• Aucun résultat trouvé

INTERNAL FRICTION STUDY OF STRAIN AGING IN ALLOYS

N/A
N/A
Protected

Academic year: 2021

Partager "INTERNAL FRICTION STUDY OF STRAIN AGING IN ALLOYS"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00225431

https://hal.archives-ouvertes.fr/jpa-00225431

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTERNAL FRICTION STUDY OF STRAIN AGING IN ALLOYS

R. Schwarz

To cite this version:

R. Schwarz. INTERNAL FRICTION STUDY OF STRAIN AGING IN ALLOYS. Journal de Physique

Colloques, 1985, 46 (C10), pp.C10-207-C10-214. �10.1051/jphyscol:19851047�. �jpa-00225431�

(2)

JOURNAL DE PHYSIQUE

Colloque CIO, supplément au n012, Tome 46, décembre 1985 page C10-207

Materials Science and rechnology Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

Abstract - Interna1 f r i c t i o n measurements were used t o study s t r a i n aging

i n

m r y s t a l s of

AR-Mg

and

Cu-AR

alloys as a function of temperature and

aging time. In t h e x s e n c e ofdeformation-generated vacancies, sol ute segregation t o dislocations s t a r t s a t 200 and 300

K,

respectively. Excess vacancies were generated

i n

pure

&

and AR-Mg alloys by in-situ pl a s t i c deformation at 120

K.

With increasing tëiiïperature, solute segregation t o dislocations s t a r t s

i n

these alloys at 200

K,

as

i n

the absence of excess vacancies. The excess vacancies become mobile in pure

AR

and in the

At-Mg

alloys at 250

K.

I t i s concluded that the i n i t i a l locking of disloca€Tons by solutes occurs through a rearrangement of solutes near the dislocation cores and that

i n

&-Mg alloys, def-ormation-generated vacancies have l i t t l e or no effect in

t h =

process.

1

- INTRODUCTION

In alloys w i t h a low dislocation density, a significant contribution t o the flow s t r e s s arises from the interaction between dislocations and solutes. In substitu- tional fcc alloys this .interaction i s weak, typically of 0.1 - 0.2 eV. Therefore, the flow stress,

T,

should decrease monotonically

w i t h

increasing temperature.

This T-T dependence i s not observed. .a

&-Kg

alloys, for example, for T < 250 K, dz/dT <

O,

as expected. However, f o r 250 <

T

< 600

K, T

increases

w i t h

increasing temperature (see Fig. 2b). In other alloys, and over

T

regimes of similar widths, T(T) shows a plateau (i.e.,

d ~ / d T =

O ) , the height of which increases rapidly with i ncreasing sol ute concentration. For even higher temperatures, dz1dT is agai n negative. The athermal flow s t r e s s region has received considerable attention Ill,

b u t

a satisfactory explanation for

i t

has yet t o be formulated.

(1)

Work supported by the U.S. Department of Energy.

( 2 ) Present address: Center f o r Materials Science; Los Alamos National Laboratory;

Los Al amos, NM

87545.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19851047

(3)

(30-208 JOURNAL DE PHYSIQUE

From a microscopic p o i n t o f view, t h e s o l u t e environments t h a t the d i s l o c a t i o n s 18see11 d u r i n g p l a s t i c deformation can be o f t h r e e types: (a) s t a t i s t i c a l , when t h e s o l u t e s are d i s t r i b u t e d a t random, as i n t h e r e s t o f the a l l o y ,

when t h e s o l u t e c o n c e n t r a t i o n near t h e d i s l o c a t i o n s d i f f e r s (usul!l)j-ghat

i n t h e r e s t o f t h e a l l o y , and ( c ) mobile, when t h e s o l u t e s d i f f u s e f a s t and are able t o f o l l o w moving d i s l o c a t i o n s ~ o r more o f these environments can i n - fluence t h e f l o w stress, depending on the r e l a t i v e values o f time constants c h a r a c t e r i z i n g t h e k i n e t i c s o f d i s l o c a t i o n motion and o f s o l u t e d i f f u s i o n t o d i s - l o c a t i o n s .

It i s now f i r m l y e s t a b l i s h e d t h a t f o r s o l u t e environments (a) and (b), t h e d i s l o c a - t i o n s move d i s c o n t i n o u s l y . They spend times tw a t r e s t , w a i t i n g f o r t h e r m a l l y a c t i v a t e d breakaway events, and times tr, where tr

<<

tw, running between

r e s t p o s i t i o n s . I f N i s the number o f l a t t i c e spacings between r e s t p o s i t i o n s , a d i s l o c a t i o n spends a time tr/N i n the v i c i n i t y o f any given l a t t i c e s i t e . On t h e o t h e r hand, t h e s o l u t e m o b i l i t y i s c h a r a c t e r i z e d by a time per atomic jump, tS.

A comparison between these c h a r a c t e r i s t i c times allows f o r a c l a s s i f i c a t i o n o f the d i s l o c a t i o n dynamics i n t o t h r e e regimes: (1) At low temperatures, tw

<<

tS and tr/N

<<

ts, and the d i s l o c a t i o n s always i n t e r a c t w i t h a s t a t i s t i c a l s o l u t e en- v~ronment. ( 2 ) At intermediate temperatures, tw

>>

tS and tr/N

<<

tS, and

t h e d i s l o c a t i o n s break away from 'segregated

'

sol u t e environments, but g l id e through ' s t a t i s t i c a l ' environments. ( 3 ) At h i g h temperatures, (tr/N)

>

t,, and t h e d i s l o c a t i o n s move i n a v i s c o u s - l i k e manner, dragging along a cloud o f solutes.

The models t h a t have been advanced t o e x p l a i n t h e "plateau" i n t h e f l o w s t r e s s can be c l a s s i f i e d according t o whether t h e y invoke s t a t i s t i c a l o r se r e ated s o l u t e d i s t r i b u t i o n s . The models i n v o k i n g f i x e d s o l u t e s a t t r i b u t e th*to n a t u r a l f l u c t u a t i o n s i n t h e sol u t e d i s t r i b u t i o n ; f o r sol u t e concentrations above a few p e r - cent, and f o r moderate temperatures ( i .e. low applied stresses), groups o f

obstacles may behave as single, broad, e f f e c t i v e obstacles 121 o r as l i n e a r b a r r i e r s o r troughs 131. I n both cases t h e a c t i v a t i o n energy f o r d i s l o c a t i o n breakaway exceeds t h a t f o r s i n g l e solutes, thus g i v i n g a more athermal f l o w stress.

The models i n v o k i n g mobile s o l u t e s a t t r i b u t e t h e "plateau" t o t h e l o c k i n g o f t h e d i s l o c a t i o n s by d i f f u s i n g s o l u t e s 14-71. I n these models, t h e l o c k i n g a t tempera- t u r e s t h a t are f a r t o o low f o r s o l u t e d i f f u s i o n through t h e l a t t i c e i s explained i n terms o f an enhanced s o l u t e d i f f u s i v i t y i n t h e d i s t o r t e d l a t t i c e regions near the d i s l o c a t i o n cores.

Amplitude-Dependent I n t e r n a 1 F r i c t i o n (ADIF) i s w e l l s u i t e d f o r studying s o l u t i o n hardening i n a l l o y s . Contrary t o macroscopic f l o w s t r e s s measurements, i n ADIF t h e d i s l o c a t i o n s are o n l y forced t o overcome t h e weak obstacles (solutes). and n o t the strong ones ( o t h e r d i s l o c a t i o n s , p r e c i p i t a t e s ) . Thus, w h i l e t h e f l o w s t r e s s has c o n t r i b u t i o n s from s o l u t i o n hardening and s t r a i n hardening, ADIF m a s u r e s o n l y t h e e f f e c t s o f solutes. An added advantage o f t h e ADIF method i s t h a t the measurements do n o t change t h e I1state" o f the specimen, and hence repeated experiments can be conducted using t h e sarne specimen i n order t o examine t h e e f f e c t s o f v a r i o u s thermal o r mechanical treatments.

Theory 181 and computer modelling 191 show t h a t i n a l l o y s , t h e applied s t r e s s amplitude z0[6,] which r e s u l t s i n a value

&,,,

o f the ampl itude-dependent

decrement i s p r o p o r t i o n a l t o t h e solution-hardening component o f t h e f l o w stress,

7., I n s e c t i o n 2 we present measurements o f zo[Gm] i n annealed a l l o y s i n g l e c r y s t a l s o f CU-& and Al-Mg. I n s e c t i o n 3 we i n v e s t i g a t e t h e inf.luence t h a t excess vacancies ( i x r o d u c e d

6 y

p l a s t i c deformation a t 120 K ) have on t h e t r a n s i t i o n from t h e ' s t a t i s t i c a l ' t o t h e 'segregated' regimes.

II

-

STRAIN AGING I N THE ABSENCE OF EXCESS VACANCIES

C h a r a c t e r i s t i c d i s l o c a t i o n k i n e t i c s times t, and tr were defined i n s e c t i o n 1.

S t r a i n aging occurs when solutes segregate t o arrested d i s l o c a t i o n s d u r i n g tw.

Therefore, a m a n i n g f u l m a s u r e o f t h i s e f f e c t i s the s t r e s s necessary t o remove a d i s l o c a t i o n from the s o l u t e environment t h a t develops a t temperature T a f t e r a

(4)

waiting time. ta. This quantity can be derived from o o [ ~ ] measurements pro- vided the solute environment at t = O resembles t h a t encountered by a dislocation when i t becomes arrested during a macroscopic flow s t r e s s t e s t . In the ADIF t e s t s we create t h i s environment by forcing the dislocations, f o r a s u f f i c i e n t l y long time, i n t o an o s c i l l a t o r y motion of amplitude much larger than t h a t used during the subsequent measurements of a0[6,] as a function of aging time. This i n i t i a l - ization i s explained in d e t a i l in /IO/ and

/ I l / .

Figure

1

shows ao[6,] measurements as a function of temperature and aging time in a Cu-0.2 at.%

ILe

single crystal 1101. These measurements are interpreted as follows: The time-independent, T-dependent, heavy curve on the l e f t gives t h e s t r e s s ( a r b i t r a r y u n i t s ) at which dislocations break away from s t a t i s t i c a l solute environments. The time-indepen'dent, T-dependent, heavy curve on the r i q h t qives the s t r e s s at which the dislocations break away from a f u l l y se reqated solute environnent, 1.e. an environnent t h a t i s in thermodynamic e g u h i t h the r e s t of the alloy. The f i v e thinner curves (including the one labeled ' f r e e decay') give the t r a n s i t i o n between these two extremes for fixed aging times. In t h i s context, the ' f r e e decay' curve must be associated with an aginq time

t a - ~ o - ~ s /IO/.

Figure 2 ( a ) shows o,L6,] as a function of temperature and aging time in an

An-1 at.% M g single crystal /7/. These e a r l y measurements were obtained before the development of the f a s t data acquisition system necessary t o measure the "free decay' curves /IO/. Figure 3(b) shows the T-dependence of the c r i t i c a l resolved shear s t r e s s in AR-1.1 at.%

Mq

c r y s t a l s deducet fromlflow s t r e s s measurements a t the constant t e n s i l e s t r a i n r a t e of 4.17 x 10- sec- /12/.

A

comparison between Figs. 3 ( a ) and 3 ( b ) show t h a t u0[6,] measurements give a good measure of the macroscopic flow s t r e s s . Furthermore, t h i s comparison suggest t h a t f o r

240 <

T

< 600K, the time tw during which the dislocations are arrested are of the

order of seconds. Similar tw values have been estimated for macroscopic flow a t s t r a i n r a t e s of the order of

~ O - ~ S . /3/

0 1 l I i i i i i ~ ~ ~

O .

200

400

600

800 1000 TEMPERATURE ( K I

TEMPERATURE (KI

Fig.

1

- Temperature dependence of uoL6,] in a

Cu

- 0.2 a t . %

AR

single crystal f o r f i v e d i f f e r e n t aging times.

Fig.

2

- ( a ) T-dependence of 0,[6~] in an AR - 1 a t

.%

M g single crystal f o r

d i f f e r e n t aging times. ( b ) T-dependence of the

CRSS

from flow s t r e s s

t e s t s at a s t r a i n r a t e of 4.17

x

1 0 ' ~ sec-' ( a f t e r Asada e t al., /12/).

(5)

CIO-210 JOURNAL DE PHYSIQUE

Figures 1 and 2(a) show t h a t t h e s o l u t e environment near t h e d i s l o c a t i o n s chanqes from s t a t i s t i c a l t o se r e , ated a t a temperature Tl t h a t i s independent o f aqinq time. r u r t h e r m e a s u ï d k $ b T O / show t h a t Tl i s also independent o f s o l u t e concen- t r a t i o n . From t h e measured d i f f u s i v i t y o f AL i n Cu /13/, and o f Mq i n Aa /14/, i t f o l l o w s t h a t these changes cannot occur by s o l u t e d i f f u s i o n through t h e l a t t i c e . The l a r g e discrepancy between t h e s o l u t e d i f f u s i v i t i e s deduced from mechanical t e s t s and those measured d i r e c t l y has been known f o r many years i n connection w i t h t h e Portevin-Le C h a t e l i e r e f f e c t . F o l l o w i n q a suqqestion o f C o t t r e l l /15/,

researchers /16,17/ have a t t r i b u t e d t h e h i g h s o l u t e d i f f u s i v i t y i n mechanical t e s t s t o t h e excess c o n c e n t r a t i o n o f vacancies t h a t i s li k e l y t o e x i s t i n p l a s t i c a l l y deformed a l lo y s . This expl a n a t i o n cannot be assumed o p e r a t i v e here because, f o r t h e p r e s e n t l y a p p l i e d c y c l i c stress, t h e d i s l o c a t i o n s are presumably g l i d i n g over s h o r t distances, overcoming o n l y t h e s o l u t e s and n o t draqging jogs along.

Even i f s o l u t e d i f f u s i o n through t h e p e r f e c t l a t t i c e i s absent, a simple r e d i s t r i - b u t i o n o f t h e sol u t e s w i t h i n t h e d i s t o r t e d l a t t i c e r e q i o n near t h e d i s l o c a t i o n cores can change a p p r e c i a b l y t h e breakaway s t r e s s . The l a c k o f Debye-type r e l a x a t i o n peaks i n t h e temperature dependence o f t h e amplitude-independent

decrement (see Fig. 4 i n 1101) suggests t h a t t h e s o l u t e displacements are p r i m a r i l y i n d i r e c t i o n s perpendicular t o the core. A mode1 f o r t h e s o l u t e r e d i s t r i b u t i o n w i t h i n t h e cores was presented e a r l i e r / I O / . It i s based on t h e assumption t h a t i n t h e d i s l o c a t e d c r y s t a l , as t h e s o l u t e approaches t h e d i s l o c a t i o n core, i t sees not o n l y a decrease i n t h e ground-st'dte energy, b u t also a decrease i n t h e energy d i f f e r e n c e , AU, between t h e ground s t a t e and t h e adjacent saddle p o i n t s . It i s thus l i k e l y t h a t near t h e core, AU becomes s u f f i c i e n t l y small t o a l l o w f o r

t h e r m a l l y - a c t i v a t e d s o l u t e jumps i n t o lower energy p o s i t i o n s , thus incrementing t h e d i s l o c a t i o n - s o l u t e b i n d i n q energy. Furthermore, successive s o l u t e jumps would a l l o w t h e d i s l o c a t i o n s t o become s t r a i g h t i n response t o t h e i r own l i n e tension.

This e f f e c t has indeed been observed i n AL-0.1 at.% Mq a t 300 K / I O / and i n Cu-0.2 at.% Aa a t 491 K /9/. The complete s t r a i g h t e n i n g o f t h e d i s l o c a t i o n s , w i t h o u t a d e t e c t a b l e increase i n t h e amplitude-independent decrement, i s f u r t h e r evidence t h a t t h e sol u t e s move perpendicul a r l y t o t h e cores.

III

-

STRAIN AGING I N THE PRESENCE OF EXCESS VACANCIES

I n f c c a l l o y s , where s o l u t e t r a n s p o r t occurs b y vacancy-assisted d i f f u s i o n , vacan- c i e s are thought t o p l a y an i m p o r t a n t r o l e i n t h e aqinq k i n e t i c s . The h i q h ampli- tude c y c l i c s t r a i n , although s u f f i c i e n t t o f r e e t h e d i s l o c a t i o n s from segregated solutes, cannot c r e a t e p o i n t d e f e c t s through t h e dragqjng o f d i s l o c a t i o n jogs.

Thus, i n order t o study t h e e f f e c t s o f excess vacancies by i n t e r n a l f r i c t i o n , these must be introduced by p l a s t i c deformation. For t h i s , t h e i n t e r n a l f r i c t i o n

apparatus was m o d i f i e d (Schwarz and Funk, unpublished), a l l o w i n g us t o bend t h e v i b r a t i n g reeds i n s i t u a t 120 K. Because t h e reed has a t h i n n e d r e q i o n (see Fig. 1 i n /IO/), t h e bending causes p l a s t i c deformation o n l y w i t h i n t h i s region, which i s t h e same t h a t c o n t r i b u t e s t o the energy losses measured by ADIF.

Curve A i n Fig. 3 shows t h e 6(u0) dependence i n an undeformed AL-0.1 at.% Mg c r y s t a l a t 128K. Curve B i n t h i s f i g u r e shows 6(aO) f o l l o w i n g p l a s t i c deforma- t i o n . The p l a s t i c s t r a i n near t h e surface o f t h e thinned r e g i o n i s estimated t o be 0.02. As t h e r e s u l t o f p l a s t i c deformation, t h e r e i s an increase i n 6 i and a de- crease i n t h e value o f u0 a t which 6 becomes amplitude dependent. 60th e f f e c t s can be r a t i o n a l i z e d i n terms o f t h e generation o f d i s l o c a t i o n segments free of seg- regated s o l u t e s . The two s h o r t h o r i z o n t a l l i n e s c u t t i n g curves A and B i n Fig. 3 show a decrement l e v e l 0.005 higher than t h e corresponding 67 values. The i n t e r s e c t i o n o f these l i n e s w i t h curves A and B d e f i n e t h e stresses

a,[6, = 0.0053, shown by the arrows on t h e abscisa. The f o l l o w i n g measurements describe t h e T-dependence o f 6 i and o f uo[Sm] i n s i n g l e c r y s t a l s o f AL,

AR-0.1 at.% Mg, and Al-1.0 at .% Mg. The u0[6,] measurements for .aging t i m e o f 60 s were taken using a decrement-time histogram s i m i l a r t o t h a t shown i n Fig. 10 o f /IO/. A mass spectrographic a n a l y s i s o f t h e pure AL sample revealed about 10 ppm Fe, w i t h a l 1 o t h e r i m p u r i t i e s a t concentrations below t h e 3 ppm l e v e l

.

(6)

0 . ~,

,:,:

~ ~

" , -

1 , ~

, ,

,

, , ,

..

. x xrr xxxx../

i

94 -3 -2 -1

LOG (CO)

TEMPERATURE (K)

F i g . 3

-

Decrement versus s t r e s s amplitude i n AR

-

0.1 at.%Mg a t 128 K before (crosses) and a f t e r ( c i r c l e s ) p l a s t i c deformation.

Fig. 4

-

T-dependence o f t h e amplitude independent decrement i n pure AR f o l lowing p l a s t i c deformation a t 120 K. Crosses: measurement d u r i n q i n c r e a s i n q T;

c i r c l e s and t r i a n g l e s : measurements d u r i n g decreasing T.

111.1 Measurement of 6 i

Figures 4 and 5 show 6 i ( T ) measurements i n pure AR and i n AR-0.1 at.% Mg

c r y s t a l s , r e s p e c t i v e l y . Measurements i n Al-1 at.% Mq are very s i m i l a r t o those i n Fig. 5 and are thus n o t shown here. For each f i g u r e , t h e sample was p l a s t i c a l l y deformed a t 120 K and 6 i was measured d u r i n g t h e continuous h e a t i n g (crosses) and subsequent c o o l i n g ( c i r c l e s ) a t t h e r a t e o f 150 K l h r . L e t t e r s have been added t o these f i g u r e s i n order t o f a c i l i t a t e t h e i r discussion. However, before d i s c u s s i n g these r e s u l t s i n greater d e t a i l , we need t o summarize t h e t h e o r e t i c a l

i n t e r p r e t a t i o n s o f t h e 6 i ( T ) curves.

For a d i s l o c a t i o n d e n s i t y A i n t e r a c t i n g e l a s t i c a l l y w i t h a 2 f i x e d p o i n t - o b s t a c l e c o n f i g u r a t i o n , the Granato-Lucke t h e o r y p r e d i c t s 61 .:ABIK

,

where B i s t h e v i s - cous damping and 1/K i s an e f f e c t i v e compliance. A d d i t i v e c o n t r i b u t i o n s t o 11K of i n t e r e s t here are ( l / K ) ~ o o p 12, a r i s i n g from t h e bowing o f d i s l o c a t i o n segments o f length R between f i x e d obstacles, and (l/K),bS R, due t o t h e compliance of t h e d i s l o c a t i o n - o b s t a c l e i n t e r a c t i o n . Thus, t h e s e n s i t i v i t y o f 61 t o p o i n t d e f e c t s a r r i v i n g at d i s l o c a t i o n s decreases as t h e defect c o n c e n t r a t i o n increases.

For a constant d i s l o c a t i o n density, t h e T-dependence o f 6 i i s determined by t h a t o f B(T) and K(T). If the s o l u t e s are f i x e d i n the l a t t i c e , 61 r e f l e c t s t h e T- dependence o f B(T), which, except f o r very low temperatures, increases l i n e a r l y w i t h i n c r e a s i n g T. The dashed l i n e s added t o Figs. 4 and 5 represent t h i s i n - crease, f o r d i f f e r e n t values o f A / K ~ . The non-zero 61 i n t e r c e p t a r i s e s from energy losses i n the sample holder.

The data f o r AR-0.1 at.% Mq i n Fig. 5 w i l l be discussed f i r s t . F o l l o w i n q p l a s t i c deformation a t 120 K, 61 has a r e l a t i v e l y h i g h value. With the increase i n T, 6 i shows d i p s and r i s e s which i n d i c a t e changes i n t h e environment o f p o i n t d e f e c t s surrounding t h e d i s l o c a t i o n s . These changes commence a t -125 K ( p o i n t a), where 6 i ( T ) changes from a l i n e a r increase t o a plateau, and end a t -275 K.

Once t h e &-Mg a l l o y has been heated t o t h i s temperature, t h e 6 i ( T ) curve has t h e shape i n d z a t e d by t h e open c i r c l e s , which remains unchanged f o r f u r t h e r increases o r decreases i n T. This shape i s u s u a l l y found i n annealed a l l o y s .

(7)

C10-212 JOURNAL DE PHYSIQUE

Fig. 5

-

T-dependence o f the amplitude independent decrement i n AR

-

0.1 at.% Mg f o l l o w i n g p l a s t i c deformation a t 120 K. Crosses and c i r c l e s denote measurements d u r i n g i n c r e a s i n g and decreasing temperature, r e s p e c t i v e l y . Fig. 6

-

T-dependence o f a0[6,] f o r an aging time o f 60 s i n AR

-

1 a t .% Mg.

Crosses and c i r c l e s denote measurements during i n c r e a s i n g and decreasing temperature, r e s p e c t i v e l y .

I n Fig. 5, t h e p l a t e a u (a-b) i s a d e v i a t i o n from the expected l i n e a r increase ( r - a ) and thus denotes t h e f i r s t a r r i v a l o f p o i n t d e f e c t s t o t h e d i s l o c a t i o n s . The r a t e a t which t h e d e f e c t s a r r i v e increases r a p i d l y a t p o i n t (b). The a r r i v a l o f these d e f e c t s stops a t 220 K ( p o i n t c). The slope o f (c-d) i s steeper than t h a t o f t h e dashed curve ( r - c ) suggesting t h a t f o r 220

<

T

<

250 K, some o f t h e p r e v i o u s l y a r r i v e d d e f e c t s leave t h e d i s l o c a t i o n o r coalesce, thus i n c r e a s i n g t h e value o f

n.

A d d i t i o n a l p o i n t d e f e c t s segregate t o the d i s l o c a t i o n s w i t h i n (d-e). At p o i n t (e), t h e 6 i ( T ) curve j o i n s t h a t c h a r a c t e r i s t i c o f aged a l l o y s . No a d d i t i o n a l aging stages are observed f o r T

>

275 K i n the 6 i ( T ) curves o f %-Mg a l l o y s . This i s c o n t r a r y t o t h e i n f o r m a t i o n provided by the C T , [ ~ ~ ] measurements ( t o be

described l a t e r ) which show a d d i t i o n a l aging stages.

The 6 i ( T ) measurements i n pure AR (Fig. 4) were more d i f f i c u l t t o o b t a i n because i n A l , t h e 6(ao) curve becomes amplitude dependent a t extremely low oo values.

Even working a t t h e l i m i t s o f s e n s i t i v i t y o f Our instrument, we were unable t o conf i d e n t l y reach t h e amplitude-independent region. Nevertheless, t h e 6 i (T) curve f o r pure An has c l e a r signatures, some which d i f f e r from those seen i n t h e 6 i ( T ) curves f o r t h e AR-Mg a l l o y s . The most important d i f f e r e n c e i s t h e absence i n pure An o f stage ( b f c ) . This i m p l i e s t h a t stage (b-c) i n the a l l o y s i s due t o the l o c k i n g o f t h e d i s l o c a t i o n s by solutes o r by vacancy-solute complexes. We can

(8)

also i d e n t i f y stage (d-e). Because t h i s stage i s seen both i n pure AR and i n the AR-Mg a l l o y s , we a t t r i b u t e d i t t o t h e segreqation of vacancies t o t h e d i s l o c a t i o n s . E n t r a r y t o the 6 i ( T ) curve f o r the AR-Mg alloys, t h e 6 i ( T ) curve f o r pure AR

shows a d d i t i o n a l s t r u c t u r e f o r T

>

3% K (beyond p o i n t e ) . I n the alloys, a t T = 325 K the d i s l o c a t i o n s are already locked by solutes t o such an extent t h a t a d d i t i o n a l p o i n t defects, a r r i v i n g a t higher temperatures, do not give measurable changes i n 6 i ( T ) . On the other hand, i n the AR c r y s t a l , a t , T = 325 K t h e d i s -

locations are o n l y locked by vacancies. These leave t h e d i s l o c a t i o n s o r coalesce d u r i n g stage (e-O). 6 i ( T ) i n pure A l begins t o decrease at 450K ( p o i n t O ) w i t h t h e a r r i v a 1 t o t h e d i s l o c a t i o n s o f t r a c e i m p u r i t i e s d i f f u s i n g through t h e bulk.

I n order t o determine whether the peaks i n 6 i ( T ) , such as (e-O-p) i n Fig. 4 or (c-d-e) i n Fig. 5, were caused by Debye-type r e l a x a t i o n s , t e s t s were performed whereby the sign o f dT/dt was reversed a t s p e c i f i c p o i n t s along these stages. One such a r e v e r s i b i l i t y t e s t , performed i n AR around T = 485K i s shown i n Fig. 4. It was e s t a b l i s h e d that, w i t h the exception o f stage (e-O) i n pure AR, none o f t h e anneal i n g stages i s r e v e r s i b l e .

II 1.2 Measurements o f uo[6,,,].

F i g u r e 6 shows t h e T-dependence o f ao[6m = 0.0051 f o r an aging time ta = 60 s i n an Al-1 at.% Mg c r y s t a l . The decreases (b-c) and (d-e) i n Si, seen i n Fig. 5, correspond t o t h e increases (b-c) and (d-e) i n u0L6,J, seen here. These two stages were discussed previously. The u [6,] versus T curve shows a d d i t i o n a l aging stages, s t a r t i n g a t 360 K ( p o i n t f y and 560 K ( p o i n t h). I n AR-0.1 at.% Mg, t h e o v e r a l l T-dependence o f u0[6,] i s s i m i l a r t o t h a t o f Fig. 6 (Schwarz and Funk, unpublished), b u t the minima a t ( f ) and (h) are not seen. This suggests t h a t stages ( f - g ) and ( h - i ) are due t o an increase i n t h e amout o f solutes i n s o l u t i o n f o l l o w i n g the d i s o l u t i o n o f Mq p r e c i p i t a t e s near aged d i s l o c a t i o n s ( f o r T

>

360 K) and i n the bulk ( f o r T

>

560 K). This i n t e r p r e t a t i o n , although h i g h l y speculative, agrees w i t h Our e a r l i e r d e t e c t i o n by ADIF o f Mg p r e c i p i t a t e s i n AR-1 at.% Mg. a t 331 K, but no evidence o f p r e c i p i t a t e s i n the same sample a t T = 585 K 171.

I V

-

DISCUSSION AND CONCLUSIONS

The aim o f the present i n t e r n a 1 f r i c t i o n studies i s t o achieve a b e t t e r understand- i n g o f s t r a i n aging i n a l l o y s at temperatures t h a t are too low f o r b u l k s o l u t e d i f - f u s i o n . I n p a r t i c u l a r , we want t o i n v e s t i g a t e whether the l o c k i n g o f d i s l o c a t i o n s by sol utes moving through d i s t o r t e d l a t t i c e regions near d i s l o c a t i o n s can expl a i n t h e so-called ' p l a t e a u ' i n t h e T-dependence o f the flow stress. A f u r t h e r issue of i n t e r e s t i s the r o l e of deformàtion-generated vacancies i n the aging k i n e t i c s . The f i r s t s e r i e s of measurements were performed i n undeformed a l l o y s ( s e c t i o n I I ) . These t e s t s show t h a t t h e solutes are mobile near d i s l o c a t i o n s cores a t tempera- t u r e s as low as 200 K i n AR-Mq a l l o y s , and 300 K i n Cu-AR a l l o y s . The second s e r i e s o f measurements ( s e c t i o n III ) were performed AR-Mg a l l o y s p l a s t i c a l l y de- formed a t 120 K. These t e s t s show t h a t the vacancies g z e r a t e d by p l a s t i c deforma- t i o n have l i t t l e e f f e c t on t h e e a r l y stages o f s t r a i n aging. The arguments f o r t h i s conclusions are as f o l l o w s : Figure 4 shows t h a t i n pure AR, the bulk of t h e deformation-generated vacancies become mobile a t 250 K ( p o i n t d). This value agrees w i t h t h a t deduced from isochronal annealing peaks observed i n AR a f t e r quenching

/la/.

However, i n the AR-Mg a l l o y s , s i g n i f i c a n t l o c k i n q o f d i s l o c a t i o n s occurs between 190 and 220 K (sta@ b-c i n Figs. 5 and 6). Therefore, t h i s stage, which i s not seen i n pure AR, must be associated w i t h s o l u t e motion by an

i n t e r s t i t i a l - l i k e mechanism. Certainly, t h i s can o n l y occur near the d i s l o c a t i o n cores.

The deformation generated vacancies g i v e l a r g e r signatures i n t h e T-dependence of 6 i than i n the T-dependence o f 00[6,] f o r ta = 60 S. I n

9 -

1 a t % Mg,

t h e o v e r a l l shape of t h e 0,[6~] versus T curve (Fig. 6) i s approximately the same f o r i n c r e a s i n g and decreasing T, except f o r a v e r t i c a l displacement. This displacement occurs m o s t l y i n stage ( h - i ) , which we a t t r i b u t e t o t h e segregation of s o l utes t o unaged d i s l o c a t i o n s , f o l lowing the thermal d i s o l u t i o n o f Mg

(9)

CIO-214 JOURNAL DE PHYSIQUE

r r e c i p i t a t e s . I n agreement w i t h t h i s i n t e r p r e t a t i o n , t h e uoL&,,,] versus T curves i n A l

-

0.1 at.% Mg (Schwarz and Funk, unpublished), measured d u r i n g i n - c r e a s i n g and decreasinq T runs, do n o t show t h e v e r t i c a l d i s p l acement seen i n Fig.

6 f o r t h e more concentrated a l l o y . We thus conclude t h a t i n AR-Mg a l l o y s , and f o r s t r a i n s o f t h e order o f 0.02 o r less, t h e r o l e o f d e f o r m a t i o n q e n e r a t e d vacancies on s t r a i n aging i s minor. S u b s t a n t i a l l o c k i n g o f t h e d i s l o c a t i o n s occurs by s o l u t e motion w i t h i n t h e d i s t o r t e d l a t t i c e surroundinq t h e d i s l o c a t i o n cores a t

temperatures about h a l f those needed f o r s o l u t e d i f f u s i o n i n t h e bulk. F u r t h e r - more, t h i s m o b i l i t y allows the d i s l o c a t i o n s t o s t r a i g h t e n i n response t o t h e i r l i n e tension. The thermal l y - a c t i v a t e d breakaway of a d i s l o c a t i o n from a dense l i n e a r d i s t r i b u t i o n o f solutes, as opposed t o the random d i s t r i b u t i o n i n a plane T Ô G T a t lower T, i s one o f t h e e x p l a n a t i o n s proposed f o r t h e ' p l a t e a u ' i n t h e f l o w s t r e s s 131. The present measurements show how t h i s l i n e a r d i s t r i b u t i o n may form i n t h e absence o f long-range sol u t e d i f f u s i o n .

The ADIF measurements o f t h e k i n e t i c s o f s t r a i n aging by s o l u t e m i g r a t i o n near t h e d i s l o c a t i o n cores suggests t h a t t h e solution-hardening component o f t h e f l o w s t r e s s increases w i t h aginq t i m e as 1101

where c i s t h e s o l u t e concentration, zo(c,T) i s t h e flow s t r e s s i n t h e absence o f s o l u t e segregation, AT(c,T) i s t h e s a t u r a t i o n value o f t h e l o c k i n g stress, and tc i s a t i m e constant p r o p o r t i o n a l t o t h e s o l u t e d i f f u s i v i t y near the d i s l o c a t i o n cores. This equation has been used t o e x p l a i n the negative value o f t h e s t r a i n r a t e s e n s i t i v i t y o f t h e f l o w s t r e s s 1191 and, more r e c e n t l y , t o e x p l a i n t h e ampli- tude o f s t r e s s s e r r a t i o n s o f t h e t y p e Portevin-Le C h a t e l i e r 120,211.

REFERENCES

111 P. Haasen i n "Physical Metallurgy", 1983, eds. R. W. Cahn and P. Haasen (North Holland, NY), p . 1341.

121 R. Labusch, G. Grange, J. Ahearn and P. Haasen, 1975, i n "Rate Processes i n P l a s t i c Deformation o f Materialsl', (ASM, Metals Park, OH), p. 26.

/3/ U. F. Kocks, t o be published i n M e t a l l . Trans., ( D i s l o c a t i o n Anniversary Volume; eds. H. Margolin, W. F. Flanagan and A. W. Thompson).

141 H. G l e i t e r , Acta M e t a l l . 16 (1968) 857.

1 5 1 L. J. Cuddy and W. C. Lesme, Acta M e t a l l . 20 (1972) 1157.

161 H. Neuhauser and H. F l o r , S c r i p t a M e t a l l . l T ( 1 9 7 8 ) 443.

/7/ R. B. Schwarz i n "The Strength o f Metals ana Alloys", 1979, eds. P. Haasen, V. Gerold and G. Kostorz (Pergamon, NY), p. 953.

181 R. W. B a l l u f f i and A. V. Granato i n " D i s l o c a t i o n s i n Solids1I, Vol. 4, Ch. 13, ed. F.R.N. Nabarro (North-Ho1 1 and, Amsterdam)

1 9 1 R. B. Schwarz, Acta M e t a l l . 29 (2980) 331.

1101 R. B. Schwarz and L. L. F u n k y A c t a M e t a l l . 31 (1983) 299.

1111 R. B. Schwarz, i n " D i s l o c a t i o n M o d e l l i n g o f - h y s i c a l Systems", 1981, eds. M.

F. Ashby, R. Bullough, C. S. H a r l e y and J. P. H i r t h (Perqamon, NY), p. 410.

1121 H. Asada, R. Horiuchi, H. Yoshinaga, and S. Nakamoto, J. I n s t . Metals

8

(1967) 159.

1131 NI-Matsumo and H. Oikawa, M e t a l l . Trans. A, 6A (1975) 2191.

/14/ L. C. Robinson, P h i s i c a s t a t u s s o l i d i ( b ) 6371974) K29.

1151 A. H. C o t t r e l l , P h i l . Mag. 44 (1953) 829.

-

/16/ R. K. Ham and D. J a f f r e y , P m . Mag. 15 (1967) 247.

1171 A. van den Beukel, Physica s t a t u s s o l m i (a) 30 (1975) 197.

1181 R. W. B a l l u f f i , J. o f Nuclear M a t e r i a l s 69 an- (1b78) 240.

1191 R. B. Schwarz, S c r i p t a M e t a l l . 16 (1982)385.

1201 R. B. Schwarz and L. L. Funk, A x a M e t a l l . 33 (1985) 295.

1211 R. B. Schwarz, 1985, t o be published i n t h e T r o c . o f t h e 7 t h I n t e r n . Conf. on t h e Strength o f Metals and Alloys, ed. H. McQueen (Pergarnon, NY).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to