• Aucun résultat trouvé

Refractive-Index Engineering of Planar Waveguides with Subwavelength Gratings

N/A
N/A
Protected

Academic year: 2021

Partager "Refractive-Index Engineering of Planar Waveguides with Subwavelength Gratings"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Optics&Photonics News, 21, 12, 2010-12-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Refractive-Index Engineering of Planar Waveguides with

Subwavelength Gratings

Schmid, Jens H.; Cheben, Pavel; Bock, Przemek J.; Lapointe, Jean; Janz,

Siegfried; Xu, Dan-Xia; Densmore, Adam; Delâge, André; Hall, Trevor J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=f60f96f8-2270-47cd-877f-072010cef385 https://publications-cnrc.canada.ca/fra/voir/objet/?id=f60f96f8-2270-47cd-877f-072010cef385

(2)

24 | OPN Optics & Photonics News www.osa-opn.org

GUIDED WAVES

Refractive-Index Engineering of Planar

Waveguides with Subwavelength Gratings

Jens H. Schmid, Pavel Cheben, Przemek J. Bock, Jean Lapointe, Siegfried Janz, Dan-Xia Xu, Adam Densmore, André Delâge and Trevor J. Hall

I

n integrated photonic circuits, the refractive-index contrast is usually set by the choice of the material plat-form. For example, for silicon photonic circuits operating at a wavelength near l= 1.55 μm, the waveguide core and the cladding indices are given by the mate-rial constants of silicon (n = 3.5) and silicon dioxide (n = 1.44), and waveguide devices must be designed within the constraint of these ixed values.

From free-space optics, we know that periodic dielectric structures with a periodicity smaller than one half of the wavelength do not difract any light. Instead, such so-called subwavelength gratings (SWGs) act as homogeneous efective media with spatially averaged refractive index.1 We have recently demonstrated the irst use of SWGs for refractive-index engineering in micro-photonic waveguides, providing a power-ful method for controlling the refractive index of a waveguide core in any speciic location of a photonic chip. Importantly, our method only relies on standard fab-rication techniques and can be imple-mented without any modiications to the chip fabrication process low.

he structure shown in (a) exempliies refractive-index engineering of a silicon photonic wire waveguide. By etching periodic gaps of a well-deined width w and pitch L into a standard silicon pho-tonic wire, an SWG waveguide is formed with an efective core index determined by the duty ratio w/L. Calculation of the dispersion relation of the segmented waveguide and comparison with the dis-persion of an equivalent photonic wire waveguide with identical cross section and a core index of n = 2.65, as shown in (b) conirms theoretically the concept of spatial refractive-index averaging.

Experimentally, we have observed waveguiding in such SWG structures with a propagation loss as low as

2.1 dB/cm, comparable to the best photonic wire waveguides reported, and with a low and nearly wavelength-independent group index, as predicted by theory.2 Although consistent with Bloch theory, it is fascinating to observe light propagating almost unperturbedly through so many strong discontinuities.3

Among the applications of SWG waveguides4 is an SWG slab waveguide structure that simultaneously acts as a lateral cladding for a photonic wire waveguide in a novel microspectrometer design and an eicient in-plane iber-chip coupling structure. he coupler structure works by gradual modiication of the waveguide core index, leading to mode-size transformation between a high-index photonic wire and the low-index optical iber. Measured coupling loss is 0.9 dB for TE and 1.2 dB for TM polarization. SWG waveguides were also implemented for highly ef-icient waveguide crossings,5 such as those shown in (c).

(a) SEM image of an SWG waveguide. (b) Dispersion relation of an SWG waveguide and an equivalent photonic wire waveguide with core refractive index of 2.65 (TE polarization). (c) SWG waveguide crossings. (a) (c) (b) SWG Wire b [mm–1] f [s –1]

Having the ability to intersect wave-guides with low loss and crosstalk is an important prerequisite for designing complex high-density photonic circuits. SWG waveguide loss per crossing was measured to be as low as 0.02 dB with polarization-dependent loss of less then 0.02 dB and crosstalk less than 40 dB. hese applications demonstrate the obvious advantages of having the new degree of freedom in photonic circuit design aforded by SWG refractive-index engineering. t

Jens Schmid (jens.schmid@nrc-cnrc.gc.ca), Pavel Cheben, Jean Lapointe, Siegfried Janz, Dan-Xia Xu, Adam Densmore and André Delâge are with the National Research Council Canada in Ottawa, Canada. Przemek Bock and Trevor Hall are with the University of Ottawa.

References

1. S.M. Rytov. Sov. Phys. JETP 2, 466-75 (1956). 2. P.J. Bock et al. Opt. Express 18(19) 20251-62 (2010). 3. F. Morichetti. Spotlight on optics summary:

www.optic-sinfobase.org/spotlight/summary.cfm?uri=ol-35-15-2526 (2010).

4. P. Cheben et al. Opt. Lett. 35(15), 2526-8 (2010). 5. P.J. Bock et al. Opt. Express 18(15), 16146-55 (2010).

6 8 10 l = 1.55 mm 2 mm 31014 2.2 1.6

Références

Documents relatifs

Results of plastic flow of compression test specimens carrying sustained loadings are shown for the most part in terms of rate of deformation per year obtained from diagrams

Obviously, this conclusion also applies to the formulas given by BURRELL (Réf. 6 In his interprétation of the data shown in this figure, the author has

intensity distribution near the laser focus decides the crosssection configuration of waveguide, the princi ple to realize a circular crosssection waveguide is to keep the

For example, Nemova and Kashyap have reported a refractive index sensor based on the corrugated metal grating assisted power coupling between core mode and the SPP [6], which

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Besançon a tenu lieu de terrain d’expérimentation pour une modélisation prospective simulant l’ouverture à l’urbanisation des ouvrages militaires bisontins dans le cadre de la

Algeria ,seriously engaged in this way, has effectively issued an executive decree (No: 06-154) imposing prenuptial medical tests , and the following article entitled

يملاعلا داصتقلاا ضرعتو اسسسملا ةفاك ددهتو هعاقب عيمج ددهت ةمزا ىلا مويلا ملاعلا ضرعتي ج يهو لاإ سلافلاا ديدهت ىلا ددهت دق ةيفارتحا ةقيرطب دحلا عم ةسسسملا