• Aucun résultat trouvé

DISPERSION CHARACTERISTICS OF PLASMA WAVE-PACKETS

N/A
N/A
Protected

Academic year: 2021

Partager "DISPERSION CHARACTERISTICS OF PLASMA WAVE-PACKETS"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219257

https://hal.archives-ouvertes.fr/jpa-00219257

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DISPERSION CHARACTERISTICS OF PLASMA WAVE-PACKETS

R. Vidmar, F. Crawford

To cite this version:

R. Vidmar, F. Crawford. DISPERSION CHARACTERISTICS OF PLASMA WAVE-PACKETS.

Journal de Physique Colloques, 1979, 40 (C7), pp.C7-559-C7-560. �10.1051/jphyscol:19797270�. �jpa- 00219257�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, supptlment au n07, Tome 4 0 , J u i l l e t 1979, page C7- 559

DISPERSW CHARACTERISTICS OF PLASMA WAVE-PACKETS

R.J. Vidmar and F.W. Crawford.

I n s t i t u t e for Plasma Research, Stanford University, Stanford, California 94305 U.S.A.

We s h a l l c o n s i d e r propagation of a wave-packet through an i n f i n i t e homogeneous plasma which may b e l o s s l e s s , a b s o r p t i v e o r u n s t a b l e , s o t h a t t h e ener- gy of t h e wave-packet may b e conserved, d i s s i p a t e d , o r i n c r e a s e d a s i t propagates.

I n 1914, B r i l l o u i n and Sommerfeld [l] d e t e r - mined t h e evolving shape of a wave-packet, and p r e - d i c t e d t h e occurrence of p r e c u r s o r s t h a t . o u t r u n t h e body of t h e packet ( s e e Fig. 1). The s a d d l e - p o i n t methods t h e y introduced have s i n c e been r e f i n e d and widely used [2]. Concepts such a s phase v e l o c i t y , group v e l o c i t y and energy v e l o c i t y emerge, and a r e u s u a l l y understood by r e f e r e n c e t o d i s p e r s i o n ( ~ r i l l o u i n ) diagrams showing t h e frequency v a r i a - t i o n (w, r e a l ) with wavenumber (k, r e a l ) . D i f f i c u l - t i e s a r i s e f o r a b s o r p t i v e o r u n s t a b l e media, f o r which group v e l o c i t y may b e complex o r i n f i n i t e . We suggest t h a t i n such c a s e s an o b s e r v a t i o n a l d i s - p e r s i o n diagram i s u s e f u l , e f f e c t i v e l y d e s c r i b i n g t h e r e s u l t s of complex w,k measurements on wave- packets. We s h a l l u s e a c o n s i s t e n t d e f i n i t i o n of group v e l o c i t y t o e s t a b l i s h t h e form of t h i s d i s - p e r s i o n r e l a t i o n , and i t s dependence on t h e s o u r c e e x c i t i n g t h e wave-packets.

We c o n s i d e r two sources, b o t h d e l t a - f u n c t i o n s i n t h e d i r e c t i o n of propagation, z : a d e l t a - f u n c t i o n s o u r c e in time, ~ & ( t , z ) = 6 ( 2 ) 6 ( t ) > and t h e switch-on of a continuous wave, S c ( t , z ) = b ( z ) ~ ( t ) s i n ( m O t ) . Here, 8 i s a d e l t a - f u n c t i o n , H i s a Heaviside step-function, and m0 i s a c o n s t a n t frequency. These i d e a l i z e d s o u r c e s d i f f e r by t h e presence (5,) o r absence ( S ) of a p o l e i n t h e t r a n s f o r m of S. They a r e consequently r e p r e s e n t a - A t i v e of s o u r c e s which a r e e i t h e r switched on and maintained i n d e f i n i t e l y , o r a r e p u l s e d ,

THEORY

Although we a r e i n t e r e s t e d i n plasmas, t h e wave e q u a t i o n may be l e f t i n g e n e r a l form t o accom- modate any medium and v a r i a b l e , , t h a t e x h i b i t s d i s p e r s i v e propagation. For l i n e a r propagation i n one dimension we have [3],

where t h e c o e f f i c i e n t s p , a . , d e s c r i b e t h e p r o p e r t i e s of t h e medium i t s l d c i t a t i o n by t h e source, S.

We d e f i n e a Laplace t r a n s f o r m i n time, and a F o u r i e r t r a n s f o r m i n space,

m-iu m

By assuming an i n i t i a l l y q u i e s c e n t medium, and r e s t r i c t i n g ai t o c o n s t a n t c o e f f i c i e n t s , (1) may b e transformed t o

D(W, k ) ~ ( o , k ) = A(W, k) ~ ( w k) , ( 3 )

where D(m,k) i s t h e d i s p e r s i o n r e l a t i o n

To i n v e r t t(m, k), t h e k - i n t e g r a t i o n i s evalu- a t e d by u s e of t h e r e s i d u e theorem, t a k i n g account of t h e p o l e s d e f i n e d by ~ ( w , k ) = 0 . P o l e s i n t h e upper h a l f - p l a n e [ s e e Fig. 2 ( a ) ] a r e included i n t h e c o n t o u r i f t h e y o r i g i n a t e i n t h e lower h a l f - p l a n e f o r v a l u e s of m c o n s i s t e n t with t h e m - i n t e g r a t i o n along a Bromwich contour m = tor - i m . For

f u r t h e r discussion, s e e 14) .

The remaining i n v e r s e transform i s of t h e form a - i a

where k(m) i s determined from D ( ~ , k) = 0 , and F

i s t h e sum of k - i n t e g r a l r e s i d u e s m u l t i p l i e d by t h e m-transform of t h e source, which may c o n t a i n a pole.

Branch-points of f u n a t i o n F must b e avoided i n t h e

3.Ml-

FIG. 1. DISPERSIVE PROPAGATION (wave-packet passing f i x e d p o i n t s , zo

-

= I PRECURSOR H I < el < z ) 2

( a ) k - i n t e g r a t i o n ( z I > 0) ( b ) m - i n t e g r a t i o n ( t > 0 ) FIG. 2 . INTEGRATION COWOURS

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797270

(3)

k r

( b ) D e l t a - f u n c t i o n modes >

I

( c ) Group v e l o c i t y FIG. 3. BEAM-PLASMA DISPERSION DIAGRAMS AND GROUP VELOCITY

m-plane [ s e e Fig. 2 ( b ) ] . They r e s u l t from f a c t o r s between t h e s e two r e s u l t s i s t h a t wi=O f o r normal i n t h e d i p e r s i o n r e l a t i o n such a s k2 = aw o r modes, b u t t h a t we may have # 0 f o r d e l t a -

= d2($ - w 2 ) , f o r whioh branch-points occur a t f u n c t i o n e x c i t a t i o n . For s t a b l e media, t h e two

~u = 0 and cu = * W , - , - r e s p e c t i v e l y . modes a r e i d e n t i c a l . I n s t r o n g l y absorbing, o r SADDLE-POINT METHOD h i g h l y u n s t a b l e media, t h e d i f f e r e n c e between k(cuo)

and k(w-) may become s i g n i f i c a n t . We may approximate ( 4 ) by expanding t h e i n t e - .

A s an example, c o n s i d e r an u n s t a b l e system grand about t h e extrema of t h e e x p o n e n t i a l term.

c o n s i s t i n g of a monoenergetic e l e c t r o n beam and a The s a d d l e - p o i n t s of ( 4 ) a r e t h e n r e q u i r e d t o

s a t i s f y s i m u l t a n e o u s l y plasma, f o r which

where dk/& must be r e a l and p o s i t i v e s i n c e t h e c o n t o u r s i n Fig. 2 a r e d e f i n e d f o r t and z r e a l and p o s i t i v e . The saddle-point, us , i s a f u n c t i o n of t and z , and corresponds t o t h e v e l o c i t y , v,,,.

- The approximation of (4) has two forms which depend on t h e p r e s e n c e o r absence of a p o l e i n F, i . e . on t h e n a t u r e of t h e source. I f F i s analy- t i c , t h e i s o l a t e d s a d d l e - p o i n t method can b e used f o r l a r g e z [ 2 ] . For S,, , we t h e n have

q w s y k(as))

~ ( t ~ ~ ) ~~ X P xi wst z)], ( 6 )

U) [ (

where G i s a smooth f u n c t i o n . This approximation f o r 5 i s u s u a l l y v a l i d when z exceeds about t e n wavelengths corresponding t o k(ms).

The p o l e from gc w i t h s i n wot = I m exp(io, t ) r e q u i r e s t h e simple p o l e s i n g u l a r i t y method [ 2 f ,

1 / 2 where b = i i l ( m s u n ) t - (*(mB) -*(mo)) z j / , U and

T a r e smoot unctions, e r f c 1s t h e comp ementary e r r o r f u n c t i o n , and t h e =k s i g n i s chosen s o t h a t e r f c " 0 f o r non-causal v a l u e s of t and z. Pre- c u r s o r s ( s e e Fig. 1 ) a r e d e s c r i b e d by t h e ~ ( m , ) terms. A s waves of lower v,, a r r i v e from t h e source, a ~ ( m s ) t e r m i n ( 7 ) dominates t h e r e s p o n s e , a f t e r t h e phase of b changes sign. This phase change occurs a s t h e r e a l p a r t of %(= wl" + b i ) approaches UC); e r f c changes i n magnitude from w 0 t o m 2 .

The main wave t r a i n of a s o u r c e l i k e Sc p r o p a g a t e s with t h e v e l o c i t y , corresponding t o ~ e ( t u , ) =wo.

B r i l l o u i n termed t h k :'signal v e l o c i t y " . DISCUSSION

The d i s p e r s i o n c h a r a c t e r i s t i c s corresponding t o ( 6 ) and ( 7 ) a r e b o t h of t h e form ~ ( c u , k ) = 0 ,

b u t with m = u s f o r s o u r c e s without p o l e s ( d e l t a - f u n c t i o n modes) and w i t h w r e a l f o r s o u r c e s w i t h p o l e s (normal modes). The p r i n c i p a l d i s t i n c t i o n

Here, , i s t h e plasma frequency, i s t h e plasma fgequency of t h e beam, and vb%is t h e beam v e l o c i t y . Tlle d i s p e r s i o n diagrams of Figs. 3 ( a ) and ( b ) , f o r normal modes and d e l t a - f u n c t i o n e x c i t a - t i o n , a r e s i m i l a r f o r t h e s t a b l e branch from A t o By b u t d i f f e r s u b s t a n t i a l l y f o r t h e branch from C t o E : i n t h e normal mode diagram, t h e group velo- c i t y may a p p a r e n t l y b e n e g a t i v e o r even i n f i n i t e . The d e l t a - f u n c t i o n modes a l s o d i f f e r s u b s t a n t i a l l y below t h e plasma frequency, w i t h t h e branch from F t o G i n t h e normal mode diagram d i s a p p e a r i n g . Values of v, corresponding t o t h e two modes of e x c i - t a t i o n a r e p l o t t e d i n F i g . 3 ( c ) f o r comparison.

An o b s e r v a t i o n a l d i s p e r s i o n diagram such a s Fig. 3(b), f o r a p o l e - f r e e source, has t h e advant- age over a normal mode diagram such a s Fig. 3 ( a ) t h a t it i l l u s t r a t e s t h e c a u s a l group v e l o c i t i e s , f r e q u e n c i e s and wavenumbers t h a t would a c t u a l l y b e observed. S i n c e t h e v e l o c i t y % of a s p e c t r a l com- ponent a t frequency w has been d e f i n e d a s r e a l and p o s i t i v e , it corresponds t o t h e u s u a l d e f i n i t i o n of group v e l o c i t y i n a s t a b l e medium, and e x t e n d s t h a t concept c o n s i s t e n t l y t o a b s o r p t i v e and u n s t a b l e media. I t i s a n t i c i p a t e d t h a t t h e o b s e r v a t i o n a l

approach and d i s p e r s i o n diagram w i l l b e u s e f u l i n t h e s t u d y of i n s t a b i l i t i e s i n inhomogeneous plasmas, and i n i o n o s p h e r i c r a y t r a c i n g .

This work was supported by t h e NASA and t h e NSF. The a u t h o r s have b e n e f i t e d from d i s c u s s i o n s w i t h Dr. K. J. Harker.

[11 B r i l l o u i n , L., Wave Propagation and Group

Velocity, ~ c a d e v

[ 2 ] Felsen, L. B. and Marcuvitz, N., R a d i a t i o n and S c a t t e r i n g of Waves, P r e n t i c e - H a l l (1973).

[ 31 Whitham, G. B., Linear and Nonlinear Waves Wiley (1974) .

[ k ] Briggs, R, J., Electron-Stream I n t e r a c t i o n s with Plasmas, MIT P r e s s (1964).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to