• Aucun résultat trouvé

APPROACH TO MULTIPARTICLE PRODUCTION

N/A
N/A
Protected

Academic year: 2021

Partager "APPROACH TO MULTIPARTICLE PRODUCTION"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00215195

https://hal.archives-ouvertes.fr/jpa-00215195

Submitted on 1 Jan 1973

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

APPROACH TO MULTIPARTICLE PRODUCTION

H. Satz

To cite this version:

H. Satz. APPROACH TO MULTIPARTICLE PRODUCTION. Journal de Physique Colloques, 1973, 34 (C1), pp.C1-149-C1-152. �10.1051/jphyscol:1973115�. �jpa-00215195�

(2)

APPROACH TO MULTIPARTICLE PRODUCTION

APPROACH TO MULTIPARTICLE PRODUCTION H. SATZ

Department of T h e o r e t i c a l P h y s i c s , U n i v e r s i t y of B i e l e f e l d , Germany

1. - INTRODUCTION.

-

I n any s t a t i s t i c a l d e s c r i p t i o n of m u l t i h a d r o n p r o d u c t i o n , t h e p r o b a b i l i t y of a n i n - c l u s i v e f i n a l s t a t e a i s d e t e r m i n e d by t h e c o r r e s p o n - d i n g l e v e l d e n s i t y d ~ ) , i . e . , by t h e number of ex- c l u s i v e c o n f i g u r a t i o n s c o m p a t i b l e w i t h a

.

I n c l a s s i - c a l s t a t i s t i c a l mechanics, where t h e H a m i l t o n i a n HN

of a n N p a r t i c l e s y s t e m i s g e n e r a l l y known, t h e l e v e l d e n s i t y i s g i v e n by t h e phase s p a c e volume of c a n o n i - c a l momenta and c o o r d i n a t e s , s u b j e c t t o H N = c o n s t . I n m u l t i h a d r o n p h y s i c s , t h e H a m i l t o n i a n i s n o t known, and hence t h e i n t r o d u c t i o n of dynamical f e a t u r e s e i - t h e r r e q u i r e s a d i f f e r e n t method of l e v e l d e n s i t y c a l c u l a t i o n o r a m o d i f i c a t i o n uf t h e p h a s e s p a c e mea- s u r e . Only t h e s t a t i s t i c a l model of Fermi [ I ] r e m a i n s w i t h i n c o n v e n t i o n a l s t a t i s t i c a l mechanics : i t pro- p o s e s a s t h e r e l e v a n t l e v e l d e n s i t y t h a t of a f r e e h a d r o n g a s i n s i d e an i n t e r a c t i o n ' ' volume V of t h e d i m e n s i o n s of t h e r a n g e of h a d r o n i c f o r c e s . Such a n a p p r o a c h , however, e n c o u n t e r s s e r i o u s e x p e r i m e n t a l d i f f i c u l t i e s ( j e t s t r u c t u r e , r e s o n a n c e f o r m a t i o n ) a s w e l l a s t h e o r e t i c a l o b j e c t i o n s [ 2 1, s o t h a t d y n a m i c a l m o d i f i c a t i o n s a p p e a r u n a v o i d a b l e .

Such m o d i f i c a t i o n s c a n be a c h i e v e d i n two d i s t i n c t ways. I n a p u r e l y s t a t i s t i c a l a p p r o a c h , one a t t e m p t s t o r e t a i n a l l dynamics1 f e a t u r e s w i t h i n t h e s t a t i s - t i c a l d e s c r i p t i o n

-

examples a r e t h e u n c o r r e l a t e d j e t model [ 3 ] and t h e hydrodynamical model [ 4 ] . A hy- b r i d d e s c r i p t i o n i s o b t a i n e d by d i v i d i n g t h e produc- t i o n p r o c e s s i n t o a n o n - s t a t i s t i c a l p h a s e of c l u s t e r f o r m a t i o n f o l l o w e d by a s t a t i s t i c a l phase of c l u s t e r decay. Examples a r e t h e m u l t i - c e n t e r model [ 5 ] , t h e thermodynamical model [6], t h e m u l t i p e r i p h e r a l c l u s - t e r model [7,8,9], t h e nova model [10], and o t h e r s . I s h a l l h e r e b e c o n c e r n e d o n l y w i t h t h e s t a t i s t i c a l problem of l e v e l d e n s i t y c a l c u l a t i o n , l e a v i n g i t open how t h e r e s u l t i s t h e n u s e d t o o b t a i n a f u l l d e s c r i p - t i o n of t h e p r o d u c t i o n p r o c e s s .

Vle have a l r e a d y e n c o u n t e r e d two methods of l e v e l d e n s i t y c a l c u l a t i o n : t h e c a n o n i c a l p h a s e s p a c e ap- p r o a c h of s t a t i s t i c a l mechanics and t h e momentum spa- c e r e s t r i c t i o n [d3p

-,

d3p e-a'pl] of t h e u n c o r r e l a t e d

j e t model. A t h i r d , r a t h e r d i f f e r e n t approach t o t h e problem i s p r o v i d e d by t h e s t a t i s t i c a l b o o t s t r a p con- d i t i o n of Hagedorn [ 6 ] ; i t w i l l be one of t h e main t o p i c s of t h i s s u r v e y . Knowing t h e mass s p e c t r u m pin(m) o f produced hadrons ( s t a b l e p a r t i c l e s and whatever r e s o n a n c e s a r e f o u n d ) , t h e l e v e l d e n s i t y poUt(M) o f a n e x c i t e d h a d r o n i c s y s t e m of mass M i s o b t a i n e d by c o n f i g u r a t i o n c o u n t i n g

where P2 = M 2 and V d e n o t e s t h e common h a d r o n i c i n t e r a c t i o n volume. I f we c o n s i d e r a d i s c r e t e mass s p e c t r u m w i t h one t y p e of p a r t i c l e of mass p

t h e n ( 1 ) simply r e d u c e s t o t h e l e v e l d e n s i t y of a f r e e hadron g a s i n s i d e Vo

.

Hagedorn proposed in- s t e a d t h a t a t h i g h e n e r g i e s t h e mass spectrum b e s i m p l y t h e l e v e l d e n s i t y

o r , i n o t h e r words, t h a t e x c i t e d h a d r o n i c s y s t e m s ( f i r e b a l l s " ) be made up of o t h e r s y s t e m s o b e y i n g t h e same c o m p o s i t i o n laws. E q u a t i o n s ( 2 ) and ( 3 ) t o g e - t h e r form t h e s t a t i s t i c a l b o o t s t r a p c o n d i t i o n , de- t e r m i n i n g a t t h e same t i m e t h e l e v e l d e n s i t y a n d t h e mass spectrum.

I n t h e r e m a i n d e r , I s h a l l c o n s i d e r two a r e a s of i n v e s t i g a t i o n : t h e s o l u t i o n of t h e b o o t s t r a p equa- t i o n and t h e q u e s t i o n o f t h e p h y s i c a l c o n t e n t of t h e b o o t s t r a p approach.

2.- THE SOLUTION O F THE BOOTSTRAP EQUATION. - To b e g i n w i t h , we have t o s t a t e ( 3 ) more p r e c i s e l y . I n t h e o r i g i n a l f o r m u l a t i o n [ 6 ] , o n l y t h e l e a d i n g expo- n e n t i a l t e r m s of p. and pout were r e q u i r e d t o con-

~ n

v e r g e a s M -t m ("thermodynamical b o o t s t r a p t ' ) , b u t

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1973115

(3)

f o r a c t u a l s o l u t i o n s [11 1, one g e n e r a l l y a l l o w e d o n l y power law d i f f e r e n c e s between spectrum and l e v e l den- s i t y ("weak b o o t s t r a p " ) . A t p r e s e n t one a l m o s t always c o n s i d e r s t h e " s t r o n g b o o t s t r a p " of F r a u t s c h i [ 1 2 ]

r e q u i r i n g f u l l a s y m p t o t i c e q u i v a l e n c e . L e t u s w r i t e down t h e c o r r e s p o n d i n g b o o t s t r a p e q u a t i o n i n cova- r i a n t form [12,13]

where B d e n o t e s t h e i n t e r a c t i o n c o n s t a n t ( e . g . B =

2mV 1, and t h e f i r s t t e r m on t h e r . h . s . i n c l u d e s t h e d i s c r e t e p a r t of t h e spectrum. E q u a t i o n ( 5 ) d e t e r m i - n e s t h e l e v e l d e n s i t y and spectrum i n a world of one k i n d of s t a b l e p a r t i c l e s , o b e y i n g Boltzmann s t a t i s - t i c s .

T o s o l v e t h i s b o o t s t r a p e q u a t i o n , we L a p l a c e t r a n s - form 7(p2) t o g e t t h e p a f t i t i o n f u n c t i o n

Z ( b ) r / d 4 P e-@ .(p2) ; & > O , P ~ = P ~ - ~ > o

( 6 ) which t h r o u g h ( 5 ) y i e l d s f o r t h e s i n g l e p a r t i c l e d i s - t r i b u t i o n

t h e r e l a t i o n

I n consequence, doe) a s a f u n c t i o n o f Z(P) h a s a ma- ximum a t BZ( Po) = l n 2

,

where i t t a k e s t h e v a l u e

where P i s t h e v a l u e of t h e o n l y open p a r a m e t e r P

a t t h e maximum. The p a r t i t i o n f u n c t i o n z ( P ) c a n b e shown [14] t o have a s q u a r e - r o o t branch p o i n t a t

P = Po :

z ( P ) N ~ ~ + c o n s t . W , ( 1 0 )

which y i e l d s upon i n v e r s i o n of t h e L a p l a c e t r a n s f o r m 2(>f2)

=

c o n s t . M - ~ eMlTo

,

( 1 1 ) where t h e maximum t e m p e r a t u r e T E i s d e t e r m i n e d

0 0

t h r o u g h (7) and ( 9 ) . The r e s u l t i n g l e v e l d e n s i t y t h u s i n c r e a s e s a s a l i n e a r e x p o n e n t i a l i n M , which f o r c e s

~ ( 0 ) t o become s i n g u l a r f o r P < Po

.

I t i s t h e f u l l use of t h e s i n g u l a r i t y s t r u c t u r e o f t h e p a r t i t i o n f u n c t i o n which a l l o w s t h i s r a t h e r e l e g a n t way [ 1 4 ]

of s o l v i n g t h e b o o t s t r a p c o n d i t i o n , now r e p l a c i n g p r e v i o u s i t e r a t i v e methods [ I 1 1.

An a l t e r n a t i v e and, a s we s h a l l s e e , p h y s i c a l l y r a t h e r i l l u m i n a t i n g way [ 1 3 ] t o s o l v e ( 5 ) is by ex- p a n s i o n i n terms of s i m p l e phase s p a c e

Because of ( 5 ) , t h e c o e f f i c i e n t s g~ must obey t h e r e c u r s i o n r e l a t i o n s [ I 5 ]

N -1

p N = ~ [ ? ~ k g k g N - k - ( N - l ) g N - L

1

; N 2 2 ( 1 3 )

LC= 1 g1 = 1

which have t h e a s y m p t o t i c s o l u t i o n [13,16]

The c r i t i c a l f e a t u r e t o n o t e h e r e i s t h e r a t h e r weak N dependence of (141, t o be c o n t r a s t e d w i t h t h e 1/N!

p r e s e n t i n t h e c o r r e s p o n d i n g l e v e l - d e n s i t y form of a f r e e g a s ( c f . e q s . l , 2 ) . The l a t t e r t h u s h a s f a r f e - wer l e v e l s t h a n t h e b o o t s t r a p s o l u t i o n , which c a n a l s o be s e e n d i r e c t l y by comparing ( 1 1 ) w i t h t h e a- s.ymptotic l e v e l d e n s i t y of a f r e e g a s [17]

which does n o t i n c r e a s e a s a l i n e a r e x p o n e n t i a l . Be- f o r e a s k i n g f o r t h e p h y s i c a l r e a s o n f o r t h i s i n c r e a - s e i n l e v e l s , l e t u s r e c a l l i t s most i m p o r t a n t con- s e q u e n c e : t h e spectrum i n energy p of a p a r t i c l e e m i t t e d from a system w i t h a l i n e a r e x p o n e n t i a l l e - v e l d e n s i t y eCM i s i n t h e s t a t i s t i c a l approach g i v e n

2 2

w i t h P = M and p d e n o t i n g t h e momentum of t h e secon- d a r y . Hence t h e a v e r a g e e n e r g y p e r s e c o n d a r y becomes a s y m p t o t i c a l l y c o n s t a n t : a h i g h e r i n i t i a l energy M of t h e e x c i t e d system r e s u l t s o n l y i n more seconda- r i e s , n o t f a s t e r ones.

I n c l o s i n g t h i s s e c t i o n , l e t me j u s t n o t e t h a t , i n s p i t e of i n t e r e s t i n g p r e l i m i n a r y work [14,18], t h e problem of f o r m u l a t i n g and a s y m p t o t i c a l l y s o l - v i n g t h e b o o t s t r a p e q u a t i o n f o r p a r t i c l e s w i t h c o r - r e c t s t a t i s t i c s and f u l l i n t e r n a l quantum numbers ( i s o s p i n , h y p e r c h a r g e ) under t h e a b s e n c e of e x o t i c f i r e b a l l s s t i l l remains unsolved. P e r h a p s a good t o o l i n i n v e s t i g a t i o n s o f t h i s q u e s t i o n i s t h e li- n e a r - c h a i n b o o t s t r a p [ 1 9 ] , which r e s u l t s i n a sim- p l e r s i n g u l a r i t y s t r u c t u r e t h a n ( 5 ) , b u t s t i l l con- t a i n s a l l e s s e n t i a l f e a t u r e s of t h e approach.

(4)

kPPROACH TO MULTIPARTICLE PROWCTION C1-151

3.

-

THE PHYSICAL CONTENT OF THE BOOTSTRAP APPROACH*.

T h e q u e s t i o n I want t o s t u d y h e r e i s what dynamical f e a t u r e s l e a d t o t h e l e v e l d e n s i t y o b t a i n e d t h r o u g h t h e b o o t s t r a p e q u a t i o n .

Almost immediately a f t e r t h e p r o p o s a l of t h e F e r m i model

N

6

( - ) ,

( 1 7 )

N=L

Pomeranchuk [ 2 ] n o t e d t h a t t h e u s e of a volume V

=

Vowl/p 3 of t h e s i z e of t h e n u c l e a r f o r c e r a n g e ~ / J J

t o g e t h e r w i t h a f r e e g a s p i c t u r e i s d i f f i c u l t t o j u s - t i f y . He proposed i n s t e a d a n expanding f i r e b a l l p i c - t u r e : h a d r o n i c m a t t e r , i n i t i a l l y c o n c e n t r a t e d i n a volume Vo , c o n t i n u e s t o expand u n t i l a l l c o n s t i t u - e n t s a r e s e p a r a t e d by a d i s t a n c e l / y and hence no l o n g e r i n t e r a c t hadronicarlly. A t t h i s p o i n t , one may a p p l y a f r e e - g a s p i c t u r e . The Pomeranchuk model t h e - r e f o r e s e t s :

which upon i n s e r t i o n i n t h e c o v a r i a n t v e r s i o n of ( 1 6 ) g i v e s p r e c i s e l y t h e s o l u t i o n of t h e b o o t s t r a p c o n d i - t i o n

M/To

%omeranchuk(M)

=

c o n s t . M - ~ e

.

(19)

T h e c o n s t a n t a n d u n i v e r s a l a v e r a g e energy p e r secon- d a r y , r e s u l t i n g from t h e l i n e a r l y e x p o n e n t i a l l e v e l d e g e n e r a c y , h e r e i s e a s y t o u n d e r s t a n d : no m a t t e r what t h e i n i t i a l e n e r g y of t h e s y s t e m , i t expands u n t i l a l l i t s c o n s t i t u e n t s a r e a d i s t a n c e of 1 / p a - p a r t . The u n i v e r s a l r a n g e of s t r o n g i n t e r a c t i o n s t h u s l e a d s t o a u n i v e r s a l energy d e n s i t y a t t h e " f r e e g a s t h r e s h o l d " .

An a l t e r n a t i v e dynamical approach t o t h e b o o t s t r a p s o l u t i o n i s o b t a i n e d t h r o u g h t h e i n t r o d u c t i o n of p r e - s e n t motions of r e s o n a n c e s t r u c t u r e [20]. The Fermi model i m p l i e s a n e q u i d i s t r i b u t i o n n o t o n l y i n t h e i n -

d i v i d u a l CMS e n e r g i e s of a l l s e c o n d a r i e s , b u t a l s o i n t e r m s of t h e c l u s t e r e n e r g i e s M. ( c f . F i g . 1 )

Pn

P"-I Pn-2 P2 P I

M Mn-1 Mn-2 M 2 m

F i g . l

h he o v e r a l l p i c t u r e p r e s e n t e d h e r e was d e v e l o p e d j o i n t l y by M . I . G o r e n s t e i n , V.A. Miransky, V.P. She- l e s t , G.M. Z i n o v j e v and t h e p r e s e n t a u t h o r ; i t w i l l soon a p p e a r i n more d e t a i l a s a U n i v e r s i t y of B i e l e - f e l d p r e p r i n t .

T h i s i s e a s i l y s e e n by r e w r i t i n g t h e c o v a r i a n t form of f r e e momentum s p a c e i n t e r m s of c l u s t e r v a r i a b l e s

I n c o n t r a s t t o t h e e q u i d i s t r i b u t i o n i n M . a s i m p l i e d by (2?), we p r e s e n t l y s u p p o s e r e s o n a n c e d i s t r i b u - t i o n s t o be governed by Regge t r a j e c t o r i e s l i n e a r i n M . 2 1 = S i '

-

L e t u s t h e r e f o r e m o d i f y c o n v e n t i o n a l phase s p a c e a c c o r - d i n g l y and c a l c u l a t e t h e l e v e l d e n s i t y i n l 1 ~ e g g e space" (B = a ' )

A s y m p t o t i c a l l y , t h i s g i v e s [ 2 0 ] w i t h z (M 2 ) cx c o n s t . M

Regge

j u s t t h e b o o t s t r a p r e s u l t . So we c a n now e a s i l y a n s - wer t h e q u e s t i o n of where t h e a d d i t i o n a l s t a t e s i n t h e b o o t s t r a p a p p r o a c h come from : t h e y a r i s e i f we no l o n g e r e q u i d i s t r i b u t e r e s o n a n t s t a t e s i n M , b u t i n s t e a d a c c o r d i n g t o Regge t r a j e c t o r i e s l i n e a r i n M'

.

P u t s h o r t l y : t h e b o o t s t r a p r e s u l t c o r r e s p o n d s

t o a f r e e g a s i n Regge space. I t s h o u l d be emphasi- z e d t h a t o n l y t r a j e c t o r i e s l i n e a r i n S g i v e t h e de- s i r e d b e h a v i o u r , s o t h a t i n a s t a t i s t i c a l approach t h e b o o t s t r a p c o n d i t i o n c a n be t h o u g h t of a s a way t o e n f o r c e t h e c o n v e n t i o n a l Regge r e s o n a n c e d i s t r i - b u t i o n .

We t h u s s e e t h a t t h e e x p o n e n t i a l l e v e l d e g e n e r a c y c a n be o b t a i n e d e i t h e r by t h e b o o t s t r a p c o n d i t i o n , o r t h r o u g h t h e Pomeranchuk model, o r by a f r e e g a s p i c t u r e i n Regge s p a c e . I t s t i l l a r i s e s even i f one i n t r o d u c e s t h e e x p a n d i n g volume of t h e Pomeranchuk approach i n t h e b o o t s t r a p c o n d i t i o n [ 2 1 ]

.

The f i n a l q u e s t i o n I now want t o c o n s i d e r i s t o what e x t e n t one can e x t r a c t o r d e r i v e a s t a t i s t i c a l p i c t u r e of t h i s k i n d from a g i v e n dynamical model.

T h e d u a l r e s o n a n c e model on t h e one hand r e p r e s e n t s t h e most comprehensive dynamical scheme proposed s o f a r , on t h e o t h e r i t a l s o l e a d s t o a l i n e a r exponen- t i a l i n c r e a s e i n t h e number of s t a t e s b e l o n g i n g t o a g i v e n mass [ 2 2 ] ; t h u s i t a p p e a r s a s t h e i d e a l can- d i d a t e .

C o n s i d e r t h e n i n t h e d u a l r e s o n a n c e model t h e decay of a n e x c i t e d s t a t e M i n t o a s i n g l e p a r t i c l e c p l u s a n y t h i n g [ 2 3 ] ; d e n o t e t h e d e g e n e r a t e s t a t e s of M by

(5)

C1-152 H. SATZ

a n d t h e momentum of c by p ( c f . F i g . 2 ) .

F i g . 2

A v e r a g i n g o v e r a l l p o s s i b l e d e g e n e r a t e s t a t e s of M t " s t a t i s t i c a 1 a v e r a g i n g " ) , we h a v e f o r t h e d e c a y s p e c t r u m

F(M,p) =

L

d m ) / ( M ~ I ~ / v ( ~ ) / M h)I2 ( 2 6 ) Ah'

w i t h V ( p ) d e n o t i n g t h e decay v e r t e x . For M + and po/M -' 0 , c a l c u l a t i o n s g i v e [ 2 3 ]

-Po

F(M,p) _N e 9 ( 2 7 )

and h e n c e t h e r e s u l t ( 1 6 ) of t h e b o o t s t r a p approach.

On t h e o t h e r hand, i t i s n o t c l e a r i f a n d where s u c h a s t a t i s t i c a l a v e r a g i n g p r o c e d u r e i s p e r m i s s i b l e . I n t h e f o r m a t i o n o f t h e f i r e b a l l M

,

e. g. by hadron- h a d r o n c o l l i s i o n s , o n l y c e r t a i n d e g e n e r a t e s t a t e s A might c o n t r i b u t e [24][25] ("dynamical s e l e c t i o n r u - l e s " ) , a n d t h o s e t h a t d o might have d i f f e r e n t w e i g h t s . T h u s , w h i l e i t i s now p o s s i b l e t o e x t r a c t a s t a t i s -

t i c a l d e s c r i p t i o n of t h e b o o t s t r a p t y p e f r o m t h e d u a l r e s o n a n c e model, i t is n o t a t a l l c l e a r i f t h i s d e s c r i p t i o n p r o v i d e s anywhere a good a p p r o x i m a t i o n t o d u a l dynamics - o r t o n a t u r e .

REFERENCES

[ I ] FERMI (E. ), P r o g r . T h e o r e t . Phys. ( J a p a n ) ( 1 9 5 0 ) 570.

[ 2 ] POHERANCXUK ( I .Ya. ) , Dokl. Akad. Nauk SSR, 2

(1951) 889.

[ 3 ] VAN HOVE (L. ), Rev. Mod. Phys. 36 ( 1 9 6 4 ) 655 ; KRZYWICKI (A. ), Nuovo Cimento 32 ( 1 9 6 4 ) 1067.

[ 4 ] LANDAU (L.D. 1, I z v e s t . Akad. Nauk SSR, S e s . F i z . , 1 7 ( 1 9 5 3 ) 51.

[5] cf.;. hlIESOWICZ (M. ), h he Problem o f F i r e - b a i l s " , Cracow p r e p r i n t 1973, and r e f e r e n c e s t h e r e .

[ 6 ] HAGEWRN (R. ), Nuovo Cimento S u p p l . 3 ( 1 9 6 5 ) 147.

[ 7 ] RANIT (G.) and RAIU'FT ( J . ) , P h y s . L e t t . 32B

(1970) 207.

[ 8 ] ADAIR (R.K. ), Phys. Rev. 172 ( 1 9 6 8 ) 1370.

[ 9 ] HiYA (R.C. ) , Phys. Rev. ( 1 9 7 0 ) 1790.

[ l o ] JACOB (M. ) and SIANSKY (R. 1, P h y s . Rev. 05 ( 1 9 7 2 ) 1847.

[ l l ] HAGEDORN (R. ), CERN 71-12 ( Y e l l o w S e r i e s ) , a n d f u r t h e r r e f e r e n c e s t h e r e .

[ 1 2 ] FRAUTSCHI ( S . ) , Phys. Rev. ( 1 9 7 1 ) 2821.

[ 1 3 ] YELLIN ( J . ), Nucl. Phys. 528 ( 1 9 7 3 ) 583.

[ 1 4 ] NAHM (W.), Nucl. Phys. 458 ( 1 9 7 2 ) 525.

[ 1 5 ] Cf. eg. ENGELS ( J . ). SATZ (H. 1, SCHILLING (K. ), CERN-TH 1674 ( 1 9 7 3 ) , Nuovo Cimento i n p r e s s . [ I 6 1 HAGEDORN (R. ) and MONTVAY ( I . ), CERN-TH 1 6 1 0

( 1 9 7 3 1 , Nucl. Phys.B, i n p r e s s . i 1 7 ] SATZ ( H . ) , NUOVO Cimento 31 (1965) 1407.

[ 1 8 ] ILGENFRITZ (E.W. ) a n d KRIPFGANZ, (J. 1, C o n t r i - b u t e d p a p e r n0408 ; FABRICIUS (K.) and WARNBACH (F.), B i e l e f e l d p r e p r i n t Bi-73/07.

[ 1 9 ] MONTVAY ( I . ) , C o n t r i b u t e d p a p e r n0169 and r e f e - r e n c e s t h e r e .

[ 2 0 ] S4TZ (A. ), Phys. L e t t . 44B ( 1 9 7 3 ) 373 and con- t r i b u t e d p a p e r n016.

[ 2 1 ] CoRENSTEIN (M.I. ), MIRANSKY (V.A. 1, SHELEST (V.P. ) a n d ZINOVJEV (G.Y. ), C o n t r i b u t e d p a p e r n0371.

[ 2 2 ] N B I N I ( S . ) and VENEZIANO (G. ), Nuovo Cimento 64A ( 1 9 6 9 ) 81 1 ; BARDAKFI CK) a n d MANDELSTAM

-

( S . ) , Phys. Rev. 184 ( 1 9 6 9 ) 1640.

[ 2 3 ] GORENSTEIN (M.D. 1, MIRANSKY (V.A. ), SHELEST (V.P. ) and ZINOVJEV (G.M.), Phys. L e t t . 438 ( 1 9 7 3 ) 73.

[ 2 4 ] GORENSTEIN (M. I . 1, MIRANSKY (V.A. ) , SHELEST (V.P. ) a n d ZINOVJEV (G.M. ), Nuovo Cimento L e t t . 6

( 1 9 7 3 ) 325.

[ 2 5 ] SATZ (H. ), Nuovo Cimento L e t t . 4 ( 1 9 7 2 ) 910.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to