• Aucun résultat trouvé

INFRARED LASER OPTOGALVANIC SPECTROSCOPY OF NH3 AND NO2

N/A
N/A
Protected

Academic year: 2021

Partager "INFRARED LASER OPTOGALVANIC SPECTROSCOPY OF NH3 AND NO2"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00223298

https://hal.archives-ouvertes.fr/jpa-00223298

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INFRARED LASER OPTOGALVANIC SPECTROSCOPY OF NH3 AND NO2

C. Webster, R. Menzies

To cite this version:

C. Webster, R. Menzies. INFRARED LASER OPTOGALVANIC SPECTROSCOPY OF NH3 AND NO2. Journal de Physique Colloques, 1983, 44 (C7), pp.C7-429-C7-437. �10.1051/jphyscol:1983741�.

�jpa-00223298�

(2)

I N F R A R E D L A S E R O P T O G A L V A N I C SPECTROSCOPY O F NH3 AND NO2

C .R. websterrand R.T. Menzies

California I n s t i t u t e o f Z'eehnology, J e t Propulsion Laboratory, 4800 Oak Grove Drive, California 91109, U.S.A.

Resum@ - Les s p e c t r e s optogalvaniques de p o r t i o n de l a bande v de NO2 d 5,2 um e t de l a bande v2 de NH3 d 9,5 um ont e t 6 e n r e g i s t r e e s d ?a l i t n i t e Doppler avec des l a s e r 2 diodes, continus e t accordables. Une nouvelle c e l - l u l e u t i l i s a n t des e l e c t r o d e s amovibles e t une georn6trie orthogonale e n t r e le l a s e r e t l a decharge a' permis d ' i d e n t i f i e r deux c o n t r i b u t i o n s au signal optogalvanique dont l 'une e s t associee uniquement a l a decharge lumineuse negati ve.

A b s t r a c t - I n f r a r e d l a s e r optogalvanic (LOG) s p e c t r a of p o r t i o n s of t h e NO2 v3 band a t 6.2 um and t h e NH3 v;, band a t 9.5 m have been recorded a t Doppler-limi t e d r e s o l u t i o n using cw tunable diode l a s e r s . A novel cel l design, using a d j u s t a b l e e l e c t r o d e p o s i t i o n s and an orthogonal geometry between t h e probe l a s e r and discharge a x i s allows two c o n t r i b u t i o n s t o t h e LOG signal t o be i d e n t i f i e d , one a s s o c i a t e d only with t h e negative glow.

1. Introduction

In t h e study of m01 e c u l a r s p e c i e s using optogal vanic spectroscopy, v i s i b l e l a s e r sources have been s u c c e s s f u l l y used t o record t h e s p e c t r a of neutral and r a d i c a l s p e c i e s i n discharges and flames 11-31. The high s e n s i t i v i t i e s achieved have r e s u l t e d i n p a r t from t h e a v a i l a b i l i t y of r e l a t i v e l y high dye l a s e r o u t p u t powers ( > l 0 0 mW, cw) and from t h e nature of t h e optogalvanic e f f e c t i t s e l f . For molecules i n d i f f e r e n t e l e c t r o n i c s t a t e s , l a r g e d i f f e r e n c e s may be expected i n t h e c r o s s s e c t i o n s f o r several e l ectron-neutral /electron-ion processes c r u c i a l t o t h e discharge operation.

A1 though e a r l y s t u d i e s of t h e optogal vanic e f f e c t within CO2 l a s e r p1 asmas /4/

i n d i c a t e d t h e o b s e r v a b i l i t y of i n f r a r e d molecular optogalvanic s o e c t r a , measur- a b l e changes i n t h e discharge impedance following e x c i t a t i o n i n t h e mid-infrared region were not expected with t h e low output powers a v a i l a b l e ( Q mW) from lead- s a l t tunable diode l a s e r s (TDLs).

We have r e c e n t l y reported t h e extension of molecular optogal vanic spectro- scopy t o t h e i n f r a r e d region /5/ where portions of t h e y band of NH3 and t h e v3 band of NO2 were recorded by probing low-pressure dc glow discharges i n pure ammonia and i n a nitrogen dioxidelhel i u m mixture. In t h i s paper we review t h a t work, p r e s e n t some new s p e c t r a recorded using an improved c e l l , and include new data on t h e s p a t i a l dependence of t h e magnitude, s i g n , and time evolution of t h e observed s i g n a l S.

2. Experimental d e t a i l S

The dc discharge c e l l used i n t h i s work i s shown schematically i n Figure 1.

Cross-connecting 0-ring j o i n t s f i t t e d with Mac a windows a1 l owed t h e TDL t o probe t h e i n t e r e l e c t r o d e region a t 90" t o t h e discharge a x i s . A tungsten rod anode and a molybdenum hollow cathode were each mounted s o t h a t t h e i n t e r e l e c t r o d e s e p a r a t i o n and t h e region of l a s e r e x c i t a t i o n could be e a s i l y adjusted by s l i d i n g 0-ring

%r. Webster was unfortunately unable to come to the Colloquium because of a re- scheduling of an air balloon experiment but has sent the paper he would have pre- sented and which is published in the Proceedings.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983741

(3)

C7-430 JOURNAL DE PHYSIQUE

connections. A flow of e i t h e r pure ammonia gas or a 50/50 nitrogen dioxide/helium mixture a t a t o t a l c e l l pressure of -1 t o r r was necessary t o keep the discharge s t a b l e over long periods.

FINE-METERING

wmL

BEAMLGAs ouT

:,

JLYBDENUM '

m o w CATHODE

11

N~C! wlNDoW

II II

GAUGE

Figure 1. The dc discharge cell w i t h adjustable electrode positions.

A negative polarity dc voltage supply provided 400-700 V across the c e l l , the anode being a t earth potential. For the two discharges studied, the discharge resistance was measured t o be i n the range 1-2 Mn. W i t h a 30 k n b a l l a s t r e s i s t o r i n s e r i e s with the discharge tube, the c i r c u i t current was limited by the discharge impedance t o currents i n the range 0.2-0.7 mA. A 0.01 LIF coupling capacitor allowed laser-dependent ac changes on the high-voltage side t o be monitored by a preamp connected t o a lock-in amplifier. Usually, the TDL beam was mechanically chopped and the lock-in amplifier referenced t o the chopping frequency. In an a l t e r n a t i v e ac detection scheme, first-harmonic detection was employed by removing the me- chanical chopper and modulating the TDL wavelength using a sine-wave current modulation and referencing the lock-i n amp1 i f i e r t o t h i s modulation frequency.

The lead-salt TDL used f o r NH excitation a t 1046 cm-l produced 0.8 mW output, mainly in a single longitudinal moje, a t a TDL current of 1.7 A. For NO2 excitation a t 1610 cm-l, a second TDL produced 1 mW output power, i n a single longitudinal mode, a t a TDL current of 0.7 A .

3. The LOG spectrum of NO7

In Figure 1 a portion of the NO2 spectrum near 1609.9 cm-' i s shown, re- corded i n both d i r e c t absorption using a HgCdTe detector and using the optogalvanic technique, with t h e TDL beam chopped a t 400 Hz.

The optogalvanic spectrum was recorded by probing the positive column of the discharge, where the measured linewidths are within 20% of the Doppler width a t 300 K (1.3 X 10-3 cm-I HWHM)

.

The peak signal s i z e corresponds t o a 250 LIV change in t h e 680 V across the electrodes f o r 0.5 mW absorbed power. The observed l i n e s may be i d e n t i f i e d from the l i n e - l i s t i n g given i n Table 1.

(4)

Figure 2. ( a ) The d i r e c t absorption spectrum and ( b ) the LOG spectrum of NO2 near 1609.9 cm-l. The variation of the 0% absorption l i n e i n the upper trace i s due t o the monochromator transmission and not the TDL output power. Total c e l l pressure i s = 1.2 t o r r .

4. LOG signal polarity and t h e NH3 spectrum

The NH3 spectra obtained near 1046 cm-l f o r c e l l pressures of 0.25 and 0.4 t o r r and discharge current = 0.2 mA are shown i n Figure 3. The l ine-centers may be iden- t i f i e d from Table l. For t h i s spectral scan, the TDL beam i r r a d i a t e d t h e negative glow region of the discharge, producing LOG signal S corresponding t o a decrease in the discharge current.

(5)

C7-432 JOURNAL DE PHYSIQUE

Table 1. The l i n e frequencies, t r a n s i t i o n s , and s t r e n g t h s of l i n e s observed i n t h e LOG s p e c t r a of NO2 and NH3. Information i s taken from reference 6 f o r NO2, and reference 7 f o r NH3.

Line Frequency T r a n s i t i o n

Molecule (cm-l )

Linestrength (cm. molecul e - l )

N02 1609.900 235 18 - 225 19 ( - 1 3.4 X I O - ~ ~

( v3 band) 1609.925 625 - 726 ( - 1 5.9 X I O - ~ O

1609.936 fj25 - 726 ( + ) 6.8 X ~ O - ~ O

1609.955 707 - 808 (-1 8.3 X ~ o - ~ O

1609.956 707 - 808 ( + ) 9.4 X ~ o - ~ O

tdH3 1046.3760 43 - 33 ( S ) 1.86 X 10-l'

! v2 band) 1046.3898 42 - ( S ) 1.45 X 10-l'

1046 -4026 a1 - 31 ( 5 ) 1.72 X 10-l'

1046.4075 40 - 30 ( 5 ) 3.60 X 10-l'

The design of t h e glow discharge c e l l allowed t h e LOG e f f e c t a t d i f f e r e n t d i s - charge regions t o be observed by changing t h e point of i r r a d i a t i o n of t h e TDL beam, which probed t h e discharge a t 90" t o t h e i n t e r e l e c t r o d e a x i s .

From a d e t a i l e d study of t h e NH3 discharge, several observations were made: ( i ) The LOG spectrum changes signal p o l a r i t y a t t h e negative glow; ( i i ) d i p s a t t h e l i n e - c e n t e r p o s i t i o n of s t r o n g l i n e s a r e seen f o r i r r a d i a t i o n a t t h e negative glow;

( i i i ) No e f f e c t s due t o t h e TDL beam s t r i k i n g e i t h e r cathode o r anode were seen;

( i v ) The phase ( s e t a t t h e lock-in a m p l i f i e r ) of a l l s i g n a l s a t t h e 400 Hz chopping frequency i s t h e same t o within a few degrees; ( v ) The a b s o l u t e signal s i z e of t h e negative glow s i g n a l s was t y p i c a l l y twice t h a t a t o t h e r discharge l o c a t i o n s , where t h e signal S have opposite p01 a r i t y ; ( v i ) A p o s i t i v e ( i n c r e a s e i n discharge c u r r e n t ) signal spectrum coul d be recorded by probing a region o u t s i de t h e i n t e r e l e c t r o d e region; ( v i i ) Lowering t h e c e l l pressure generally s e r v e s t o i n c r e a s e t h e negative (decrease i n discharge c u r r e n t ) signal s i z e a t t h e negative slow r e l a t i v e t o t h e p o s i t i v e signal s i z e near t h e anode.

We t h e r e f o r e i d e n t i f y two c o n t r i b u t i o n s t o t h e optogal vanic signal S observed i n t h e NH3 discharge: t h e f i r s t , corresponding t o an i n c r e a s e i n discharge c u r r e n t , is seen when probing any l o c a t i o n within t h e discharge o r even o u t s i d e t h e i n t e r - e l e c t r o d e region; t h e second, l a r g e r s i g n a l , corresponding t o a decrease i n d i s - charge c u r r e n t , i s seen only when probing a narrow region c l o s e t o t h e negative glow. These s i g n a l s w i l l be r e f e r r e d t o a s p o s i t i v e and negative s i g n a l s , respec- t i v e l y .

The negative s i g n a l s , which correspond t o a decrease i n discharge c u r r e n t , a r e believed t o be generated by t h e absorption of TDL r a d i a t i o n only i n a small region c l o s e t o t h e discharge a x i s which we i d e n t i f y with t h e negative glow. The dip seen i n Figure 3 ( b ] a t t h e c e n t e r of t h e 1046.4075 c p i l NH3 l i n e r e s u l t s from l o s s i n TDL power reaching t h e negative glow caused by absorption i n t h e gas volume between t h e entrance window and t h e discharge region. Not only does t h i s produce a drop i n t h e negative s i g n a l , but i t a1 so produces a p o s i t i v e signal c o n t r i b u t i o n a t l ine-center.

(6)

1

4

- -

-

1 I

Figure 3. A portion of the LOG spectrum of NH3 i n the 9.5 micron region, recorded by i r r a d i a t i n g the negative glow of a pure NH3 discharge a t ( a ) 0.25 t o r r and ( b ) 0.4 t o r r

.

A t lower c e l l pressures, t h i s e f f e c t i s reduced and the negative LOG signal a t the 1046.4075 cm-l l ine-center increases re1 a t i v e t o the neighboring l i n e s . In the low- pressure l i m i t the r e l a t i v e magnitudes of a l l four l i n e s should follow the line- strengths given i n Table 1. I t i s unlikely t h a t the mechanism responsible f o r signal production will show any measurable differences in cross-section f o r the d i f f e r e n t t r a n s i t i o n s involved. The c e l l used t o produce these spectra was similar t o t h a t used in our e a r l i e r study /5/ except the window t o discharge axis distance was greatly reduced, producing, as predicted 151, much stronger negative g1 ow sig- nals.

5. Frequency-modulated optogalvanic spectroscopy

The output frequencies of tunable diode l a s e r s are fine-tuned by changing (increasing) the injection current t o the TDL junction. Modulation of the TDL current may therefore be used t o frequency-modulate the TDL output. By using a 400 Hz sinusoidal modulation of the TDL, removing the mechanical chopper, and referencing the lock-in ampl i f i e r t o the modulation frequency, f i rst-harmonic detection of optogalvanic signals was demonstrated.

Figure 4 shows t h e f i r s t harmonic spectrum of the same NH3 quartet near 1046.4 cm-l a s t h a t recorded i n Figure 3, resulting in t h i s case from irradiation of the positive column.

The lower t r a c e of Figure 4, the first-harmonic LOG spectrum, r e s u l t s from laser- induced impedance changes a t the modulation frequency of 400 Hz. Following i t s traversal through the gas c e l l , the TDL beam f a l l s on a HgCdTe detector t o bllow the upper t r a c e of Figure 4, the first-harmonic (conventional) absorption spectrum, t o be recorded f o r comparison. Defining a modulation c o e f f i c i e n t m a s the r a t i o of ha1 f t h e peak-to-peak modulation ampl i tude (cm-l), a modulation c o e f f i c i e n t of m = 1.2 was used in t h i s work. T h i s i s about 75% the m value of 1.65 which produces the maximum first-harmonic signal size. Loss of resolution from modu- l a t i o n broadening i s therefore small i n these spectra.

(7)

JOURNAL DE PHYSIQUE

DIODE LASER FREQUENCY (cm-')

I I I I I

(a) Absorption Spectrum

F i g u r e 4. ( a ) The d i r e c t absorption and ( b ) t h e LOG spectrum o f NH3 near 1046.4 cm-l recorded u s i n g f i r s t harmonic detection. A l o c k - i n a m p l i f i e r time constant o f 1s i s used i n both cases.

A

6. Mechanisms producing I R LOG s i g n a l s

The i n f r a r e d r e s u l t s r e p o r t e d here show s t r i k i n g s i m i l a r i t i e s t o t h e v i s i b l e

1

(b) L O G Spectrum ' h

J I ; ' / ~

1 1

(8)

glow region. Indeed, f o r TDL i r r a d i a t i o n of NH3 a t 9.5 m, the absolute positive signal s i z e , expressed i n mV change in discharge voltage per mW absorbed l a s e r power, i s of a similar order of magnitude t o t h a t produced by dye l a s e r irradiation of Ip a t 0.59 m.

I t i s proposed t h a t the positive signals observed i n these infrared LOG studies r e s u l t from an increase in k i n e t i c energy of species located in the negative glow of the discharge. For i r r a d i a t i o n outside the interelectrode region o r away from the negative glow the energy absorbed as rovibrational quanta i s degraded t o trans- lational energy through V-T t r a n s f e r i n a time f a s t compared t o the bulk energy t r a n s f e r time t o the discharge region. The positive signal S produced therefore r e s u l t from an increase in the translation energy (temperature) of species in the negative glow. However, when d i r e c t l y i r r a d i a t i n g t h i s region, vibrational l y excited species will be produced i n the discharge, the mean concentration depending on the relaxation times involved. I t i s believed t h a t the neqative signals observed r e s u l t from an increase in ( p r i n c i p a l l y ) the vibrational energy of species in the negative glow.

Electrons a r e l o s t in a glow discharge through negative ion formation (attach- ment), electron diffusion, mutual repulsion and recombination. Electron attachment

~ n d recombination are particr1l arly important in t h e rlegative g1 ow, perturbation of t h i s region, we propose, being crucial t o the generation of the LOG signal. In t h e reeion comprising the negative glow, the cathode dark space, and the cathode glow, the voltage gradient, the net charge density, and the electron and ion den- s i t y a l l have t h e i r maximum values. The slow electrons entering the negative glow produce t h i S luminous region by undergoing numerous excitation col l i s i ons which leave the electrons with very low k i n e t i c energies. In t h e negative glow the corn- bination of the high electron and ion densities and the low e l e c t r i c f i e l d allows recombination and electron attachment reactions t o be important processes in t h i s region of the discharge, even though i n the low current ( < l m A ) discharges employed i n t h i s study, ambipolar diffusion may dominate the overall l o s s processes f o r charged species. I t i s l i k e l y t h a t the positive signals observed r e s u l t from the reduced efficiency, with increasing gas kinetic temperature, of ion-ion or elec- tron-ion recombination processes. Another possible cause of the positive signal S

which were observed i S the increased efficiency with increasing electron temperature of electron impact-ionization. This mechanism suggests t h a t , in a similar manner t o t h a t proposed1* f o r atomic systems, the energy supplied t o the molecular system by i r r a d i a t i o n i s ultimately transferred t o the electron gas through the numerous electron col l isions. However, f o r i r r a d i a t i o n outside the discharge region, the i n i t i a l t r a n s f e r of energy must proceed via intermolecular col l i sions.

The negative signals which correspond t o an increase i n the discharge impedance may r e s u l t from a large enhancement in the electron attachement r a t e when the negative g1 ow region i s i r r a d i a t e d by the resonant infrared power. Electron attach- ment t o molecules, which i s an important process occuring i n discharges of electro- negative gases l i k e NO?, 12, and NH3, i s known t o be p a r t i c u l a r l y sensitive t o thermal effects.. The attachment cross-sections may increase or decrease with in- creasing electron energy depending on the mean electron energy, which may be l e s s than one eV a t t h e negative glow or a few eV i n the positive column of low-current glow discharges. For molecules, the dependence on internal vibrational energy content may be large.

In order t o f u r t h e r identify the two, opposite polarity, contributions t o the LOG signals, the dependence on chopping frequency of the LOG signals was investi- gated. To do t h i s , the TDL was tuned t o the center of the 1046.376 cm-' NH3 l i n e . Then, w i t h the lock-in amplifier phase s e t t i n g re-optimized f o r each chopping fre- quency, the signal s i z e variation a t the negative glow was measured i n the range 0.1-5 KHz using a variable-speed chopper. These measurements were repeated f o r TDL i r r a d i a t i o n of the positive column, The r e s u l t s a r e shown i n Figure 5.

(9)

JOURNAL D€ PHYSIQUE

A. NEGATIVE GLOW IRRADIATION

0 P = 0.4 torr P = 0.5 torr

0.0

0 1 2 3 4 5

CHOPPING FREQUENCY (kHz)

B. POSITIVE COLUMN IRRADIATION

I l

-

\

0 P = 0.4 torr

I

@ P = 0.5 torr

I

0.0

-

0 1 2 3 4 5

CHOPPING FREQUENCY (kHz)

Figure 5. The v a r i a t i o n with chopping frequency of t h e LOG signal i n NH3 a t 1046.376 cm-' r e s u l t i n g from i r r a d i a t i o n of ( A ) t h e negative glow and ( B ) t h e p o s i t i v e column region of a low-pressure ammonia discharge. Note t h a t while t h e s i g n a l s a r e i n each c a s e normalized t o t h e low chopping frequency signal s i z e , t h e s i g n a l S a r e of o p p o s i t e p01 a r i ty.

I t i S immediately evident t h a t i r r a d i a t i o n of t h e two regions produces LOG s i g n a l s not only of d i f f e r e n t s i g n but a l s o of d i f f e r e n t time evolution. Further- more, t h e f a l l - o f f with chopping frequency of t h e p o s i t i v e column s i g n a l , and i t s v a r i a t i o n with gas pressure, i s i n semi-quantative agreement with t h e known vi- b r a t i o n a l r e l a x a t i o n r a t e s of t h e NH3 molecule.

The LOG signal a t t h e negative glow is seen i n Figure 5 t o f a l l o f f much f a s t e r with chopping frequency and show a much l e s s pronounced dependence on gas pressure. Signal generation from t h e negative g1 ow probe i S t h e r e f o r e a s s o c i a t e d with a time-constant of a few hundred microseconds.

Much work remains t o unambiguously i d e n t i f y t h e mechanisms responsible f o r t h e observed optogal vanic e f f e c t i n molecules e x c i t e d with IR r a d i a t i o n . How- ever, once such an i d e n t i f i c a t i o n i s made, t h e s e same mechanisms may themselves be s t u d i e d q u a n t i t a t i v e l y . That i S , molecular optogal vanic spectroscopy may one day f i n d a p p l i c a t i o n t o t h e measurement o f , f o r example, i o n i z a t i o n , attachment, detachment, recombi n a t i on, and re1 axation r a t e s .

Acknowledgement

The research described i n t h i s paper was performed a t t h e J e t Propulsion Laboratory, C a l i f o r n i a I n s t i t u t e of Technoloqy, under c o n t r a c t with t h e National Aeronautics and Space Administration.

References

1. SCHENCK, P. K . , MALLARD, W . G., TRAVIS, J . C . , and SMYTH, K . C., J . Chem Phys.

69 (1978) 5147.

(10)

4. CARSWELL, A. I., and MOOD, J. J., J. ADD^. Phvs.38 (1967) 3028.

5. WEBSTER, C. R., and MENZIES, R. T., J. Chem. Phvs.8, (1983) 2121.

6. CAMY-PEYRET, C., FLAUD, J. M., PERRIN, A., and RA0,T. N., J. Mol. Spectr.y.

95 (1982) 72.

7. TlO?HMAN, L. S., Apu1. nnt. 20 (1981) 791.

8. RETTNER, C. T., WEBSTER, C.T., and ZARE, R. N., J. Phys. Chem. - 85 (1981) 1105.

9. DEMUYNCK, C., and DESTOMRES, J. L., IEEE J. Ouant. Electron. 17 (1981) 575.

10. RETEROV, I. M., and FATEYEV, N. V., Opt. Commun. 40 (1982) 425;

11. WEBSTER, C. R., McDERMID, I. S., and RETTNER, C . T . , J. Chem. Phvs. - 78 (1983) 646.

12. HANER, D. A., WEBSTER, C. R., FLAMANT, P. H., and McDERMID, I. S., Chem. Phys.

L e t t . 96 (1983) 302.

13. KELLER-. A., and ZALEWSKI, E. F., Appl. Opt.

19

(1980) 3301.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to