel (Plavix®), a P2Y(12) receptor antagonist, inhibits bone cell function in vitro and decreases trabecular bone in vivo. J. bone Miner. Res. Off. J.

Am. Soc. Bone Miner. Res. 1–39 (2012). doi:10.1002/jbmr.1690

220. Jørgensen, N. R., Grove, E. L., Schwarz, P. & Vestergaard, P. Clopidogrel and the risk of osteoporotic fractures: a nationwide cohort study. J. Intern. Med. 272, 385–93 (2012).

221. Peister, A. et al. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and

differentiation potential. Blood 103, 1662–1668 (2004).

222. Phinney, D. G., Kopen, G., Isaacson, R. L. & Prockop, D. J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J. Cell. Biochem. 72, 570–585 (1999).

223. Pettit, A. R. et al. OsteoMacs maintain the endosteal hematopoietic stem cell niche and participate in mobilization. Bone 44, S32–S33 (2009).

224. Coppi, E. et al. ATP modulates cell proliferation and elicits two different

electrophysiological responses in human mesenchymal stem cells. Stem Cells 25, 1840–1849 (2007).

225. Francke, A., Herold, J., Weinert, S., Strasser, R. H. & Braun-Dullaeus, R. C.

Generation of mature murine monocytes from heterogeneous bone marrow and description of their properties. J. Histochem. Cytochem. 59, 813–825 (2011).

226. Pirraco, R. P., Reis, R. L. & Marques, A. P. Effect of monocytes/macrophages on the early osteogenic differentiation of hBMSCs. J. Tissue Eng. Regen. Med. (2012). at

<http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=22392849

&retmode=ref&cmd=prlinks>

227. Song, H. Y., Jeon, E. S., Kim, J. Il, Jung, J. S. & Kim, J. H. Oncostatin M promotes osteogenesis and suppresses adipogenic differentiation of human adipose tissue- derived mesenchymal stem cells. J. Cell. Biochem. 101, 1238–1251 (2007).

228. Gómez-Barrena, E. et al. Bone regeneration: stem cell therapies and clinical studies in orthopaedics and traumatology. J. Cell. Mol. Med. 15, 1266–1286 (2011).

229. Dobson, K. R., Reading, L., Haberey, M., Marine, X. & Scutt, A. Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae. Calcif. Tissue Int. 65, 411–413 (1999).

(17)

Références

Documents relatifs

However, there is also indirect evidence for the origin of B cells from stem cells, as supranormal amounts of B-cell precursors are frequently found in the marrow at 2– 12 months

Human Mesenchymal Stem Cells (hMSCs) appear as promising candidates for cell- substrate interaction studies for bone tissue engineering applications, as they can be harvested from

The 3D imaging of the cells showed that the MitoCepted MSC mitochondria were found inside the MDA-MB-231 cells, and not at the cell membrane for instance, and that moreover they

of the transport to the SIC and LIG (red and blue lines) sec- tions oscillates around their mean values (please note that in the CORS experiment the number of particles that do

To obtain an efficient evalua- tion platform, three specific criteria were considered: Control conditions (real time monitoring, repeatability, flexibility, scalability),

Effector proteins of plant pathogens are key virulence determinants which can be secreted in the apoplast or translocated inside plant cells where they subvert host immunity

Given a sequence of graphs Gt on n nodes such that Assumption 2.3 of section 2 is satisfied for some B > 0, and an initial condition x0, we define the convergence time TG· x0, for

Using a high throughput approach, we identified here Oncostatin M (OSM), a cytokine of the IL-6 family, as a major coupling factor produced by activated circulating CD14 + or