• Aucun résultat trouvé

HARDY-LITTLEWOOD TYPE INEQUALITY FOR ψ-RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

N/A
N/A
Protected

Academic year: 2021

Partager "HARDY-LITTLEWOOD TYPE INEQUALITY FOR ψ-RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-03189239

https://hal.archives-ouvertes.fr/hal-03189239

Preprint submitted on 2 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

HARDY-LITTLEWOOD TYPE INEQUALITY FOR ψ-RIEMANN-LIOUVILLE FRACTIONAL

INTEGRALS

César Ledesma, J. Vanterler da C. Sousa, Amado Cruz

To cite this version:

César Ledesma, J. Vanterler da C. Sousa, Amado Cruz. HARDY-LITTLEWOOD TYPE INEQUAL-

ITY FOR ψ-RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS. 2021. �hal-03189239�

(2)

ψ-RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

C ´ ESAR T. LEDESMA, J. VANTERLER DA C. SOUSA, AND AMADO M. CRUZ

Abstract. In this present paper, we present a new extension for Hardy-Littlewood type inequality using the Riemann-Liouville fractional integral with respect to another function in the spaces

Lp

[a, b] and

Lq

[a, b]. The result is investigated under certain conditions for

p, q

and via Holder inequality.

1. Introduction

In 1928, Hardy and Littlewood [1] first established boundedness properties for Riemann- Liouville fractional integrals. The classical Hardy inequality for fractional integrals states that

x

β−α

Z

x

0

f (y) y

β

(x − y)

1−α

dy

Lp(0,b)

≤ C kfk

Lp(0,b)

with 0 < α < 1, where α −

1p

< β <

1q

,

1q

+

1p

= 1 and 0 < b ≤ ∞.

On the other hand, 10 years later, classical inequality was discussed, duo to Hardy, Littlewood and Sobolev, states that [1]

Z

Rn

Z

Rn

f (x)|x − y|

−λ

g(y)dxdy

≤ C

n,p,q0

||f ||

Lq0

||g||

Lp

for all f ∈ L

q0

( R

n

), g ∈ L

p

( R

n

), 1 < p, q

0

< ∞,

1p

+

q10

+

λn

= 2, 0 < λ < n and q

0

=

q−1q

. In this sense, Lie and Loss [12], discussed an estimate for the constant C

n,p,q0

.

The Hardy–Littlewood–Sobolev inequality was extended by Stein and Weiss to the following Stein–Weiss inequalities [19]

Z

Rn

Z

Rn

|x|

−α

|x − y|

−λ

f (x)g(y)|y|

−β

dxdy

≤ C

n,α,β,p,q0

||f ||

Lq0

||g||

Lp

where 1 < p, q

0

< ∞, β, α and λ satisfying the following conditions.

q10

+

1p

+

α+β+λn

= 2,

1

q0

+

1p

≥ 1, α + β ≥ 0, α <

nq

, β <

pn0

and 0 < λ < n.

Over these 92 years since the first ideas of Hardy-Littlewood inequality, numerous results have been addressed, in particular, applications. We also highlight new extensions to the Hardy-Littlewood inequality, in particular, with the fractional Poisson kernel [10, 11, 13–15].

We also highlight the extent to the Hardy-Littlewood-Polya inequality [16]. It is noted that the importance and impact of the first result on the inequality of Hardy and Littlewood, caused in theory. Other inequalities involving Hardy and Littlewood can be found in the articles [17,18,20].

2010

Mathematics Subject Classification.

Primary 26A33; Secondary 34B15, 35J20, 58E05.

Key words and phrases. ψ-fractional derivative space,

variational structure, fractional differential equations,boundary value problem, mountain pass theorem.

C´ esar T. Ledesma was partially supported by CONCYTEC, Peru, 379-2019-FONDECYT “ASPECTOS CUALITATIVOS DE ECUACIONES NO-LOCALES Y APLICACIONES”..

1

(3)

As seen above, the first results of the Hardy-Littlewood inequality in the sense of fractional integrals, was discussed only for the case of Riemann-Liouville. As is known, by means of the Riemann-Liouville fractional integral, the fractional derivatives of Caputo and Riemann- Liouville are defined. However, over the decades, new versions of fractional integrals have emerged. Then, there was a need to propose a new general operator that contained as particular cases, a wide class of existing fractional integrals [2, 6]. So, we have the Riemann-Liouville fractional integral call with respect to another function, that is, ψ(·), as will be presented below:

Let α ∈ (0, 1) and ξ ∈ L

1

[a, b] , [a, b] be a finite or infinite interval of the real line R (−∞ ≤ a < b ≤ ∞). Also let ψ : [a, b] → R be an increasing and positive continuous function, having a continuous and non decreasing derivatives ψ

0

(x) 6= 0 on (a, b). The left-sided fractional integrals of a function f with respect to another function ψ on [a, b], is defined as [2–4]

I

α;ψa+,x

ξ (x) = 1 Γ (α)

Z

x a

ψ

0

(t) (ψ (x) − ψ (t))

α−1

ξ (t) dt

The right-sided fractional integrals of a function f with respect to another function ψ on [a, b], is defined in an analogous way I

α;ψx,b−

(·).

Let α > 0 and δ > 0.Then, we have the following semigroup property given by [2,3]

I

α;ψa+,x

I

δ;ψa+,x

ξ (x) = I

α+δ;ψa+,x

ξ (x) .

Since we have a fractional integration operator that contains and a unique (operator) a wide class of possible particular cases, then the following question arises: what conditions about the ψ-Riemann-Liouville fractional integral and about Hardy’s inequality-Littlewood is necessary and enough, so that we can extend it?

So, motivated by these issues and the work above, in this paper we consider the boundedness of ψ−Riemann-Liouville fractional integrals. More precisely we are going to prove the following result:

H-L Theorem 1.1. Let 0 < α < 1 and p ∈ [1, ∞], then the following statements are satisfied:

(1) If 1 ≤ p <

α1

, then the operators I

α;ψa+

, I

α;ψb−

: L

p

[a, b] → L

q

[a, b] are continuous for every q ∈ h

1,

1−αpp

,

(2) If α =

1p

, then the operators I

α;ψa+

, I

α;ψb−

: L

p

[a, b] → L

q

[a, b] are continuous for every q ∈ [1, ∞),

(3) If α ∈

1 p

, 1

, then the operators I

α;ψa+

, I

α;ψb−

: L

p

[a, b] → L

q

[a, b] are continuous for every p ≤ q ≤ ∞.

(4) If p = ∞, then the operators I

α;ψa+

, I

α;ψb−

: L

p

[a, b] → C[a, b] ∩ L

[a, b] are continuous.

2. Hardy-Littlewood type result

In this section, we are going to prove Theorem 1.1. We start our analysis with the following remark. Let α ∈ (0, 1) and ψ be an increasing and positive continuous function on (a, b] with ψ

0

∈ C(a, b), ψ

0

6= 0 and ψ

0

increasing. Then, for x ∈ (a, b] we have

HL01

HL01 (2.1)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

dt ≤ (ψ(b) − ψ(a))

α

α .

(4)

In fact, by doing the change of variable u = ψ(x) − ψ(t) and since ψ is increasing then Z

x

a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

dt =

Z

ψ(x)−ψ(a) 0

u

α−1

du

= (ψ(x) − ψ(a))

α

α ≤ (ψ(b) − ψ(a))

α

α .

Next, we consider the boundedness of I

α;ψa+

in L

p

spaces.

H-L1 Lemma 2.1. Let p ∈ [1, ∞] and u ∈ L

p

(a, b). Then Z

x

a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dt < ∞ for a.e. x ∈ (a, b].

Moreover, I

α;ψa+

u ∈ L

p

(a, b) with

HL02

HL02 (2.2) kI

α;ψa+

uk

Lp(a,b)

≤ (ψ(b) − ψ(a))

α

Γ(α + 1) kuk

Lp(a,b)

. Proof. Let p = ∞, then by (2.1) we obtain

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dt ≤ kuk

L(a,b)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

dt

≤ (ψ(b) − ψ(a))

α

α kuk

L(a,b)

, x ∈ (a, b].

Let p = 1, next Z

b

a

|I

α;ψa+

u(x)|dx = Z

b

a

1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

u(t)dt

dx

≤ 1 Γ(α)

Z

b a

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dtdx

≤ 1 Γ(α)

Z

b a

Z

x a

ψ

0

(x)(ψ(x) − ψ(t))

α−1

|u(t)|dtdx

= 1

Γ(α) Z

b

a

|u(t)|

Z

b t

ψ

0

(x)(ψ(x) − ψ(t))

α−1

dxdt

= 1

Γ(α + 1) Z

b

a

(ψ(b) − ψ(t))

α

|u(t)|dt

≤ (ψ(b) − ψ(a))

α

Γ(α + 1)

Z

b a

|u(t)|dt.

Now, we consider the case 1 < p < ∞. Let q > 0 such that 1

p + 1

q = 1.

(5)

Next, by H¨ older inequality we get

|I

α;ψa+

u(x)| =

1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

u(t)dt

≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

1q

0

(t)(ψ(x) − ψ(t))

α−1

]

1p

|u(t)|dt

≤ 1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

dt

1/q

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|

p

dt

1/p

≤ 1 Γ(α)

(ψ(b) − ψ(a))

α

α

1/q

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|

p

dt

1/p

. So, since ψ

0

is increasing we obtain

Z

b a

|I

α;ψa+

u(x)|

p

dx ≤ 1 [Γ(α)]

p

(ψ(b) − ψ(a))

α

α

p/q

Z

b a

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|

p

dtdx

≤ 1 [Γ(α)]

p

(ψ(b) − ψ(a))

α

α

p/q

Z

b a

Z

x a

ψ

0

(x)(ψ(x) − ψ(t))

α−1

|u(t)|

p

dtdx

= 1

[Γ(α)]

p

(ψ(b) − ψ(a))

α

α

p/q

Z

b a

|u(t)|

p

Z

b

t

ψ

0

(x)(ψ(x) − ψ(t))

α−1

dxdt

≤ 1 [Γ(α)]

p

(ψ(b) − ψ(a))

α

α

p/q

(ψ(b) − ψ(a))

α

α

Z

b a

|u(t)|

p

dt

= 1

[Γ(α)]

p

(ψ(b) − ψ(a))

α

α

p

q+1

Z

b a

|u(t)|

p

dt.

Therefore

kI

α;ψa+

uk

Lp(a,b)

≤ (ψ(b) − ψ(a))

α

Γ(α + 1) kuk

Lp(a,b)

.

Now, we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1:

(1) The case p = q ∈ [1, ∞] was proved in Lemma 2.1, were we obtain HL03

HL03 (2.3) kI

α;ψa+

uk

Lp(a,b)

≤ (ψ(b) − ψ(a))

α

Γ(α + 1) kuk

Lp(a,b)

.

Now we consider the case p = 1 and 1 ≤ q <

1−α1

. The case q = 1 is given by (2.3), therefore we consider the case 1 < q <

1−α1

.

By H¨ older inequality we have

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dt

= 1

Γ(α) Z

x

a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|

1q

|u(t)|

1−1q

dt

≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

q

|u(t)|dt

1/q

Z

x a

|u(t)|dt

1−1q

.

Hence HL04

HL04 (2.4) |I

α;ψa+

u(x)|

q

≤ 1 [Γ(α)]

q

Z

x a

0

(t)(ψ(x) − ψ(t))

α

− 1]

q

|u(t)|dtkuk

q−1L1(a,b)

.

(6)

Next,

k|I

α;ψa+

uk

qLq(a,b)

≤ 1 [Γ(α)]

q

Z

b a

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

q

|u(t)|dtdxkuk

q−1L1(a,b)

≤ 1 [Γ(α)]

q

Z

b a

|u(t)|

Z

b t

0

(x)(ψ(x) − ψ(t))

α−1

]

q

dxdtkuk

q−1L1(a,b)

= 1

[Γ(α)]

q

Z

b

a

|u(t)|[ψ

0

(b)]

q−1

Z

b

t

ψ

0

(x)(ψ(x) − ψ(t))

(α−1)q

dxdtkuk

q−1L1(a,b)

= [ψ

0

(b)]

q−1

[Γ(α)]

q

Z

b a

|u(t)| (ψ(b) − ψ(t))

1−(1−α)q

1 − (1 − α)q dtkuk

q−1L1(a,b)

≤ [ψ

0

(b)]

q−1

(ψ(b) − ψ(a))

1−(1−α)q

(1 − (1 − α)q)[Γ(α)]

q

kuk

qL1(a,b)

. Therefore

HL05

HL05 (2.5) k|I

α;ψa+

uk

Lq(a,b)

≤ [ψ

0

(b)]

q−1

(ψ(b) − ψ(a))

1−(1−α)q

(1 − (1 − α)q)[Γ(α)]

q

!

1/q

kuk

L1(a,b)

, ∀1 ≤ q < 1 1 − α Continuing with our analysis, we consider the case 1 < p <

α1

and p ≤ q <

1−αpp

. The case q = p was considered in (2.3), so we only consider the case

p < q < p 1 − αp . In fact, let

HL06

HL06 (2.6) δ = 1

p − 1 q , then 0 < δ < α < 1. Define r as

HL07

HL07 (2.7) 1

r = 1 + 1 q − 1

p = 1 − δ = ⇒ r = 1 1 − δ . Note that r < q, next by H¨ older inequality we have

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dt

= 1

Γ(α) Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

rq

|u(t)|

pq

0

(t)(ψ(x) − ψ(t))

α−1

]

1−rq

|u(t)|

p(1p1q)

dt

≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

1/q

Z

x a

|u(t)|

p

dt

1p1q

× Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

dt

1−1

p

= 1

Γ(α)

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1−1p

× Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

1/q

Z

x a

|u(t)|

p

dt

1

p1

q

. Note that the last expression is well defined since

1

r = 1 − δ > 1 − α = ⇒ (1 − α)r < 1.

(7)

Therefore, we have

kI

α;ψa+

uk

qLq(a,b)

= Z

b

a

|I

α;ψa+

u(x)|

q

dx

≤ 1 [Γ(α)]

q

Z

b a

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dtkuk

q−pLp(a,b)

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q(1−1p)

 dx

kuk

q−pLp(a,b)

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q(1−1

p)

Z

b a

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dtdx

≤ kuk

q−pLp(a,b)

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q(1−1

p)

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r kuk

pLp(a,b)

= 1

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q(1−p1)+1

kuk

qLp(a,b)

.

Hence HL08

HL08 (2.8)

kI

α;ψa+

uk

Lq(a,b)

≤ 1 Γ(α)

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1−1

p+1q

kuk

Lp(a,b)

∀p ≤ q < p 1 − αp .

(2) Now we consider the case p =

α1

and

α1

≤ q < ∞. Just we consider the case

α1

< q < ∞, since by (2.2) we have the case q = p.

Define δ and r as

δ = 1 p − 1

q = α − 1 q and

1

r = 1 − δ = 1 + 1 q − 1

p .

Note that 0 < δ < α < 1 and r <

1−α1

. Next by H¨ older inequality HL09

HL09 (2.9)

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dt

= 1

Γ(α) Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

rq

|u(t)|

pq

0

(t)(ψ(x) − ψ(t))

α−1

]

r(1−1p)

|u(t)|

1−pq

dt

≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

1/q

×

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r(1−1p

|u(t)|

(1−pq

dt

1/θ

, 1 q + 1

θ = 1.

(8)

By other side, by H¨ older inequality we derive

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r(1−1p

|u(t)|

(1−pq

dt

≤ Z

x

a

0

(t)(φ(x) − φ(t))

α−1

]

r

1−1p

θs

dt

1/s

Z

x a

|u(t)|

1−pq

θm

dt

1/m

, 1 s + 1

m = 1,

note that

m = p(q − 1)

q − p , θ = q

q − 1 and s = p(q − 1)

q(p − 1) = ⇒ r

1 − 1 p

θs = r and

1 − p q

θm = p.

Therefore

HL10

HL10 (2.10)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r(1−1p

|u(t)|

(1−pq

dt

≤ Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

dt

q(p−1)p(q−1)

Z

x a

|u(t)|

p

dt

p(q−1)q−p

= [ψ

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q(p−1)p(q−1)

Z

x

a

|u(t)|

p

dt

p(q−1)q−p

.

Now, replacing (2.10) in (2.9) we get

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

1/q

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

p−1p

× Z

x

a

|u(t)|

p

dt

q−ppq

.

So HL11

HL11 (2.11)

|I

α;ψa+

u(x)|

q

≤ 1

[Γ(α)]

q

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q

1−1

p

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

× kuk

q−pLp(a,b)

.

(9)

Therefore HL12

HL12 (2.12)

kI

α;ψa+

uk

qLq(a,b)

= Z

b

a

|I

α;ψa+

u(x)|

q

dx

≤ 1

[Γ(α)]

q

kuk

q−pLp(a,p)

Z

b

a

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q 1−1p

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dtdx

≤ kuk

q−pLp(a,b)

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q 1−1

p

Z

b a

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dtdx

≤ kuk

q−pLp(a,b)

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q 1−1p

Z

b a

Z

b t

0

(x)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dxdt

kuk

q−pLp(a,b)

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q

1−1

p

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r kuk

pLp(a,b)

=

kuk

qLp(a,b)

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1+q 1−1q

.

That is

kI

α;ψa+

uk

Lq(a,b)

≤ 1

Γ(α) [ψ

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1−1

p+1q

kuk

Lp(a,b)

∀p = 1

α ≤ q < ∞.

(3) Now we consider the case 1

α < p < ∞ and p ≤ q ≤ ∞.

The case q = p was considered in (2.3), so we only consider the case p < q ≤ ∞.. WE start considering the case p < q < ∞. Let

δ = 1 p − 1

q and 1

r = 1 − δ = 1 + 1 q − 1

p . So

0 < δ < α and 1 < r < 1 1 − α . Next

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dt

= 1

Γ(α) Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

rq

|u(t)|

pq

0

(t)(ψ(x) − ψ(t))

α−1

]

1−rq

|u(t)|

p

1 p1

q

dt.

Since

1 − r q = r

1 − 1

p

,

(10)

by H¨ older inequality we derive HL13

HL13 (2.13)

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

rq

|u(t)|

pq

0

(t)(ψ(x) − ψ(t))

α−1

]

r

1−1p

|u(t)|

p

1 p1q

dt

≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

1/q

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

1−1

p

|u(t)|

1 p1

q

dt

1θ

,

where

1q

+

1θ

= 1. On the other hand HL14

HL14 (2.14) Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

1−1p

|u(t)|

q−p pq dt

dt ≤ Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]

rθm

1−1p

dt

m1

× Z

x

a

|u(t)|

pθn

1 p1q

dt

1/n

, 1 m + 1

n = 1.

Note that

θ = q

q − 1 , m = p(q − 1)

q(p − 1) and n = p(q − 1) q − p . So, replacing (2.14) into (2.13) we get

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

1/q

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

p−1p

× Z

x

a

|u(t)|

p

dt

q−ppq

≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt

1/q

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

p−1p

× kuk

q−p q

Lp(a,b)

. Therefore

HL15

HL15 (2.15)

|I

α;ψ

a+

u(x)|

q

≤ 1 [Γ(α)]

q

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

|u(t)|

p

dt [ψ

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q(p−1)p

× kuk

q−pLp(a,b)

. Finally

kI

α;ψa+

uk

qLq(a,b)

= Z

b

a

|I

α;ψa+

u(x)|

q

dx

kuk

q−pLp(a,b)

[Γ(α)]

q

Z

b a

0

(x)]

r−1

(ψ(x) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

q(p−1)

p

Z

x

a

0

(t)(ψ(x) − ψ(t))

α−1

]|u(t)|

p

dtdx

≤ 1

[Γ(α)]

q

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1+q(p−1)p

kuk

qLp(a,b)

.

(11)

That is

HL16

HL16 (2.16) kI

α;ψa+

uk

Lq(a,b)

≤ 1

Γ(α) [ψ

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1−1

p+1q

kuk

Lp(a,b)

.

Now we consider the case 1

α < p < ∞ and q = ∞.

By H¨ older inequality we derive

|I

α;ψa+

u(x)| ≤ 1 Γ(α)

Z

x a

ψ

0

(t)(ψ(x) − ψ(t))

α−1

|u(t)|dt

≤ 1 Γ(α)

Z

x a

0

(t)(ψ(x) − ψ(t))

α−1

]

r

dt

1/r

Z

x a

|u(t)|

p

dt

1/p

≤ 1

Γ(α) [ψ

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1/r

kuk

Lp(a,b)

.

Therefore

HL17

HL17 (2.17) kI

α;ψa+

uk

L(a,b)

≤ 1

Γ(α) [ψ

0

(b)]

r−1

(ψ(b) − ψ(a))

1−(1−α)r

1 − (1 − α)r

!

1−1

p

kuk

Lp(a,b)

.

(4) Finally, the case p = q = ∞ was proved in (2.3).

Remark 1. Here, we present proof of the results only for the left operator I

α;ψa+

(·), in an analogous way, follows to the operator the right I

α;ψb

(·).

References

hardy [1] Hardy, G. H. and J. E. Littlewood. Some Properties of Fractional Integrals. Mathematische Zeitschrift. 27, 565-606, 1928.

1

Sousa1 [2] Sousa, J. Vanterler da C., and E. Capelas de Oliveira. ”On the

ψ–Hilfer fractional derivative.” Commun.

Nonlinear Sci. Numer. Simul. 60 (2018): 72-91.

2

Sousa2 [3] Sousa, J. Vanterler da C., and E. Capelas de Oliveira. ”Leibniz type rule:

ψ–Hilfer fractional operator.”

Commun. Nonlinear Sci. Numer. Simul. 77 (2019): 305-311.

2

Sousa3 [4] Sousa, J. Vanterler da C., and E. Capelas de Oliveira. The

ψ-Hilfer fractional calculus of variable order and

its applications.Appl. Math. Comput. 39.4 (2020): 1-35.

2

Sousa4 [5] Sousa, J. Vanterler da C., L. Tavares and C´ esar Ledesma. A variational approach for a problem involving a

ψ-Hilfer fractional operator. https://hal.archives-ouvertes.fr/hal-02615625 (2020).

Kilbas [6] Kilbas, A. A., O. I. Marichev, and S. G. Samko. ”Fractional integral and derivatives (theory and applications).” (1993).

2

Demengel [7] Demengel, F. and G. Demengel. Functional spaces for the theory of elliptic partial differential equations.

Springer Verlag London Limited 2012.

Brezis [8] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations. Springer Science+Business Media, LLC 2011.

Figueiredo [9] Figueiredo, D. G. Lectures on the Ekeland variational principle with applications and detours. Tata Institute of Fundamental Research, 1989.

Leindler [10] Leindler, L. Some inequalities of Hardy-Littlewood type. Anal. Math. 20.2 (1994): 95-106.

1

Bondarenko [11] Bondarenko, A., W. Heap, and K. Seip. An inequality of Hardy–Littlewood type for Dirichlet polynomials.

J. Number Theory 150 (2015): 191-205.

1

Chen [12] Chen, W., and C. Li. The best constant in a weighted Hardy-Littlewood-Sobolev inequality. Proc. Amer.

Math. Soc. (2008): 955-962.

1

Love [13] Love, E. R. Generalizations of a classical inequality. Applicable Anal. 8.1 (1978): 47-59.

1

Everitt [14] Everitt, W. N. Some Examples of Hardy-Littlewood Type Integral Inequalities. General Inequalities 4.

Birkh¨ auser, Basel, 1984. 15-23.

1

(12)

Hajaiej [15] Hajaiej, H. Extended Hardy-Littlewood inequalities and some applications. Trans. Amer. Math. Soc. (2005):

4885-4896.

1

Khajeh-Khalili [16] Khalili, P. Generalization of a Hardy-Littlewood-Polya inequality. J. Approx. Theory. 66.2 (1991): 115-124.

1

Smith [17] Smith, K. T. A generalization of an inequality of Hardy and Littlewood. Canadian J. Math. 8 (1956):

157-170.

1

De [18] De N´ apoli, Pablo L., I. Drelichman, and R. G. Dur´ an. On weighted inequalities for fractional integrals of radial functions. Illinois J. Math. 55.2 (2011): 575-587.

1

Chen1 [19] Chen, L., G. Lu, and C. Tao. Hardy—Littlewood—Sobolev Inequalities with the Fractional Poisson Kernel and Their Applications in PDEs. Acta Mathematica Sinica, English Series. 35.6 (2019): 853-875.

1

novo [20] Chen, W., Jin, C., Li, C. Weighted Hardy–Littlewood–Sobolev inequalities and systems of integral equations. Discrete Contin. Dyn. Syst. suppl., 164–172 (2005).

1

(C´ esar T. Ledesma)

Departamento de Matem´ aticas Universidad Nacional de Trujillo Av. Juan Pablo II s/n. Trujillo-Per´ u

Email address

:

ctl 576@yahoo.es

(J. Vanterler da C. Sousa)

Centro de Matem´ atica, Computac ¸˜ ao e Cognic ¸˜ ao Universidade Federal do ABC-UFABC

Santo Andr´ e, SP, Brazil

Email address

:

jose.vanterler@ufabc.edu.br

(Amado M. Cruz)

Departamento de Matem´ aticas

Universidad Nacional de Trujillo

Av. Juan Pablo II s/n. Trujillo-Per´ u

Email address

:

gamc55@hotmail.com

Références

Documents relatifs

Sobolev spaces; Hardy-Littlewood-Sobolev inequality; logarithmic Hardy- Littlewood-Sobolev inequality; Sobolev’s inequality; Onofri’s inequality; Gagliardo-Nirenberg in-

[r]

Parmi les demandeurs d’emploi en catégories A, B, C sortis pour reprendre un emploi en septembre 2016, 65,8 % ont accédé à un emploi durable (CDI, autre contrat de 6 mois ou

juridique) dont bénéficie l’action syndicale en France, des situations de discrimination syndicale ou, plus largement, des pratiques anti-syndicales loin d’être minoritaires. •

[19] Fr´ ed´ eric Robert, Existence et asymptotiques optimales des fonctions de Green des op´ erateurs elliptiques d’ordre deux (Existence and optimal asymptotics of the

As a direct application, we derive local Strichartz estimates for randomly modulated dispersions and solve the Cauchy problem of the critical nonlinear Schrödinger equation.. Key

The analytic subgroup that corresponds to the radical of the Lie algebra is again a closed connected subgroup Q c G and we can find Mi C G a (not necessarily

Nacib Albuquerque Departamento de Matemática Universidade Federal da Paraíba 58.051-900 - João Pessoa,