• Aucun résultat trouvé

ON THE ROLE OF QUANTUM AND STATISTICAL EFFECTS IN THE LIQUID GAS PHASE TRANSITION OF HOT NUCLEI

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE ROLE OF QUANTUM AND STATISTICAL EFFECTS IN THE LIQUID GAS PHASE TRANSITION OF HOT NUCLEI"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00225816

https://hal.archives-ouvertes.fr/jpa-00225816

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

ON THE ROLE OF QUANTUM AND STATISTICAL

EFFECTS IN THE LIQUID GAS PHASE

TRANSITION OF HOT NUCLEI

A. Blin, B. Hiller, H. Reinhardt, P. Schuck

To cite this version:

(2)

C o l l o q u e C4, s u p p l 6 m e n t au

no 8 ,

T o m e

47,

a o O t

1986

ON THE ROLE OF QUANTUM AND STATISTICAL EFFECTS IN THE LIQUID GAS

PHASE TRANSITION OF HOT NUCLEI

A . H . B L I N , B . HILLER, H . REINHARDT*

and

P . SCHUCK"

I n s t i t u t fiir T h e o r e t i s c h e P h y s i k , U n i v e r s i t d t R e g e n s b u r g . 0 - 8 4 0 0 R e g e n s b u r g , F.R.G.

' ~ e n t r a l i n s t i t u t

fur K e r n f o r s c h u n g , R o s s e n d o r f ,

Postfach

19, 0 - 8 0 5 1 D r e s d e n , D.R.G.

"ISN, 53, A v e n u e d e s M a r t y r s , F - 3 8 0 2 6 G r e n o b l e C e d e x , France RCsume

-

La t r a n s i t i o n de phase Liquide-gaz dans La m a t i e r e n u c l e a i r e chaude

--

due aux f l u c t u a t i o n s quantiques e t s t a t i s t i q u e s e s t Ctudiee dans un modble microscopique de La n u c l e a t i o n . Ce modkle e s t une v e r s i o n hydrodynamique de La t h e o r i e de champs moyen dCpendant du temps i m a g i n a i r e aux temperatures f i n i e s . A b s t r a c t

- The t r i g g e r i n g o f t h e Liquid-gas phase t r a n s i t i o n i n h o t n u c l e a r

m a t t e r by quantum and s t a t i s t i c a l f l u c t u a t i o n s i s s t u d i e d i n a m i c r o s c o p i c approach t o nucleation, which i s a f l u i d - d y n a m i c a l v e r s i o n o f t h e imaginary t i m e dependent mean f i e l d t h e o r y a t f i n i t e temperature.

I

-

INTRODUCTION

The e q u a t i o n o f s t a t e o f h o t n u c l e a r m a t t e r e x h i b i t s a t y p i c a l van der Waals behavi- o u r and i n d i c a t e s t h e coexistence o f a l i q u i d phase a t normal n u c l e a r m a t t e r d e n s i t y and o f a gas phase ( a t lower d e n s i t i e s ) which c o n s i s t s o f a f r e e gas o f nucleons, deuterons, A t low temperatures, where s t a t i s t i c a l f l u c t u a t i o n s can be d i s - carded i n a c l a s s i c a l theory, t h e two homogeneous phases which correspond t o t h e li- q u i d and gas a r e s t a b l e and may have d i f f e r e n t o r equal energy d e n s i t i e s . However, i n a quantum t h e o r y t h e s t a t e o f h i g h e r energy i s rendered u n s t a b l e through b a r r i e r pe- n e t r a t i o n and a phase t r a n s i t i o n may t a k e place. Phase t r a n s i t i o n s a r e a l s o p o s s i b l e v i a thermodynamical f l u c t u a t i o n s . A new phase may be formed i n s m a l l volumes, say, bubble i n a n u c l e a r m a t t e r environment, which a r e s t a b l e i f t h e y have a c e r t a i n size, b e i n g e n e r g e t i c a l l y f a v o u r a b l e i n t h e i n t e r p l a y o f volume and s u r f a c e energies. The r o l e o f quantum and s t a t i s t i c a l f l u c t u a t i o n s has been f i r s t analyzed i n a micro- s c o p i c d e s c r i p t i o n i n t h e r e c e n t work o f reference4). There a r e l a t i v i s t i c model f i e l d t h e o r y o f n u c l e a r systems (Walecka's model has been used t o s t u d y t h e L i - q u i d vapour phase t r a n s i t i o n s a p p l y i n g e u c l i d e a n space p a t h i n t e g r a l techniques 6 ) .

I n t h e p r e s e n t work we use a s i m i l a r dynamical t r e a t m e n t t o s t u d y phase t r a n s i t i o n s i n a n o n - r e l a t i v i s t i c d e s c r i p t i o n o f t h e n u c l e a r many-body system w i t h e f f e c t i v e Skyrme f o r c e s . The q u a n t i t y which d e s c r i b e s t h e decay o f one o f t h e m e t a s t a b l e phases i n t o t h e s t a b l e one ( " n u c l e a t i o n r a t e " ) has a W.K.B. l i k e form

W =

B e x p ( - A i )

(11

N

where A i i s t h e minimized c l a s s i c a l (euclidean) a c t i o n a s s o c i a t e d w i t h bubble o r d r o p l e t f o r m a t i o n and B i s a f a c t o r which a r i s e s from t h e f u n c t i o n a l i n t e g r a l over t h e f l u c t u a t i o n s . Equation

(I)

i s a p p l i c a b l e t o bubble f o r m a t i o n ( o r n u c l e a t i o n ) t r i g g e r e d b y quantum as w e l l as s t a t i s t i c a l f l u c t u a t i o n s b u t t h e corresponding a c t i o n d i f f e r s i n t h e two cases. By m i n i m i z i n g t h e a c t i o n one o b t a i n s an e q u a t i o n o f motion f o r t h e bubble o r d r o p l e t r a d i u s as f u n c t i o n o f t h e imaginary time. T h i s e q u a t i o n has s e v e r a l s o l u t i o n s . Two o f them a r e t r i v i a l s t a t i c s o l u t i o n s and correspond t o t h e homogeneous gas and l i q u i d phase r e s p e c t i v e l y . One i s s t a t i c b u t non t r i v i a l , repre- s e n t i n g a bubble ( d r o p l e t ) on t h e background o f a constant l i q u i d (gas) phase and a r i s e s due t o s t a t i s t i c a l f l u c t u a t i o n s . The a c t i o n corresponding t o t h i s s o l u t i o n

(3)

JOURNAL

DE

PHYSIQUE

e n t e r s i n t h e c a l c u l a t i o n o f s t a t i s t i c a l f l u c t u a t i o n s . F i n a l l y t h e r e e x i s t s an (ima- g i n a r y ) t i m e dependent s o l u t i o n , which d e s c r i b e s t h e f o r m a t i o n o f bubbles ( d r o p l e t s ) through b a r r i e r p e n e t r a t i o n o r quantum f l u c t u a t i o n s .

A t f i n i t e temperatures, t h e e u c l i d e a n action, d e f i n e d as ( - i ) times t h e c o n t i n u a t i o n o f t h e r e a l t i m e s e c t i o n t o i m a g i n a r y times T i s g i v e n i n t h e f l u i d dynamical a p p r o x i - m a t i o n by

6A

~ [ g p

J d ~ ( ~ d i x ) -

y T n ( p u z ) - R

CS])

(11 .I) -h/* I I -

w i t h t h e boundary c o n d i t i o n p(l3/2) =p(-R/2) and t h e i n v e r s e temperature T o f t h e sys- tem. Here p i s t h e t i m e even p a r t o f t h e d e n s i t y m a t r i x , t h e f i e l d X i s azsumed+to be l o c a l i n space, and t h e v e l o c i t y f i e l d U i s a s s o c i a t e d t o t h e f i e l d X by u =

VX

.

The q u a n t i t y Q i n eq. (11.1) i s t h e thermodynamic p o t e n t i a l , a f u n c t i o n a l o f p

RLSI=

E

CS]

-p*>

(S)

-

S/@

(11.2)

where i s t h e chemical p o t e n t i a l , S t h e e n t r o p y and ELp] t h e mean f i e l d energy f u n c t i o n a l .

The v a r i a t i o n s o f t h e a c t i o n i n t e g r a l w i t h r e s p e c t t o X and p lead t o t h e f l u i d dy- namics equations. Since eq. (11.1) i s s u b j e c t t o t h e boundary c o n d i t i o n p(l3/2)

.=

=p(-0/2),the s o l u t i o n i s n o t as u s u a l an i n i t i a l v a l u e problem, b u t r a t h e r a boundary v a l u e problem w i t h p e r i o d i c c o n d i t i o n s . T h i s renders t h e problem q u i t e d i f f i c u l t t o handle.

I11

-

SIMPLIFICATION OF THE MODEL

To g e t a f i r s t i n s i g h t i n t o t h e non t r i v i a l m e a n - f i e l d s o l u t i o n s d e s c r i b i n g t h e n u c l e - a t i o n process (bubble o r d r o p l e t f o r m a t i o n ) we r e s o r t t o s e v e r a l approximations which we L i s t as f o l l o w s :

(i) we assume r a d i a l symmetry ( f o r t h e bubble o r d r o ~ l e t ' ) ( i t ) t h e d e n s i t y o f a bubble ; o l u t i o n i s parametrized' as

P

=

P,

+

(%-$)/{I

+

e x p l ( r - ~ ( c ) ) / a ] j

and t h e d e n s i t y o f a d r o p l e t s o l u t i o n i s o b t a i n e d by i n t e r c h a n i n g t h e r o l e s o f pG and

PI

.

ere

p6 and PL a r e t h e values o f t h e d e n s i t i e s which r e s u l t from a Maxwell construc- t i o n i n a n u c l e a r m a t t e r c a l c u l a t i o n . Then t h e c o e x i s t e n c e o f t h e gas and L i q u i d phases i s c h a r a c t e r i z e d by d e n s i t i e s o f equal chemical p o t e n t i a l /(A.

P

( F c ) = p

l % ) .

(111.2)

The imaginary t i m e T e n t e r s through t h e parameter R. The parameter a, which repre- sents t h e s u r f a c e t h i c k n e s s o f t h e droplet, i s k e p t constant f o r a f i x e d temperature. (iii) The mean f i e l d h a m i l t o n i a n i s c a l c u l a t e d i n t h e f i n i t e temperature Thomas Fermi

a p p r o x i m a t i o n w i t h a Skyrme i n t e r a c t i o n 3 ) .

( i v ) We n e g l e c t Coulomb e f f e c t s and assume symmetric n u c l e a r matter.

The c h o i c e o f p a r a m e t r i z a t i o n (ii) corresponds t o our b e l i e f t h a t h o t compressed nuc- l e a r m a t t e r may d e s i n t e g r a t e t o g i v e r i s e t o bubbles a t much Lower t h a n s a t u r a t i o n d e n s i t i e s through s t a t i s t i c a l and quantum f l u c t u a t i o n s . I n a s i m i l a r f a s h i o n we a l s o c o n s i d e r t h e p o s s i b i l i t i e s t h a t a h o t nucleon gas may m a t e r i a l i z e i n s m a l l d r o p l e t s . T h i s p i c t u r e i s s u b s t a n t i a t e d by t h e e q u a t i o n o f s t a t e o f h o t n u c l e a r matter, which e x h i b i t s a t y p i c a l Van d e r Waals behaviour.

I n heavy i o n r e a c t i o n s t h e process o f bubble f o r m a t i o n i s p r o b a b l y more r e l e v a n t t h a n t h e d r o p l e t formation. D r o p l e t f o r m a t i o n c o u l d i n p r i n c i p l e be i m p o r t a n t d u r i n g t h e s t r o n g expansion phase o f a h i g h energy n u c l e a r r e a c t i o n . However, we w i l l see below t h a t t h i s occurs i n o u r model o n l y f o r d e n s i t i e s much lower t h a n t h e u s u a l l y accepted v a l u e o f t h e f r e e z e

-

o u t d e n s i t y .

I V

-

THE VELOCITY FIELD AND THE MASS PARAMETERS

(4)

y i e l d

(IV.1) T h i s e q u a t i o n a l l o w s t o determine t h e v e l o c i t y f i e l d which corresponds t o a c e r t a i n d e n s i t y . To c a l c u l a t e t h e a c t i o n i n t e g r a l (11.1) u s i n g t h e p a r a m e t r i z a t i o n (111.11, i t i s necessary t o know how p evolves i n t h e imaginary t i m e r. Since i n (111.1) p depends on T o n l y through R ( r ) , we v a r y t h e a c t i o n A w i t h r e s ~ e c t t o R and o b t a i n t h e f o l l o w i n g e q u a t i b n o f m o t i o n

fbr-p

d n

-

PR

k 2 - 2 &

R =

0

d72I

w h e r e a f i g u r e s as mass parameter. V

-

THE THERMODYNAMICAL POTENTIAL R

The thermodynamical p o t e n t i a l corresponding t o bubble f o r m a t i o n i s d e f i n e d as (V.1) Here R [ p L ] i s t h e thermodynamic p o t e n t i a l a s s o c i a t e d w i t h t h e l i q u i d background o f eq. (111.1). I n F i g . 1, we d e p i c t

aB

f o r T

=

9 MeV. Since p -t p ~ as R +

-

m one ap-

proaches from t h e l e f t t h e p o t e n t i a l m i n i ~ u m corresponding t o t h e L i q u i d phase, which i s s u b s t r a c t e d o f f i n t h e c a l c u l a t i o n o f CLB. T h e r e f o r e RB vanishes f o r R + -W. For

l a r g e values o f R, p + p ~

,

and one approaches from t h e r i g h t t h e p o t e n t i a l minimum

o f t h e gas phase. The b a r r i e r between t h e two phases i s due t o t h e s u r f a c e energy. A f t e r reaching t h e s a t u r a t i o n value, t h e volume energy o f t h e bubble s t a r t s t o domi- n a t e over t h e s u r f a c e energy, which e x p l a i n s t h e f a l l o f f o f

GB

a f t e r a c e r t a i n c r i - t i c a l R.

V1

-

QUANTUFI FLUCTUATIONS

I t i s necessary t o s o l v e e x p l i c i t l y t h e imaginary t i m e e q u a t i o n o f m o t i o n f o r R, eq. (IV.2) w i t h t h e a p p r o p r i a t e boundary c o n d i t i o n . The s o l u t i o n o f eq. (IV.2) shows how t h e r a d i u s R o f t h e d r o p l e t o r bubble behaves i n t h e course o f t h e i m a g i n a r y t i m e

T. F i g u r e 2 shows t h e imaginary t i m e e v o l u t i o n o f a bubble r a d i u s R ( ~ ) f o r p = ' 2 0 . 5 M e V a t T

':

0.5 MeV.

I n Table 1 we showthe i n i t i a l values o f R which a r e compatible w i t h quantum f l u c t u a - t i o n s a t s e v e r a l values o f t h e chemical p o t ~ n t i a l p, and t h e r e s u l t i n g bubble forma- t i o n p r o b a b i l i t i e s a t t h e temperature T

=

0.5 MeV.

V11

- STATISTICAL FLUCTUATIONS

S t a t i s t i c a l f l u c t u a t i o n s correspond t o t h e non t r i v i a l s t a t i c s o l u t i o n s o f eq. (IV.2) t h z t i s ( R

=

0, .I?- = 0) and dWdR = 0. T h e r e f o r e t h e nEn t r i v i a l s o l u t i o n i s

ai

(R)

=

= Ri(Rcr) where RC, i s t h e c r i t i c a l r a d i u s f o r which Ri(R) a c q u i r e s i t s maximum.Fig.3 shousthe r e s u l t i n g c r i t i c a l bubble r a d i i and n u c l e a t i o n r a t e s a t T

=

9 NeV as func- t i o n of t h e d e n s i t y Q.

REFERENCES

-

1) G. Sauer, H. Chandra and U. Nosel, Nucl. Phys. A 264 (1976) 221;

2) G. B e r t s c h and P.J. Siemens, Phys. L e t t .

126

(1983) 9; 3) M. Brack, C. Guet and H.-B. Hikansson, Phys. Rep.

123

(1985) 275; 4 ) H. Reinhardt and H. Schulz, Nucl. Phys. A 432 (1985) 630; 5 ) J.D. Walecka, Ann. Phys.

83

(1974) 491; Phys. L e t t .

59

(1975) 109; 6) S. Coleman, Phys. Rev.

D

(1977) 2929; H. Reinhardt, Nucl. Phys. A 367

(5)

JOURNAL

DE

PHYSIQUE

F i g .

1

-

The thermodynamical p o t e n t i a l

8,

o f a bubble on a l i q u i d background as f u n c t i o n o f t h e r a d i u s R o f t h e bubble f o r t h e isotherm T = 9 MeV and two values o f t h e chemical p o t e n t i a l ( i n MeV).

Fig. 2

-

Time-dependent s o l u t i o n t o t h e equation o f motion IV.2. The bubble r a d i u s R i s s h ~ w n as f u n c t i o n of t h e imaginary t i m e T, corresponding t o t h e s o l u t i o n i n s i d e

t h e i n v e r t e d thermodynamical p o t e n t i a l f o r 11 = -20.7 MeV and

T

= 0.5. MeV. The minimum o f

R

l i e s on one t u r n i n g p o i n t o f t h e p o t e n t i a l .

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

D’un point de vue fondamental, l’étude de ce métabolisme connaît depuis plusieurs années des avancées significatives, stimulées par la découverte de