• Aucun résultat trouvé

GROUND STATE FLUCTUATIONS IN POLARIZED 3He

N/A
N/A
Protected

Academic year: 2021

Partager "GROUND STATE FLUCTUATIONS IN POLARIZED 3He"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00220171

https://hal.archives-ouvertes.fr/jpa-00220171

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GROUND STATE FLUCTUATIONS IN POLARIZED 3He

M. Ristig, P. Lam, H. Nollert

To cite this version:

M. Ristig, P. Lam, H. Nollert. GROUND STATE FLUCTUATIONS IN POLARIZED 3He. Journal de Physique Colloques, 1980, 41 (C7), pp.C7-213-C7-221. �10.1051/jphyscol:1980734�. �jpa-00220171�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ6ment au n o 7 , Tome 41, juiZZet 1980, page C 7 - 2 1 3

GROUND STATE FLUCTUATIONS IN POLARIZED 3 ~ e M.L. R i s t i g , P.M. Lam and H.P. Nollert

I n s t i t u t fiir Theoretische Physik, Universittit zu Kisln, 5 K6Zn 41, R.F.A.

Resume.- On adopte une approche variationnelle pour decrire l e s fluctuations de densite de masse e t de spin dans 3He liquide. On represente d'une facon approchee l ' e t a t fondamental par une fonction d'onde de type Jastrow-Slater qui i n c l u t l e s e f f e t s de corr6lations s p a t i a l e s . On emploie- l a thgorie HNC nouvel lement developpee pour analyser l e s fonctions de s t r u c t u r e (qui comportent une p a r t i e dependant du spin) l e s fonctions de renversement de spin, l a d i s t r i b u t i o n des impulsions e t l a matrice-densit6 a u n corps. On presente des r e s u l t a t s numeriques r e l a t i f s ?I ces quantites pour l e liquide 3He non polarise e t complStement polarise. L ' e f f e t de l a polarisation sur l a s t r u c t u r e e t l a fonction de d i s t r i b u t i o n radiale e s t 6tudi@ en d e t a i l . On presente une estimation numerique prcl iminaire de 1 'equation d ' e t a t magnetique.

Abstract.- The a r i a t i o n a l approach i s adopted t o describe mass- and spin-density fluctuations in po- larized 1 iquid He. The ground s t a t e i s approximated by a s u i t a b l e Jastrow-Slater wave function which

Y

incorporates the e f f e c t s of s p a t i a l correlations. The newly developed Fermi-hypernetted chain theory i s employed t o analyse the associated theoretical p a r t i c l e

-

and spin-dependent s t r u c t u r e functions, spin-fl i p functions, momentum d i s t r i b u t i o n and one-body density matrix. Numerical r e s u l t s on these q u a n t i t i e s are presented f o r l i q u i d 3 ~ e in the unpolarized and completely polarized s t a t e , The e f f e c t of polarization on the structure- and radial d i s t r i b u t i o n function i s studied i n d e t a i l , A preli'mf- nary numerical estimate i s presented f o r t h e magnetic equatl'on of s t a t e ,

1. Introduction.- A macroscopic ensemble of ' 3 He- atoms seems t o display a f u l l arsenal of i n t e r e s t - ing many-body quantum e f f e c t s . The discovery of t h e spin-ordering i n solid He a t low temperatures /1, 3 2/ and the production of t h e spin-polarized l i q u i d phase /3/ pose a major challenge t o existing many- body theories /4,5/.

3 3

I f we could turn off t h e He- He interaction the atoms - being fermions of spin 1/2

-

would form a f r e e Fermi gas. Then, applying an external magne- t i c f i e l d ( i n z-direction) t h e ground s t a t e of A atoms would be

where k+ i s the Fermi wave number of a spin-up

(-down) atom corresponding t o t h e density p* = (6r2)-'k$ the t o t a l density of t h e system, p =

,+

r p-, being fixed. The operators al+ + , at c r e a t e , respectively, a fermion i n the s i n g l e par- $i

t i c l e o r b i t a l with momentum R1 and Ilk and spin-up and spin-down out of the bare vacuum $o. For s t a t e ( 1 ) the magnetization M of t h e system a t tempera- t u r e T = 0 i s a good quantum number,

the vector 2 being t h e t o t a l spin operator of A p a r t i c l e s , 2 = tzi. The s t a t e 4 displays only ki- nematic correlations due t o t h e exclusion princi- ple. This ideal gas wave function i s of course en- t i r e l y inadequate f o r describing t h e actual behav- i o r of t h e polarized l i q u i d phase.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980734

(3)

JOURNAL DE PHYSIQUE

To i n c o r p o r a t e t h e e f f e c t s o f dynamical corre- l a t i o n s induced by t h e 3 ~ e - 3 ~ e i n t e r a c t i o n we must g e n e r a l i z e ansatz ( 1 ) t o

The v a r i a t i o n a l approach /6-10/ t o t h e problem o f - f e r s a reasonable f i r s t choice o f c o r r e l a t i o n op- e r a t o r ,

We r e a l i z e t h a t t h i s simple p i c t u r e m i g h t be s t i l l t o o crude t o p e r m i t an adequate q u a n t i t a t i v e de- s c r i p t i o n o f t h e p o l a r i z e d phase. It seems t o be a p p r o p r i a t e t o i n c l u d e e x p l i c i t l y spin-dependent e f f e c t s i n t h e c o r r e l a t i o n o p e r a t o r by adopting the

r i c h e r form F =[F ri , G

-

J 1. Such c o r r e l a - ~ ~ ~ ~ ~ ~ ~ ~

t i o n operators have been s t u d i e d f o r t h e unpolar- i z e d f l u i d i n a number o f r e c e n t p u b l i c a t i o n s /11, 12/. However, a t t h e present e x p l o r a t o r y stage i t i s advisable t o begin w i t h t h e modest ansatz (4) p r o v i d i n g a u s e f u l f i r s t s t e p i n t h e r i g h t d i r e c - t i o n . Equations (2) a r e a l s o v a l i d f o r t h e more complex Jastrow-Sl a t e r wave f u n c t l o n (3), ( 4 ) since t h e o p e r a t o r F commutes w i t h t h e sptn-operator _S.

I n t h i s c o n t r i b u t i o n we a r e i n t e r e s t e d t n s t u d y i n g t h e l o c a l c o r r e l a t i o n s between t h e mass- and s p i n - d e n s i t y fluctuati'ons associated w i t h a s t a t e o f form (3), (4). These fl uctua Tons a r e de-

A:

s c r i b e d by t h e s c a l a r ope a t o r

a

p 4 = i r i k ' ~ i and t h e v e c t o r o p e r a t o r of

.

i ei-k'rlpi ,'respectively.

The l a t t e r q u a n t i t y m& bbk conveniently represent- ed by t h e l o n g i t u d i n a l component p Z and t h e t r a n s - verse components pX, J o r p k f = 2-G2(pt t i p i ) .

!5 k

The c o r r e l a t i o n s b e t w e e h h e above"entit?es s h a l l be analysed w i t h i n t h e hypernetted-chain (HNC) approach t o v a r i a t i o n a l many-body t h e o r y 113-16/. A numerical e v a l u a t i o n o f the s p a t i a l shape o f these c o r r e l a t i o n s i s based on t h e S c h i f f - V e r l e t form o f Jastrow f a c t o r f ( r ) which has been f r e q u e n t l y employed f o r d e s c r i b i n g unpolarized l i q u i d He /17,15,16,18/. 3 These r e s u l t s a r e u t i l - i z e d t o approximate t h e magnetic equation o f s t a t e f o r t h e p o l a r i z e d phase. We s h a l l present p r e l i m i n a r y numerical estimates o f t h i s f u n c t i o n which r e l a t e s t h e i n t e r n a l energy t o t h e magneti- z a t i o n M.

Further, t h e hypernetted-chain method i s a l s o adopted t o e x p l o r e t h e one-body d e n s i t y m a t r i x as- s o c i a t e d w i t h t h e c o r r e l a t e d s t a t e (3),(4). The m a t r i x i s given by t h e F o u r i e r i n v e r s e o f t h e ex- p e c t a t i o n value o f t h e occupation number opera-

t o r a{oaka, u = + o r +, w i t h respect t o t h e s t a t e

$ ( t i = <$I$> ),

To d e r i v e a f i r s t numerical estimate o f both func- t i o n s we f o l l o w t h e procedure described i n Ref.

/18/. Results s h a l l be presented o n l y i n t h e l i m i t - i n g cases M = 0 and M = A.

Sec. 2 provides t h e formal frame f o r d e s c r i b - i n g t h e l o c a l d e n s i t y c o r r e l a t i o n s . We e x p l o i t t h i s i n f o r m a t i o n t o d e r i v e an estimate on t h e magnetic equation o f s t a t e . The modern HNC techniques t o evaluate various e x p e c t a t i o n values a r e sketched i n Sec. 3. Numerical r e s u l t s on t h e s t r u c t u r e func- t i o n s , d i s t r i b u t i o n f u n c t i o n s , occupation p r o b a b i l - i t i e s and r e l a t e d q u a n t i t i e s a r e presented and d i s - cussed i n Sec. 4.

2. S t r u c t u r e - and d i s t r i b u t i o n functions.- The c o r r e l a t i o n s between t h e mass-density f l u c t u a t i o n s present i n t h e t r i a l s t a t e Y o f p o l a r i z e d 3 ~ e a r e described by t h e s t a t i c l i q u i d s t r u c t u r e f u n c t i o n

S i m i l a r l y , t h e s p i n - s p i n c o r r e l a t i o n t e n s o r

aB 1 a 6

S ( k ) = m < Y I ~ P- / I > , ,k k

a,B = x,y,z, represents t h e c o r r e l a t i o n s between t h e s p i n - d e n s i t y f l u c t u a t i o n s , For t h e ansatz (3), (4) t h e t e n s o r ( 7 ) i s completely c h a r a c t e r i z e d by t h e l o n g i t u d i n a l component a = B = z and t h e t r a n s - verse component a = B = x ( o r a = B = y). Both f u n c t i o n s a r e normalized t o u n i t y as k + ". I n s t e a d o f working w i t h t h e element sXY(k) we may equiva- l e n t l y employ t h e s p i n - f l i p f u n c t i o n

Q u a n t i t y ( 8 ) approaches t h e value 1 - A as k +

where 0 5 A -< 1 i s t h e p o l a r i z a t i o n parameter A = M/A. A t f i n i t e temperatures t h e f u n c t i o n s s Z Z ( k ) and s X X ( k ) a r e r e l a t e d , r e s p e c t i v e l y , t o the s t a t i c magnetic s u s c e p t i b i l i t y x and t o t h e t r a n s v e r s e suscepti b i 1 i ty /19/. More complex c o r r e l a t i o n s among t h e d e n s i t y f l u c t u a t i o n s a r e represented by s t r u c t u r e f u n c t i o n s o f h i g h e r order, f o r example by,

(4)

These q u a n t i t i e s a r e usually evaluated by the con- vol ution- o r superposition approximation /8,20/.

Fourier transforming t h e functions (6)-(9) we a r r i v e , respectively, a t t h e associated radial d i s - t r i bution function g ( r ) , the spin-dependent d i s t r i - bution functions y Z Z ( r ) , g X X ( r ) , the s p i n - f l i p dis- t r i b u t i o n function g + ( r ) and t h e three-body d i s t r i - bution function g(_'lr12913). For non-interacting fermions these functions a r e given by simple analy- t i c expressions,

where 1 (x) i s t h e Slater-exchange function 1 (x) = 3x-3 ( s i n x - x cos x ) . The liquid s t r u c t u r e func- t i o n of non-interacting fermions then follows as

with

and unity otherwise.

To evaluate t h e d i s t r i b u t i o n functions f o r a s p a t i a l l y correlated wave function such as ansatz ( 3 ) , ( 4 ) we must r e s o r t t o t h e powerful tools pro- vided by HNC theory. These procedures will be out- lined in the following section.

Based on ansatz ( 3 ) , ( 4 ) we may derive a f i r s t estimate of the internal energy as a function of magnetization. I t i s known'that the expectation value of the energy with respect t o the wave func- t i o n (3),(4) can be written in the so-called Clark- Westhaus form 1151,

involving only the d i s t r i b u t i o n functions g ( r ) and g ( l l ,r,,t-,) . The e f f e c t i v e potentials a r e given by

*

h2 2 -2

v ( r ) = v ( r ) + - ( 1 f ) f ( r ) , m

where the potential v ( r ) represents t h e bare in- teratomic interaction.

3. Hypernetted-chain approximation.- The expecta- tion values ( 5 ) - ( 9 ) with respect t o the Jastrow- S l a t e r wave function (3),(4) may be analysed by using standard c l u s t e r developments and Ursell- Mayer diagrammatic techniques /15,20/. Applying re- cently developed HNC treatments of Fermi systems we a r e then able t o achieve p a r t i a l summations of these expansions t o any order in the correlation f a c t o r f ( r ) - 1 or f ( r ) - 1 and t h e exchange f a c t o r s 2 1 (rk*)

To get a preliminary estimate of quantity (6) we may employ a p a r t i c u l a r l y simple version of HNC theory suited f o r t h e s t a t i c s t r u c t u r e function /21,16/. This procedure t r e a t s approximately the exchange portion

+ *

O appearing in expression (6) by an e f f e c t i v e correlation factor.Kf2(r. A .). The

1g B 1J

multi-dimensional integral thus generated from eq.

(6) may now be viewed formally a s an expectation- value of A bosons described by t h e symmetric wave functi0n:n.f ( r . A . ) f B ( r . ) . Appropriate construction

19 1 J 1 J

of t h e e f f e c t i v e exchange correlation f a c t o r f B ( r ) leads t o the e x p l i c i t expression /21,15/

Thereupon, we may evaluate t h e HNC approximant of the s t r u c t u r e function S(k) by solving the time- honored s e t of (BHNC) equations f o r the radial d i s t r i b u t i o n function of a Bose f l u i d /8/,

which involves t h e nodal portion G(r) and i t s Fourier inverse G(k) suitably normalized.

I f we adopt t h e superposition approximation 181 f o r the l a s t term in eq. ( 1 3 ) ,

the BHNC solution g ( r ) of eq. (16) provides us with a simple estimate of t h e magnetic equation of s t a t e .

More sophisticated approximations f o r the s t r u c t u r e function S(k) as well as f o r the other

(5)

J O U R N A L D E PHYSIQUE

q u a n t i t i e s i n q u e s t i o n may be d e r i v e d by employing t h e newly developed- FHNC-schemes /13,14,22/. They i n v o l v e c e r t a i n s e t s o f FHNC equations which con- s t i t u t e t h e Fermi analogs o f HNC equations such as eqs. (16). The e x p l i c i t form o f these equations f o r t h e unpol a r i zed (and completely p o l a r i z e d ) s t a t e o f l i q u i d He may be taken from Ref. /15/. T h e i r gen- 3 e r a l i z a t i o n t o d e s c r i b e a l s o p a r t i a l l y p o l a r i z e d s t a t e s v i a eqs. ( 3 ) ,(4) i s s t r a i g h t f o r w a r d .

To e x p l a i n t h e main f e a t u r e s we sketch one FHNC-procedure which determines f u n c t i o n s (6)-(8) and t h e corresponding d i s t r i b u t i o n f u n c t i o n s . We r e s t r i c t ourselves t o t h e l i m i t i n g cases A = 0 and A = 1. F o r completely p o l a r i z e d fermion m a t t e r t h e f o l l o w i n g s t r u c t u r a l decomposition holds f o r t h e r a d i a l d i s t r i b u t i o n f u n c t i o n 1151

w i t h v = 1 and p = v(6m2)-lk;. The c o n s t i t u e n t s Gkl(r) represent d i f f e r i n g nodal p o r t i o n s , t h e i r i n t e r p r e t a t i o n and e x p l i c i t r e p r e s e n t a t i o n may be taken from Ref. /15/. The q u a n t i t y E ( r ) c o l l e c t s c o n t r i b u t i o n s which i n v o l v e elementary diagrams.

A complementary s t r u c t u r a l study may be per- formed f o r t h e l i q u i d s t r u c t u r e f u n c t i o n y i e l d i n g I 1 5 1

I . . . } = 1 + [xl1(k) + Gll(k)] [l + X2,(k)] . (19)

The q u a n t i t i e s Xi ( k ) are .non-nodal p o r t i o n s which correspond, r e s p e c t i v e l y , t o t h e nodal pieces G. . ( r ) and t h e associated F o u r i e r i n v e r s e Gi ( k ) .

1 J

A l l these f u n c t i o n s a r e r e l a t e d by a s e t o f 2 x 4 FHNC-equations o f t h e f u n c t i o n a l form

Eqs. (20) c o n t a i n t h e Jastrow f a c t o r f ( r ) and t h e exchange f u n c t i o n l ( r k F ) as i n p u t . The e x p l i c i t ex- pressions o f eqs. (20) a r e given i n Ref. /15/. Sys- t e m a t i c approximation schemes a r e a v a i l a b l e t o

s o l v e these equations. Since sZZ(k) = S(k) and

~ + ( k ) = 0 a t A = 1 t h e FHNC s o l u t i o n s o f s e t (20) determine t h e s p a t i a l behavior o f t h e c o r r e l a t i o n s

( 6 ) - ( 8 ) compl e t e l y .

For u n p o l a r i z e d l i q u i d 3 ~ e ( A = 0) we must s e t v = 2 t o determine t h e d i s t r i b u t i o n f u n c t i o n from eq. (18). In t h i s case t h e spin-dependent f u n c t i o n s gZZ(r) = g X X ( r ) d i f f e r from f u n c t i o n g ( r ) and a r e given by

w i t h ~ ' ( r ) i n v o l v i n g elementary c o n t r i b u t i o n s . I n t h e general case 0 < A < 1 we may proceed i n t h e same f a s h i o n provided we t a k e account o f a number o f a d d i t i o n a l c h a r a c t e r i s t i c elements Xi and G and e n l a r g e a p p r o p r i a t e l y t h e s e t of FHNC

i j

equations (20). For p a r t i a l l y p o l a r i z e d matter t h e f u n c t i o n s S(k), sZZ(k) and sXX(k) d i f f e r from each o t h e r . I n t h i s case t h e s p i n - f l i p f u n c t i o n s ~ + ( k ) and g+(r) f u r n i s h an a d d i t i o n a l p i e c e o f informa- t i o n on t h e spin-behavior o f t h e He-system. A 3 s t r a i g h t f o r w a r d c l u s t e r development o f t h e expecta- t i o n value (8) y i e l d s an expansion which may be r e - presented , i n low c l u s t e r order, by t h e graphs o f F i g . 1.

F i g . 1.- Graphic r e p r e s e n t a t i o n o f t h e s p i n - f l i p f u n c t i o n gi(r) i n l e a d i n g c 7 u s t e r order.

Here, t h e s t r a i g h t o r i e n t e d l i n e s d e p i c t t h e ex- P +

change f u n c t i o n s - 4 ( r k + ) and a dashed l i n e repre-

P 2

sents t h e dynamical element f ( r ) - 1 . I t can be e a s i l y recognized t h a t f o r wave numbers k < k+ - k_

t h e F o u r i e r i n v e r s e o f t h e f o u r t h ( f i f t h ) diagram reduces t o t h e F o u r i e r i n v e r s e o f t h e second ( t h i r d ) graph, bht w i t h o p p o s i t e sign. The same p r o p e r t y

(6)

holds also in higher c l u s t e r order. We may there- fore conclude

The behavior of the s p i n - f l i p function f o r wave num- bers k > k+ + k- becomes also simple. In the l i m i t

A + 1, k- + 0 we need only t h e portion

where q u a n t i t i e s X33 and G3, have t o be calculated a t A = 1. The r e s u l t (23) may be expressed i n _k- space by t h e i n t e r e s t i n g r e l a t i o n

f o r k > k+ + k- which provides a d i r e c t physical i n t e r p r e t a t i o n of the non-nodal function X3,.

4. Numerical r e s u l t s and discussion.- To learn some- thing about the quantitative e f f e c t s of spin-orien- t a t i ~ n in polarized l i q u i d He we have performed 3 calculations on the structure-, distribution- and s p i n - f l i p functions a s well a s on the energy expec- t a t i o n value, t h e one-body density matrix and the occupation probability of single p a r t i c l e o r b i t a l s . The calculations a r e based on the model wave func- tion (3) ,(4) where we adopt Schiff-Yerlet's choice of correlation function /17/,

l a 5 f ( r ) = exp [ - -(-) ]

2 r (25)

with a = 2.888 8 a t a l l values of polarization and p a r t i c l e density considered. No attempt has been made t o employ t h e optimal value of the parameter a a t each density I91 and magnetization. We have solved eqs. (16) t o determine q u a n t i t i e s S(k) and g ( r ) . The BHNC r e s u l t s are then used in eq. (13) in conjunction with t h e additional approximation (17) t o estimate t h e magnetic equation of s t a t e . In eq.

(13) the interatomic interaction v ( r ) i s assumed t o be described by a Lennard-Jones potential

.

A t A = 0 , l the s t r u c t u r e function S(k) and d i s t r i b u t i o n function g ( r ) have been also calculat- ed by adopting one version of FHNC approximation scheme which i s based on eqs. (19) and (20). This approximation has been called FHNC-1-2 and i s de- scribed in Refs. /11,15,18/. We also present, a t A = 0,1, FHNC-1-2 r e s u l t s on t h e functions s Z Z ( k ) ,

~ + ( k ) / ( l - A ) , the one-body density matrix and rela-

ted q u a n t i t i e s such a s t h e q u a s i p a r t i c l e strength.

Hoflever, t h e numerical data presented should be considered a s preliminary r e s u l t s . What we need i s a careful and detailed comparison with r e s u l t s of d i f f e r i n g FHNC approximation procedures I151 and of Fenni Monte Carlo calculations.

Table 1 l i s t s our numerical r e s u l t s on the ra- dial d i s t r i b u t i o n function and t h e liquid s t r u c t u r e Table 1

Table 1.- Theoretical d i s t r i b u t i o n function g ( r ) and s t r u c t u r e function S(k) f o r unpolarized l i q u i d 3 ~ e a t density p = 0.0142 8-3, i n BHNC-approxima- tion, eq. (16).

function f o r the unpolarized s t a t e a t density P = 0.0142 8-3, in BHNC approximation. The variation of these functions with respect t o t h e polariza- tion A a t denstiy P = 0.0142 8-3 i s depicted i n Figs. 2 and 3. W i t h increasing polarization t h e s p a t i a l correlations become more repulsive a t re- l a t i v e distances r % 2.6 8. Simultaneously, t h e

(7)

JOURNAL DE P H Y S I Q U E

006 I I I >

1 (26)

f SA=o(k) - SA(k) 1 d_k = 0 (2s) 3~

which f o l l o w from t h e p r o p e r t i e s S(0) = 0 and g(0) = 0. Eqs. (26) a r e n u m e r i c a l l y w e l l f u l f i l l e d - by o u r approximate BHNC-resul t s , Figs. 2,3. The

dependence o f f u n c t i o n g k o ( r ) - gk ,(r) on t h e p a r t i c l e d e n s i t y v i s represented i n F i g . 4. AS

I I I I

-002 -

- L

1 I I I - -

2 3 4 5 m2 8 004

-

r I W l - -

m 9 Fig. 2.- I n f l u e n c e o f p o l a r i z a t i o n A on t h e r a d i a l

d i s t r i b u t i o n f u n c t i o n g ( r ) a t dens& P = 0.01428-~, i n BHNC approximation.

- 002 -

Fig. 3.- Same as Fig. 2, b u t f o r t h e s t r u c t u r e f u n c t i o n S ( k ) . Dashed curve (NIF) represents r e - s u l t f o r n o n - i n t e r a c t i n g He-atoms. 3

s p i n - f l i pped He-atoms generate an increased 1 oca- 3 1 iz a t i o n a t c 4 8. However, t h e magnitude o f t h i s displacement e f f e c t i s q u i t e small being < 0.05 compared w i t h u n i t y . The v a r i a t i o n of t h e s t r u c - t u r e f u n c t i o n S(k) w i t h p o l a r i z a t i o n A i s o f com- p a r a b l e magnitude. I t develops a d i s t i n c t peak a t wave numbers k c 1.8 8-I. T h i s behavior i s e n t i r e l y caused by t h e dynainical c o r r e l a t i o n s f ( r ) s i n c e i t i s absent i n t h e case o f n o n - i n t e r a c t i n g fermions (curve NIF). The appearance o f p o s i t i v e and nega- t i v e r e g i o n s i n b o t h f u n c t i o n s i s connected w i t h t h e sum r u l e s

F i g . 4.- Density dependence o f t h e p o l a r i z a t i o n e f - f e c t on t h e r a d i a l d i s t r i b u t i o n f u n c t i o n , i n BHNC- approximation.

expected we f i n d no change i n t h e r e g i o n o f <trong r e p u l s i o n . The s h i f t a t l a r g e distances r may be e x p l a i n e d by t h e decrease o f t h e l e n g t h v - ' I 3 which provides t h e a p p r o p r i a t e s c a l e i n which d i s - tances should be measured.

P r e l i m i n a r y r e s u l t s on t h e energy e x p e c t a t i o n v a l u e f o r t h e u n p o l a r i z e d and completely p o l a r i z e d s t a t e a t t h r e e d i f f e r i n g d e n s i t i e s a r e l i s t e d i n t a b l e 2. The r e s u l t s a t A = 0 may be b e s t compared

Table 2

Table 2.- Estimate o f energy p e r p a r t i c l e o f ' ~ e i n u n p o l a r i z e d and completely p o l a r i z e d s t a i e a t d i f f e r i n g d e n s i t i e s , i n BHNC-approximation.

w i t h FHNC data r e p o r t e d i n Ref. /16/. The ener- gies, i .e. q u a n t i t y

E E ! ~ ~

g i v e n i n F i g . 25 o f Ref.

(8)

1161 are g e n e r a l l y Q 0.3K - 0.4K l e s s a t t r a c t i v e than t h e BHNC r e s u l t s g i v e n here. Fig. 5 represents t h e spin-dependent e f f e c t s on the energy p e r p a r t i - c l e as a f u n c t i o n o f p o l a r i z a t i o n . I n BHNC approxi-

t r a r y r e s u l t s .

Our r e s u l t s on t h e l o n g i t u d i n a l and t r a n s v e r s e q u a n t i t i e s s Z Z ( k ) and st(k) a r e represented i n Figs.

6,7. The c a l c u l a t i o n s have been done a t A = 0 and

F i g . 5.- Dependence o f energy p e r p a r t i c l e o f He- 3 m a t t e r on p o l a r i z a t i o n o, i n BHNC-approximation.

The n o n - i n t e r a c t i n g system i s described by curve NIF.

mation we f i n d t h a t t h e u n p o l a r i z e d s t a t e i s pre- f e r r e d , t h e g a i n i n energy being t y p i c a l l y o f t h e o r d e r 0.2K - 0.3K compared t o t h e energy per p a r t i - c l e i n t h e completely p o l a r i z e d s t a t e . A p a r a b o l i c f i t t o q u a n t i t y E(A) - E(0) a t A = 0 gives a crude e s t i m a t e o f t h e s t a t i c magnetic s u s c e p t i b i l i t y x.

Table 3

Table 3.- Estimate o f s t a t i c s u s c e p t i b i l i t y x o f l i q u i d He a t d i f f e r i n g d e n s i t i e s 3 P, compared w i t h t h e suscepti b i 1 i t y xo o f independent He-atoms 3 .

The e s t i m a t e agrees s u r p r i s i n g l y w e l l w i t h t h e ex- perimental data 123,241. We stress,however, t h a t a t present t h e t h e o r e t i c a l r e s u l t s on t h e magnetic equation o f s t a t e (13) should be taken w i t h g r e a t c a u t i o n s i n c e i t c o u l d happen t h a t improved FHNC- c a l c u l a t i o n s l e a d t o q u i t e d i f f e r e n t , even con-

Fig. 6.- Spin-dependent s t r u c t u r e f u n c t i o n o f He 3 i n t h e u n p o l a r i z e d and completely p o l a r i z e d s t a t e a t d e n s i t y 0 = 0.0142 g-3, i n FHNC-1-2 approxima- t i o n .

Fig. 7.- Same as Fig. 6, b u t f o r t h e s p i n - f l i p f u n c t i o n s + ( k ) / j l - A ) .

A = 1 o n l y . I n t h e l a t t e r case we f i n d t h a t t h e am- p l i t u d e o f t h e s p i n - f l i p f u n c t i o n ~ + ( k ) / ( l - A ) i s s t r o n g l y enhanced a t t h e Fermi surface. Unfortun-

15

(9)

JOURNAL DE PHYSIQUE

a t e l y , t h e FHNC-1-2 approximation adopted f o r these q u a n t i t i e s provides o n l y a rough estimate o f ex- p r e s s i o n (21), the corresponding s t r u c t u r e f u n c t i o n SZZ(k) and t h e s p i n - f l i p f u n c t i o n a t A 1. A quan- t i t a t i v e l y more r e l i a b l e c a l c u l a t i o n a t A = 1 and f o r t h e general case A < 1 should be based on more s o p h i s t i c a t e d FHNC-approximations. Such c a l c u l a - t i o n s a r e i n progress.

We conclude our numerical a n a l y s i s o f t h e po- l a r i z e d system w i t h a b r i e f c o l l e c t i o n o f FHNC-1-2 r e s u l t s on t h e momentum d i s t r i b u t i o n ( 5 ) and t h e associated d e n s i t y m a t r i x a t A = 1. These q u a n t i t i e s are c a l c u l ated by employing t h e s t r u c t u r a l r e s u l t s /20,18/

The c o n s t i t u e n t s appearing i n eqs. (27), (28) a r e analyzed i n d e t a i l i n Ref. /20/. They a r e

evaluated by f o l l o w i n g t h e FHNC-1-2 t r e a t n ~ e n t o f Ref. /18/. Tables 4,5 c o l l e c t o u r t h e o r e t i c a l re-

Table 4

Table 4.- S t r e n g t h f a c t o r n, f r a c t i o n o f p a r t i c l e s i n s i d e Fermi sea nc, q u a n t i t y M(kF) and s t r e n g t h o f t h e q u a s i p a r t i c l e p o l e a t t h e Fermi s u r f a c e f o r He 3 i n u n p o l a r i z e d and completely p o l a r i z e d s t a t e , i n FHNC-1-2 approximation. L a s t two 1 ines g i v e r e s u l t s on t h e sum r u l e check a t r = 0.

s u l t s on t h e s t r e n g t h f a c t o r n, tb,e number o f He- 3 atoms i n s i d e t h e Fermi sea n, and t h e s t r e n g t h o f t h e quasi p a r t i c l e p o l e z(kF) a t A = 0 , l and a t two d i f f e r i n g d e n s i t i e s . The f u n c t i o n s Q ( r ) , etc., i n - volved i n eqs. (27),(28) should f u l f i l l t h e sum r u l e s /20/ ne-Q(r) = 1 and Nl(r) + N 2 ( r ) = 1 a t r = 0. We l e a r n from t h e l a s t two l i n e s o f Table 4

Table 5

Table 5.- Same as t a b l e 4 b u t f o r completely pola- r i z e d s t a t e a t two d i f f e r i n g d e n s i t i e s .

t h a t these r u l e s a r e w e l l f u l f i l l e d by t h e FHNC-1-2 approximants a t A = 0. However, f o r A = 1, we ob- serve t h a t t h e approximate q u a n t i t i e s l e a d t o a r a t h e r d i s t u r b i n g v i o l a t i o n by about 20-30 %. The r e s u l t s i n d i c a t e t h a t we should improve t h e adopted FHNC-approximation b e f o r e doing a c a l c u l a t i o n o f q u a n t i t i e s n ( r ) and n ( k ) a t a r b i t r a r y p o l a r i z a -

4 4

t i o n . Fig. 8 d e p i c t s t h e one-body d e n s i t y m a t r i x a t A = 0 and A = 1 and a t d e n s i t y p = 0.0142 8-3.

F i g . 8.- Same as Fig. 6, b u t f o r t h e one-body densi- ty matrix, eq. (28).

Acknowledgement. - We g r a t e f u l l y acknowledge f inan- c i a 1 support from t h e Deutsche Forschungsgemein- s c h a f t under Grant No. R i 26715.

(10)

REFERENCES

/1/ ADAMS, E.D., SCHUBERT, E.A., HAAS, G.E., Phys.

Rev. L e t t . 44 (1980) 789.

/2/ OSHEROFF, D.D., GROSS, M.C., FISHER, D.S., Phys. Rev. L e t t . 2 (1980) 792.

/3/ CHAPELLIER, M., FROSSATI, G., RASMUSSEN, F.B., Phys. Rev. L e t t . 42 (1979) 904.

/4/ LHUILLIER, C., LALOE, F., J . Phys. ( P a r i s ) - 40 (1979) 239.

/5/ CASTAING, B., NOZIERES, P., J. Phys. ( P a r i s ) 40 (1979) 257.

-

/6/ WU, F.Y., FEENBERG, E., Phys. Rev. 128 (1962) 943.

/7/ WOO, C.W., Phys. Rev. - 151 (1966) 138.

/$/ FEENBERG, E., Theory o f quantum f l u i d s (Aca- demic, New York, 1969).

/9/ MILLER, M.D., Phys. Rev. B

14

(1976) 3937.

/ l o / GUYER, R.A., MILLER, M.D., Phys. Rev. B 18

(1978) 3521.

/11/ RISTIG, M.L., KORTEN, K.E., CLARK, J.W., Phys.

Rev. B 19 (1979) 3539.

/ I 2 1 OWEN, J.C., Ann. Phys. 118 (1979) 373.

/13/ KROTSCHECK, E., RISTIG, M.L., Nucl. Phys. A 242 (1975) 389.

-

/14/ FANTONI, S., ROSATI, S., Nuovo Cimento A - 25

(1975) 593.

/15/ CLARK, J.W., i n Progress i n p a r t i c l e and nu- c l e a r physics, e d i t e d by D.H. Wilkinson (Per- gamon, Oxford, 1979) Vol . 2.

/16/ ZABOLITZKY, J .G., i n Advances i n nuclear phy- s i c s , e d i t e d by J.W. Negele and E. Vogt (Ple- num, New York, 1980), Vol. 12.

/17/ SCHIFF, D., VERLET, L., Phys. Rev. 160 (1967) 208.

/18/ RISTIG, M.L., LAM, P.M., J. Low Temp. Phys.

(1980) i n press.

/19/ FORSTER, D., Hydrodynamic f l u c t u a t i o n s , bro- ken symmetry, and c o r r e l a t i o n f u n c t i o n s (Ben- jamin, London 1975).

/20/ RISTIG, M.L., CLARK, J.W., Phys. Rev. B - 14 (1976) 2875.

/21/ LADO, F., J. Chem. Phys. - 47 (1967) 5369.

/22/ FANTONI, S., Nuovo Cimento 44 A (1978) 191.

1231 RAMM, H., PEDRONI, P., THONPSON, J.R., MEYER, H., J . Low Temp. Phys. 2 (1970) 539.

/24/ WHEATLEY, J.C., i n Quantum f l u i d s , e d i t e d by D. F. Brewer (North-Hol land, Amsterdam 1966)

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to