• Aucun résultat trouvé

MARTENSITE AND LIFE : DISPLACIVE TRANSFORMATIONS AS BIOLOGICAL PROCESSES

N/A
N/A
Protected

Academic year: 2021

Partager "MARTENSITE AND LIFE : DISPLACIVE TRANSFORMATIONS AS BIOLOGICAL PROCESSES"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: jpa-00222128

https://hal.archives-ouvertes.fr/jpa-00222128

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TRANSFORMATIONS AS BIOLOGICAL PROCESSES

G. Olson, H. Hartman

To cite this version:

G. Olson, H. Hartman. MARTENSITE AND LIFE : DISPLACIVE TRANSFORMATIONS AS BIOLOGICAL PROCESSES. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-855-C4-865.

�10.1051/jphyscol:19824140�. �jpa-00222128�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZe'ment au n o 12, Tome 4 3 , dQcembre 1982 page C4-855

MARTENSITE AND L I F E

:

DISPLACIVE TRANSFORMATIONS AS BIOLOGICAL

PROCESSES

G . B. O l s o n a n d H. H a r t m a n MIT, Cambridge, MA, U.S.A.

( A c c e p t e d 9 A u g u s t 1 9 8 2 )

Abstract. - Martensi t i c transformations i n c y l i n d r i c a l p r o t e i n c r y s t a l s a r e found t o perform l i f e f u n c t i o n s i n p r i m i t i v e b i o l o g i c a l systems. T a i l - sheath c o n t r a c t i o n i n T-even bacteriophages can be described as an i r r e - v e r s i b l e s t r a i n - i n d u c e d m a r t e n s i t i c transformation, w h i l e polymorphic t r a n s - formations i n b a c t e r i a l f l a g e l l a appear t o be s t r e s s - a s s i s t e d mechanically r e v e r s i b l e martensi t i c transformations e x h i b i t i n g a shape memory e f f e c t . A v a i l a b l e i n f o r m a t i o n i n d i c a t e s t h a t t h e geometric, thermodynamic, and k i n e t i c aspects o f these transformations a r e c o n s i s t e n t w i t h m a r t e n s i t i c be- h a v i o r . S i m i l a r t r a n s f o r m a t i o n s i n v o l v i n g t h e motion o f p a r t i a l (coherency) d i s l o c a t i o n s under chemical forces may underly t h e mechanism o f motion i n h i g h e r organisms as w e l l .

I n t r o d u c t i o n . - Recent advances i n molecular b i o l o g y have revealed t h a t a remarkable number of b i o l o g i c a l s t r u c t u r e s i n v o l v e p e r i o d i c o r c r y s t a l l i n e a r r a y s o f p r o t e i n molecules. Even more remarkable, from t h e viewpoint o f a m a t e r i a l s s c i e n t i s t , i s t h e f a c t t h a t d i s p l a c i v e phase transformations between metastable s t a t e s f r e q u e n t l y occur and p r o v i d e t h e mechanism o f important l i f e processes. While c r y s t a l s t r u c - t u r e s o f importance t o m a t e r i a l s science, and m e t a l l u r g y i n p a r t i c u l a r , have been known f o r q u i t e some t i m e and considerable a t t e n t i o n has focussed on t h e mechanism and k i n e t i c s o f s o l i d - s t a t e transformations, the q u e s t i o n o f t r a n s f o r m a t i o n mechan- isms i n the r e c e n t l y determined molecular c r y s t a l s t r u c t u r e s i s j u s t now being addressed i n t h e f i e l d o f b i o l o g y . These systems may p r o v i d e important t e s t s o f the g e n e r a l i t y o f fundamental concepts i n m a t e r i a l s science.

We here examine t h e relevance o f martensi t i c t r a n s f o r m a t i o n theory t o b i o l o g i - c a l systems adapting t h e t h e o r y t o reduced d i m e n s i o n a l i t y using two examples o f d i s p l a c i v e transformations i n c y l i n d r i c a l p r o t e i n c r y s t a l s performing 1 i f e f u n c t i o n s i n v i r u s e s and b a c t e r i a .

B a c t e r i a l - V i r u s Tai 1 -Sheath Contraction. - A t r a n s f o r m a t i o n f o r which t h e most pre- c i s e s t r u c t u r a l i n f o r m a t i o n i s a v a i l a b l e i s the case o f t a i l - s h e a t h c o n t r a c t i o n i n T-even bacteriophages, v i r u s e s t h a t i n f e c t E . c o l i b a c t e r i a . The c o n s t r u c t i o n o f a bacteriophage and t h e process o f c o n t r a c t i o n are i l l u s t r a t e d i n F i g u r e 1. The v i r u s c o n s i s t s o f a D N A - f i l l e d icosahedral head o r capsid attached t o a t a i l assembly composed o f a c y l i n d r i c a l sheath surrounding a narrow t u b u l a r core. A t t h e end o f t h e t a i l i s a hexagonal baseplate from which extend s i x long and s i x s h o r t t a i l f i b r e s . The v i r u s head i s a two-dimensional p r o t e i n c r y s t a l which closes on i t s e l f as a r e s u l t o f a p e r i o d i c a r r a y o f d i s c l i n a t i o n s . The t a i l sheath i s also a two- dimensional p r o t e i n c r y s t a l which closes t o form a c y l i n d e r . The l a t t e r c r y s t a l i s aP- p a r e n t l y i n a metastable s t a t e formed by " e p i t a x i a l " growth o f the sheath on t h e baseplate and core d u r i n g t h e i n i t i a l assembly process o f the v i r u s ( 2 ) . When t h e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19824140

(3)

v i r u s t a i l contacts a bacterium, attachment o f t h e t a i l f i b r e s t o t h e b a c t e r i a l c e l l w a l l transforms t h e baseplate from t h e hexagonal t o a "star-shaped" form (3).

This i n t u r n t r i g g e r s a transformation i n t h e t a i l sheath i n v o l v i n g a c o n t r a c t i o n which d r i v e s t h e r i g i d core through t h e b a c t e r i a l c e l l w a l l , i n j e c t i n g t h e v i r u s

DNA

i n t o t h e bacterium.

Figure 1. T a i l - s h e a t h c o n t r a c t i o n The c r y s t a l l a t t i c e s t r u c t u r e o f t h e t a i l sheath has been p r e c i s e l y determin- ed by e l e c t r o n microscopy and X-ray d i f f r a c t i o n f o r t h e case o f t h e T4 bact- eriophage. The c y l i n d r i c a l c r y s t a l can be described as a s t a c k i n g o f 24 annular r i n g s o f s i x g l o b u l a r gP18 p r o t e i n sub- u n i t s each. I n t h e "extended" form the hexagonal r i n g s a r e spaced 4nm and each i s r o t a t e d about t h e c y l i n d e r a x i s r e l a - t i v e t o i t s neighbor by 17"

.

"Unwrap- p i n g " t h e c y l i n d e r t o form a plane l a t - t i c e gives t h e s t r u c t u r e d e p i c t e d i n F i g u r e 2a. As discussed by H a r r i s and Scriven (4) the s t r u c t u r e o f a c y l i n d r i - c a l c r y s t a l can be s p e c i f i e d by combin- i n g a two dimensional l a t t i c e o f p r i m i - t i v e vectors a l , and a2 w i t h a charact- e r i s t i c v e c t o r C which f o l l o w s t h e c i r - cumference o f t h e c y l i n d e r . The vectors a1 and a2 i n F i g u r e 2a were chosen along d i r e c t i o n s o f c l o s e s t packing. On t h e c l o s e d c y l i n d e r , each o f t h e d i r e c t i o n s d e f i n e s s i x h e l i c e s , l e f t - h a n d e d and right-handed, r e s p e c t i v e l y .

Upon t a i l - s h e a t h c o n t r a c t i o n , the spacing o f t h e a n n u l i decreases t o 1.8nm, t h e annular r o t a t i o n between them increa- ses t o 3 2 O , and t h e c y l i n d e r o u t e r d i a -

process i n T4-bacteriophage (1)

Figure 2. C r y s t a l l a t t i c e s t r u c t u r e of T4-bacteriophage t a i l - s h e a t h i n (a) ex- tended and ( b ) contracted forms, showing corresponding l a t t i c e vectors.

(4)

meter expands from 24 t o 34

nm,

giving t h e l a t t i c e s t r u c t u r e depicted i n Fig. 2b.

Electron microscopy observation of tail-sheaths in an a r t i f i c a l ly-induced s t a t e of p a r t i a l transformation not only indicates t h a t the transformation i s displacive (and diffusionless) in nature, but allows a d i r e c t determination of the operative l a t t i c e correspondence ( 5 ) . This correspondence i s depicted by the corresponding vectors a i , a?, and C' i n Figure 2b.

The d i s t o r t i o n s of corresponding vectors in Figure 2 define the l a t t i c e defor- mation accompanying t h i s transformation. Inasmuch as the conversion of re1 a t i v e rotation o r t w i s t about the cylinder axis t o shear s t r a i n i n the two dimensional l a t t i c e i s dependent

on

the cylinder diameter, the l a t t i c e s of Figure 2 were con- s t r u c t e d using an e f f e c t i v e i n i t i a l diameter of 13 nm based on positions of the protein subunit "centers" estimated from electron density contours generated by electron microscopy ( 6 ) . Adopting an orthogonal coordinate system with xi

[I

C and

x2 along the cylinder a x i s , the t o t a l l a t t i c e deformation

S

accompanying tail-sheath contraction i s expressed by:

b J

The deformation shear component of r), 0.6050 corresponds t o a large twist about the cylinder axis by which t h e virus

I

ead = (and t a i l core) makes one corriplete revolution. While tail-sheath contraction i s often likened t o the operation of a hypodermic needle, the analogy of a d r i l l press, whereby the t a i l core "bores"

through the bacterial c e l l wall, i s more appropriate.

The t o t a l deformation can be factored into a rigid-body rotation

I?

and a pure deformation ij expressed as:

Ihe rotation i s a clockwise rotation of 17.8O. Expressed i n principal coordinates X I ,

x2

(defined by a counter clockwise rotation of 24.1°), the pure l a t t i c e defor- mation i s :

1.5872

= [ 0

0.3920

.

o I

(3)

This i s a r e l a t i v e l y large l a t t i c e deformation, amounting t o a -60% expansion along one principal axis and a -60% contraction along the other. I t i s , however, the smallest principal d i s t o r t i o n r e l a t i n g the two s t r u c t u r e s of Figure 2. The l a t t i c e d i s t o r t i o n i s predominately deviatoric with the t o t a l shear s t r a i n exceeding 100%.

Such a large shear-dominant l a t t i c e d i s t o r t i o n would suggest t h a t t h i s diffusionless displ acive transformati on be classed as martensitic ( 7 ) .

As w i l l occur f o r any two-dimensional deformation in which the principal s t r a i n s are of opposite sign, the l a t t i c e deformation leaves two vectors unchanged in length. The orientation of two undistorted l i n e s Rj and 2.2 r e l a t i v e t o the parent- crystal and deformation coordinate systems a r e depicted in Figure 3; El i s 29.2' from xl with R 12.6' from x2. The undistorted l i n e s a r e f a i r l y close t o the [l 01 and [O 13 crystal close-packed directions, consistent with a r e l a t i v e l y small change in near-neighbor separations during transformation. ( I t i s i n t e r e s t i n g t o note, however, t h a t the [I T] direction, nearly p a r a l l e l t o k2, undergoes such a large contraction t h a t i t becomes more close-packed than the original close-packed directions, see Figure 2 ) . The s t r a i n energy associated with a martensitic i n t e r - face in a planar two-dimensional crystal would be minimized i f t h e i n t e r f a c e l i e s

(5)

Figure 3. Orientation of undistorted Figure 4. Dislocation model of coherent l i n e s R1, R r e l a t i v e t o parent-crystal m r t e n s i t i c i n t e r f a c e i n T4 bacteriophage and deformaZion coordinate systems. t a i l - s h e a t h . Six dislocations each move Defopation axes x l , x2; principal axes, along [TO] and [01] helical l a t t i c e rows.

x2; crystal directions [lo] and [01]

parallel t o a1 and a2.

along an undistorted l i n e , a1 o r 9,

.

Meeting of the s t r u c t u r e s along t h i s l i n e would leave the l i n e unrotated s u c i t h a t the l a t t i c e deformation would then be an

invariant-1 ine s t r a i n , the two-dimensional equivalent of an invariant-plane s t r a i n . Thus, provided principal l a t t i c e s t r a i n s a r e of opposite sign such t h a t an undistort- ed 1 ine e x i s t s , no additional deformation (e.g. l a t t i c e - i n v a r i a n t shear) i s required t o achieve s t r e s s - f r e e matching a t a martensitic i n t e r f a c e in a planar two-dimen- sional c r y s t a l . The s i t u a t i o n i s more complicated f o r the case of a cylindrical c r y s t a l . The periodic boundary conditions imposed by the c h a r a c t e r i s t i c vector C d i c t a t e t h a t the only " s t r a i g h t " l i n e which closes on i t s e l f , and therefore the only orientation of a " f l a t " interface, i s parallel t o C. Imposed meeting of the two s t r u c t u r e s along C guarantees t h a t t h i s vector i s unrotated across the i n t e r - face and t h e parent-product orientation relation i s thus specified by t h e condition:

consistent with the observed behavior of p a r t i a l l y transformed t a i l sheaths ( 5 ) . The s t r a i n energy associated with an interface constrained t o l i e a l o n g C could be minimized i f the i n t e r f a c e i s made semicoherent by the introduction of a l a t t i c e - invariant deformation t o make C a "macroscopically" invariant l i n e . In view of the small f i n i t e dimension of C, however, exact matching would be d i f f i c u l t t o obtain through (anti coherency) i n t e r f a r i a l dislocations with l a t t i c e Burgers vectors.

Whether the i n t e r f a c e i s f u l l y o r p a r t i a l l y coherent, the orientation relation will always be specified by equation 4.

Observation of p a r t i a l l y transformed t a i l sheaths indicates t h a t the interface remains f u l l y coherent ( 5 ) . E l a s t i c d i s t o r t i o n in the coherent i n t e r f a c e will make the i n t e r f a c e l e s s sharp than would be the case f o r an invariant l i n e interface, and t h i s i s observed ( 5 ) . Despite the more diffuse character of the interface, the nature of i t s long-range displacements and i t s underlying discrete-crystal s t e p

(6)

s t r u c t u r e a l l o w i t s d e s c r i p t i o n v i a i n t e r f a c i a l d i s l o c a t i o n a r r a y s . Resolving t h e t o t a l l a t t i c e deformation

S

i n t o i n v a r i a n t l i n e s t r a i n s on t h e [I 01 and [0 1 1 close-packed d i r e c t i o n s , t h e f u l l y coherent i n t e r f a c e can be modelled by two s e t s o f coherency ( o r t r a n s f o r m a t i o n ) d i s l o c a t i o n s (8,9) as d e p i c t e d i n F i g u r e 4. The h e l i c a l n a t u r e o f t h e close-packed d i r e c t i o n s i n t h e c y l i n d r i c a l c r y s t a l provides a b u i l t - i n "pole mechanism" whereby o n l y s i x d i s l o c a t i o n s o f each type need s p i r a l up t h e

[f

01 and [0 1 1 d i r e c t i o n s (as i n d i c a t e d by t h e arrows i n F i g u r e 4) t o completely t r a n s f o r m the c r y s t a l . Diffuseness o f t h e coherent i n t e r f a c e i s equiva- l e n t t o a widening o f t h e d i s l o c a t i o n cores.

The p o s s i b l e relevance o f d i s l o c a t i o n s moving along close-packed h e l i c e s i n t a i l - s h e a t h c o n t r a c t i o n was f i r s t proposed by H a r r i s and Scriven ( 4 ) . However, t h e i r s p e c i f i c model amounts t o deformation by s l i p , whereby d i s l o c a t i o n s w i t h l a t - t i c e Burgers v e c t o r s deform t h e c r y s t a l v i a a l a t t i c e - i n v a r i a n t deformation. I n c o n t r a s t t o t h e coherency d i s l o c a t i o n a r r a y o f F i g u r e 4, such a deformation i n v o l v e s severe bond-breaking d i s t o r t i o n s a t t h e d i s l o c a t i o n cores, does n o t transform t h e c r y s t a l t o a new s t r u c t u r e , and must be d r i v e n by e x t e r n a l l y - a p p l i e d mechanical forces. By coherently t r a n s f o r m i n g t h e c r y s t a l t o a new s t r u c t u r e o f d i f f e r i n g f r e e energy t h e coherency d i s l o c a t i o n s propagate t h e l a t t i c e - d e f o r m a t i o n i n response t o " i n t e r n a l " chemical forces, thereby p r o v i d i n g an e f f e c t i v e means o f c o n v e r t i n g chemical energy t o mechanical work. The l a c k o f d i s r u p t i o n o f near-neighbor bonds a l s o provides t h e i n t r i n s i c p o t e n t i a l f o r s t r u c t u r a l r e v e r s i b i l i t y .

A r e c e n t l y proposed d e f i n i t i o n o f m a r t e n s i t i c transformations as a subset o f d i f f u s i o n l e s s / d i s p l a c i v e t r a n s f o r m a t i o n s r e q u i r e s t h a t l a t t i c e - d i s t o r t i v e shear displacements be s u f f i c i e n t l y l a r g e t h a t t h e t r a n s f o r m a t i o n i s dominated by s t r a i n energy (7); a c o r o l l a r y o f t h i s d e f i n i t i o n i s t h a t m a r t e n s i t i c transformations a r e f i r s t - o r d e r i n nature. While t h e t r a n s f o r m a t i o n s t r a i n s i n v o l v e d i n t a i l - s h e a t h c o n t r a c t i o n a r e q u i t e large, t h e a c t u a l magnitude o f e l a s t i c s t r a i n energy i n v o l v e d depends on t h e e l a s t i c moduli o f the c r y s t a l . As w i l l be discussed l a t e r , t h e shear modulus IJ o f c y l i n d r i c a l p r o t e i n c r y s t a l s i s estimated t o be two orders of magnitude s m a l l e r than t h a t o f metals. Since t h e e f f e c t i v e t r a n s f o r m a t i o n shear y i s an o r d e r o f magnitude h i g h e r than f o r t y p i c a l m a r t e n s i t i c transformations i n metals, t h e s t r a i n energy product py2 w i l l be o f comparable magnitude. The f i r s t o r d e r n a t u r e o f t h e t r a n s f o r m a t i o n i s e v i d e n t from c a l o r i m e t r i c measurements which reveal a l a r g e l a t e n t heat o f AH=-190 kJ/mole (10).

Another f e a t u r e o f t a i l - s h e a t h c o n t r a c t i o n which i s c h a r a c t e r i s t i c o f a s t r a i n - energy-dominated m a r t e n s i t i c t r a n s f o r m a t i o n i s t h e apparent d i f f i c u l t y o f nucleation.

Judging from t h e r e l a t i v e l y h i g h amount o f work r e q u i r e d t o r u p t u r e the b a c t e r i a l c e l l w a l l d u r i n g c o n t r a c t i o n , t h e t r a n s f o r m a t i o n must i n v o l v e a s u b s t a n t i a l f r e e - energy change. M a i n t a i n i n g t h e extended sheath i n a h i g h l y metastable s t a t e r e q u i r e s a l a r g e b a r r i e r t o m a r t e n s i t i c n u c l e a t i o n . This i s c o n s i s t e n t w i t h t h e need f o r s t r a i n - i n d u c e d n u c l e a t i o n i n which the t a i l base-plate becomes a hetero- geneous n u c l e a t i o n s i t e as a r e s u l t o f i t s d i s t o r t i o n v i a displacement o f t h e t a i l f i b r e s . The i n t e r f a c i a l d i s l o c a t i o n s o f Figure 4 would then be generated from displacements i n the baseplate.

Polymorphic Transformations i n B a c t e r i a l F l a g e l l a . - Another important d i s p l a c i v e t r a n s f o r m a t i o n f o r which d e t a i l e d s t r u c t u r a l and k i n e t i c i n f o r m a t i o n i s a v a i l a b l e i n v o l v e s t h e mechanism o f motion o f many b a c t e r i a i n c l u d i n g Salmonel l a , E . c o l i

,

and B.subti1 i s . These b a c t e r i a propel themselves by r i g i d r o t a t i o n o f " f l a g e l l a " , which are he1 i c a l f i l a m e n t s c o n s i s t i n g o f d i s t o r t e d c y l i n d r i c a l c r y s t a l s o f t h e p r o t e i n f l a g e l l i n . A bacterium c o n t r o l s i t s t r a v e l by a l t e r n a t i n g between two modes of motion d e p i c t e d i n F i g u r e 5. I n normal swinuning, t h e f l a g e l l a are i n a l e f t handed h e l i c a l form, termed t h e "normal" form, and a r e r o t a t e d counter-clockwise (viewed l o o k i n g toward t h e b a c t e r i a l c e l l ) t o a c t as screw-type p r o p e l l e r s . Although t h e i n d i v i d u a l f l a g e l l a a r e l o c a t e d randomly on t h e c e l l w a l l , motion causes them t o group t o g e t h e r t o form a coordinated h e l i c a l bundle as shown i n F i g u r e 5a. The d i r e c t i o n o f t r a v e l o f t h e bacterium can be changed i n a random manner by changing t o a "tumbling" motion v i a r e v e r s a l o f t h e d i r e c t i o n o f

(7)

Figure 5. Appearance o f bacterium and f l a g e l l a i n (a) forward swimming and (b) tumbl i n g mode. White arrows i n d i c a t e d i r e c t i o n o f b a c t e r i a l motion, dark arrows apparent propagation o f r o t a t i n g he1 i c a l f l a g e l l a (1 1 ).

r o t a t i o n o f the f l a g e l l a . Viscous drag o f t h e surrounding f l u i d then i n i t i a t e s a t r a n s f o r m a t i o n t o a right-handed h e l i c a l form w i t h a d i f f e r e n t p i t c h angle, termed t h e " c u r l y " form. A sharp change i n d i r e c t i o n o f t h e h e l i c a l a x i s across t h e t r a n s f o r m a t i o n i n t e r f a c e i n p a r t i a l l y transformed f l a g e l l a causes t h e f l a g e l l a r bundle t o f l y a p a r t and renders t h e i n d i v i d u a l f l a g e l l a i n e f f e c t i v e as p r o p e l l e r s , r e s u l t i n g i n a random c h a o t i c motion as depicted i n Figure 5b. Reversal back t o t h e o r i g i n a l sense o f r o t a t i o n induces r e v e r s i o n o f t h e f l a g e l l a t o t h e o r i g i n a l left-handed s t a t e and n e t motion ensues i n a new d i r e c t i o n o f t r a v e l . By a d j u s t i n g t h e t i m e spent i n each mode, a bacterium can s t e e r i t s e l f t o a d e s i r e d environment.

Studies o f i s o l a t e d f l a g e l l a reveal t h a t , i n a d d i t i o n t o t h e normal and c u r l y forms important i n b a c t e r i a l motion, a wide v a r i e t y o f metastable h e l i c a l forms e x i s t s , described as polymorphism, and r e v e r s i b l e transformations between these forms can be induced by a l t e r a t i o n o f t h e thermodynamic environment. For t h e case o f Salmonella and E. c o l i f l a g e l l a , phase diagrams have been constructed mapping t h e s t a b i l i t y o f the various forms as a f u n c t i o n o f pH, i o n i c concentration, and temp- e r a t u r e (12-14).

Among t h e observed f l a g e l l a r forms i s a p e r f e c t l y s t r a i g h t form which permits d i r e c t determination o f i t s c r y s t a l s t r u c t u r e by e l e c t r o n microscopy; t h e s t r u c t u r e f o r s t r a i g h t f l a g e l l a o f Salmonella i s d e p i c t e d i n Figure 6. Although t h e cor- responding p r e c i s e s t r u c t u r a l i n f o r m a t i o n i s n o t a v a i l a b l e f o r the h e l i c a l f l age1 l a r forms, i t i s g e n e r a l l y accepted t h a t t h e various forms a r e associated w i t h s l i g h t changes ( d i f f u s i o n l e s s and d i s p l a c i v e ) o f t h e p r o t e i n c r y s t a l s t r u c t u r e , and s p e c i f i c s t r u c t u r a l models have been proposed c o n s i s t e n t w i t h observed c o r r e l a t i o n s between t w i s t and c u r v a t u r e o f the h e l i c a l forms (16). The s t r a i g h t c y l i n d r i c a l c r y s t a l o f Figure 6 can be converted t o a macroscopically h e l i c a l form by inhomo- geneous normal s t r a i n s along t h e n e a r l y l o n g i t u d i n a l ( a x i a l ) l a t t i c e rows. I f these rows were e x a c t l y l o n g i t u d i n a l , expansion on one s i d e o f t h e c y l i n d e r and con- t r a c t i o n on t h e o t h e r would i m p a r t a simple c u r v a t u r e (bending) t o t h e c y l i n d e r . By f o l l o w i n g n e a r l y l o n g i t u d i n a l rows which are h e l i c a l i n nature, these normal s t r a i n s convert t h e c y l i n d e r i n t o t h e form o f a macroscopic h e l i x . If t h e normal s t r a i n s remain d i r e c t e d along these l a t t i c e rows, t w i s t deformation about t h e c y l i n d e r a x i s can c o n v e r t t h e p i t c h and handedness o f t h e h e l i c a l form. Referred t o an i n i t i a l l y r e c t a n g u l a r u n i t c e l l , the l a t t i c e deformation accompanying d i s - p l a c i v e t r a n s f o r m a t i o n s between t h e h e l i c a l forms i s then o f t h e type depicted i n Figure 7. While t h e p r e c i s e nature o f the i n t r a - c e l l s h u f f l i n g accompanying the near1 y-axi a1 i nhomogeneous displacements i s n o t known, t h e shear deformation which

(8)

Figure 6. Crystal l a t t i c e s t r u c t u r e of Figure 7. Deformation of i n i t i a l l y Salmonell a f l agel 1 a , cyl inder axis v e r t i - rectangular unit cell during f l agel l a r cal

.

Lines depict 11 nearly 1 ongi tudinal polymorphic transformation, showing he1 i cal l a t t i c e rows, one short-pi tch inhomogeneous axial displacements (near circumferential) helical l a t t i c e and uniform shear o r twist about

row (15). vertical cylinder axis.

constitutes the twist about the cylinder axis can be precisely specified. The important role of t h i s shear identifies' these transformations as martensitic.

The occurence of a macroscopic shape s t r a i n across the transformation i n t e r - face, an important c h a r a c t e r i s t i c of martensitic transformations, plays an essent- i a l role i n bacterial tumbling. Studies of the geometry of p a r t i a l l y transformed f l a g e l l a show t h a t the angle r e l a t i n g the helix axis of the two helical forms across the i n t e r f a c e i s always equal t o the difference between the two helical pitch angles (17). Equivalent t o the usual geometric features of martensitic shape s t r a i n s , t h i s r u l e has been explained using the orientation r e l a t i o n of equation 4 (unrotated i n t e r f a c e l i n e ) with the additional constraint t h a t l a t t i c e rows of maximum and minimum axial d i s t o r t i o n are continuous across t h e interface; the

l a t t e r constraint i s rationalized on the basis of minimum e l a s t i c energy of i n t e r - f a c i a l dislocation arrays (16). There i s no evidence t h a t the transformation i n t e r - face i s other than f u l l y coherent. I f t h e transformation displacements a r e only of the type depicted in Figure 7, the l a t t i c e deformation i s an invariant l i n e s t r a i n . Circumferential normal s t r a i n s t h a t would cause a deviation from an invariant l i n e condition have not been detected so f a r .

The e l a s t i c moduli necessary f o r a quantitative determination of the s t r a i n energies involved in the f l a g e l l a r polymorphic transformations can be estimated from

a

measured bending modulus f o r Salmonella f l a g e l l a of 3x10-24 ~ . (18). m ~ Treating the crystal as a thick-wall cylin e r of 19nm O.D. and 4nm I.D. (15)

.!!

gives a Young's modulus of E = 4 . 7 ~ 1 0 8 N/m

.

This modulus compares well w i t h t h a t estimated f o r F a c t i n , a two-stranded helical f i r e of a protein s i m i l a r t o f l a g e l - l i n ;

a

measured bending modulus of 5.3~10-26 N - m (19 gives a Young's modulus of

3

E = 4 . 5 ~ 1 0 8 ~ / m ~ . A Young's modulus of E = 5x108 N/m has also been reported f o r DNA (20). Assuming a Poisson's r a t i o of v = 1/3, these Young's moduli correspond t o an isotropic shear modulus of p = 2x108 ~/m2, approximately two orders of mag- nitude lower than f o r metals and ceramics which undergo martensitic transformations.

In s p i t e of the r e l a t i v e l y s o f t e l a s t i c behavior, a s i g n i f i c a n t transformation nucleation b a r r i e r e x i s t s as indicated by a hysteresis accompanying fotward and reverse transformation. Stress-assisted transformation under forces induced by f l u i d flow has been studied i n isolated f l a g e l l a of Salmonella SJ25 with one end

(9)

attached t o a glass s l i d e , and the forces acting were quantitatively analyzed (21).

The r e s u l t s support t h e martensitic character of the transformations i n t h a t axial loads exert l i t t l e influence, but the transformation i n t e r a c t s strongly with torsional (shear) loads. The positive torque required f o r forward trans- formation and a smaller negative torque required f o r reversion were both measured, identifying the t o t a l transformation hysteresis. A sharp load drop following i n i t i a t i o n of single-interface transformation indicated t h a t a s u b s t a n t i a l l y higher driving force i s required f o r nucleation than f o r growth. Transformations from the normal (N) t o curly (C) forms and t o a "semi-coiled" (SC) form were studied. The net torque necessary t o drive the nucleation process can be estimated from one-half t h e t o t a l torque hysteresis, giving 7.5

x

10-19 N.m f o r the N+SC transformation and 6

x

10-19 N.m f o r N-tC. Taking an average cylinder radius of 5.8 nm, the twist increments f o r these transformations (16) correspond t o trans- formation shear s t r a i n s of y N+SC = 0.023 and y N+C = 0.032. Converting torques t o maximum shear s t r e s s T in a thick wall cylinder, c r i t i c a l driving forces AGc f o r nucleation can be determined from the work term -TY (22). With a protein molar volume of 7.8 x m3, t h i s gives c r i t i c a l values of AGc N+SC = -1 .O1 kJ/mole and AGc N+C = -1 . l l kJ/mole. As molar q u a n t i t i e s , these values a r e s i m i l a r t o the c r i t i c a l driving forces f o r FCC-SCC transformation i n s t e e l s ; however, the comparison i s misleading due t o the much l a r g e r molar volume of the protein. Expressed as a f r e e energy change per unit volume, Ag, and normalized t o the estimated shear modulus, c r i t i c a l driving forces of Agc N+SC=-7 . 4 x 1 0 - ~ ~ and Agc N+C = - 8 . 2 ~ 1 0 - 5 ~ a r e comparable t o those of metallic systems involving s i m i l a r transformation shears of a few percent. Direct observation of these transformations revealed t h a t they nucleated heterogeneously a t the point of attachment to the glass side, and whether the C o r SC form nucleated depended on the detailed geometry of the d i s t o r t i o n imposed by the attachment. I t i s i n t e r - e s t i n g t o note t h a t , because of the low-pi tch (nearly circumferential ) he1 i c a l l a t t i c e row in the s t r u c t u r e of Figure 6 ( a similar feature e x i s t s in the struc- t u r e of E.Co1i (23) f l a g e l l a ) , accomplishing the transformation shear requires the formation of only a single coherency dislocation which can s p i r a l up t h i s helix t o completely transform the c r y s t a l .

Given the large number of polymorphic forms observed i n isolated f l a g e l l a , a problem of i n t e r e s t t o biologists has been the question of why bacterial tumbl- ing involves d i s c r e t e transformation between the N and C s t a t e s without involving s t r u c t u r e s such as t h e SC s t a t e which can be considered s t r u c t u r a l l y intermediate between N and C. One explanation i s t h a t these intermediate s t a t e s involve a large axial contraction which i s opposed by t h e viscous drag of the surroundings (16). The c h a r a c t e r i s t i c s of martensitic transformations suggest some additional factors. As has been well demonstrated f o r the case of the competing metastable

B ' and y ' martensitic phases in B CuAlNi alloys (23), the thermodynamics of trans-

formation under s t r e s s can favor t h e transformation with the l a r g e r transformation s t r a i n , even when the lower s t r a i n transformation gives the nearest metastable s t a t e ( i n f r e e energy) under s t r e s s - f r e e conditions. The " s i t e s p e c i f i c i t y "

aspect of heterogeneous martensitic nucleation observed in the experiments j u s t discussed i s another c h a r a c t e r i s t i c t h a t warrants attention. Consistent with dislocation-dissociation theory of martensi t i c nucleation (24), d e t a i l s of the

"hook" assembly where the flagellum i s attached t o the bacterium can control which coherency dislocations can be most e a s i l y derived from t h i s nucleation s i t e . Perhaps most important, the nature of crystal 1 ine bonding i s such t h a t r e l a t i v e free energies can not be simply inferred from s t r u c t u r e . That the SC s t a t e can be regarded as structurallyintermediate between N and C s t a t e s does not imply t h a t i t i s energetically intermediate. Calculating f r e e energies from the mid- points of the experimental torque hysteresis measurements ( 2 1 ) , t h e free-energy difference between the N and C s t a t e s under s t r e s s - f r e e conditions i s AG N+C =

+3.71x10Z J/mole, while the SC s t a t e has a higher f r e e energy with AG N 4 C = a4.71 x 1 0 ~ J/mol e .

Fol lowing a procedure analogous t o t h e Clausius-Clapeyron r e l a t i o n , the foregoing r e l a t i v e free-energy estimates can be combined with the available phase

(10)

diagram i n f o r m a t i o n t o d e r i v e f u r t h e r thermodynamic i n f o r m a t i o n concerning t h e f l a g e l l a r polymorphic transformations. Denoting c h l o r i d e i o n c o n c e n t r a t i o n as C, t h e phase diagram (12) f o r t h e Salmonella SJ25 f l a g e l l a ( a t an ambient temp- e r a t u r e of t h e microscope experiments o f -30°C) i n d i c a t e s an NSC e q u i l i b r i u m 1 in e o f s l o p e dC/dpH = -0.06M passing through C=O a t pH=5. The s h i f t o f t h e e q u i l i b r i u m 1 in e w i t h temperature i s described by dpH/dT=-0.037 OK-1. For t h e c o n d i t i o n s o f t h e s t r e s s - a s s i s t e d t r a n s f o r m a t i o n experiments (21) (C=0.15M, pH=7), t h e d e v i a t i o n from the NPSC e q u i l i b r i u m temperature T can then be estimated as T-To=1230K g i v i n g To=1800K. The AG N+SC value o f 8.71~102 J/mole estimated from the torque h y s t e r e s i s m i d p o i n t then defines a t r a n s f o r m a t i o n entropy change of AS=-aAG/aT *

-

AG/(T-To) = -3.8 J/mole-OK. The t r a n s f o r m a t i o n enthalpy change

i s then estimated as AH = TOAS = -670 J/mole. This i s two orders o f magnitude s m a l l e r than t h e enthalpy change o f t h e l a r g e - s t r a i n m a r t e n s i t i c transformation i n t h e case o f v i r u s t a i l - s h e a t h c o n t r a c t i o n .

I n c o n t r a s t t o t h e v i r u s t a i l - s h e a t h where t h e f u n c t i o n i s a one-time per- formance o f a l a r g e amount o f work r e q u i r i n g a l a r g e d e v i a t i o n form e q u i l i b r i u m , t h e N+C f l a g e l l a r t r a n s f o r m a t i o n d u r i n g b a c t e r i a l tumbling need o n l y produce a mechanically r e v e r s i b l e change o f f l a g e l l a r shape, i .e. "shape memory e f f e c t " , r e q u i r i n g a r e l a t i v e l y small amount o f work. Mechanical r e v e r s i b i l i t y i s i n s u r e d by a small t r a n s f o r m a t i o n s t r a i n promoting a r e l a t i v e l y small c r i t i c a l d r i v i n g f o r c e f o r n u c l e a t i o n such t h a t c o n d i t i o n s f o r forward and reverse t r a n s f o r m a t i o n can be met by modest changes i n thermodynamic c o n d i t i o n s t h a t do n o t destroy t h e c r y s t a l . The behavior i s analogous t o t h e r m o e l a s t i c m a r t e n s i t i c transformations.

The incomplete n a t u r e o f t h e N-tC t r a n s f o r m a t i o n i n tumbling i s a l s o suggestive o f a t h e r m o e l a s t i c growth f o r c e balance, b u t t h e o r i g i n o f t h e growth r e s t r a i n i n g f o r c e i s i n t h i s case y e t unclear.

Discussion.- Thus f a r o u r treatment o f b i o l o g i c a l processes as d i s p l a c i v e phase transformations has n o t considered t h e n a t u r e o f p r o t e i n bonding as i t d i f f e r s from the bonding o f metals and ceramics. D e t a i l s o f t h e short-range bonding i n t e r a c t i o n s between p r o t e i n subunits w i l l be i m p o r t a n t t o t h e s t r u c t u r e and energy o f i n t e r f a c i a l d i s l o c a t i o n cores, t h e i n t r i n s i c l a t t i c e r e s i s t a n c e t o d i s l o c a t i o n motion, and t o t h e physics u n d e r l y i n g the observed thermodynamic q u a n t i t i e s . However, t h e long-range c o n s t r a i n t s imposed by c r y s t a l l i n e period- i c i t y a l l o w t h a t many aspects o f s t r a i n - e n e r g y dominated, f i r s t - o r d e r martensi t i c transformations can be p r e d i c t e d on t h e basis o f c r y s t a l geometry, l i n e a r e l a s t i - c i t y , b a s i c d i s l o c a t i o n theory, and macroscopi c thermodynamics, w i t h o u t s e n s i t i v i t y t o l o c a l bonding d e t a i l s ; t h i s forms t h e s t r e n g t h o f t h e t h e o r y o f m a r t e n s i t i c transformations as i t c u r r e n t l y stands. The numerous para1 l e l s i n t h e behavior o f martensi t i c transformations i n three-dimensional metal 1 i c c r y s t a l s and t h e c y l i n d r i c a l p r o t e i n c r y s t a l s examined here, i n s p i t e o f t h e bonding d i f f e r e n c e s , a t t e s t s t o t h e usefulness o f t h e approach.

I n a d d i t i o n t o t h e examples o f c o n t r a c t i l e v i r u s t a i l sheaths and b a c t e r i a l f l a g e l l a , o t h e r examples such as p i 1 i, tubules, and microtubules show t h a t c y l i n d r i c a l c r y s t a l s a r e u b i q u i t o u s i n b i o l o g i c a l s t r u c t u r e s . Other forms o f two dimensional c r y s t a l s a r e a l s o common, and may undergo m a r t e n s i t i c transforma- t i o n s . A twinned s t r u c t u r e representing t h e i n t e r n a l s u b s t r u c t u r e o f a martensi- t i c t r a n s f o r m a t i o n product i s observed i n p h o s p h o l i p i d membranes (25) b u t i t i s n o t c l e a r whether t h e s t r u c t u r e a r i s e s from a m a r t e n s i t i c mechanism. A two- dimensional d i l a t a t i o n a l d i s p l acive t r a n s f o r m a t i o n apparently occurs i n some icosahedrel v i r u s capsids. Arrays o f c y l i n d r i c a l c r y s t a l s w i t h one dimensional p e r i o d i c i t y along t h e i r l i n e s o f attachment a r e important t o t h e mechanism o f motion i n h i g h e r organisms. Nabarro (26) has discussed t h e r e l a t i v e motion o f muscle f i b r e s i n terms of d i s l o c a t i o n s moving along such one dimensional arrays.

I t appears t h a t i n many o f these cases t h e displacements i n v o l v e d a r e p a r t i a l l a t t i c e v e c t o r s and t h e r e f o r e produce a change i n s t r u c t u r e ( l a t t i c e deformation) w i t h an associated chemical f r e e energy change. An i m p o r t a n t p r o p e r t y o f p a r t i a l d i s l o c a t i o n s compared t o 1 a t t i c e d i s l o c a t i o n s i s t h e i r response t o chemical r a t h e r than p u r e l y mechanical forces. Mechanical r e v e r s i b i l it y i s a l s o promoted by

(11)

t h e preservation of near neighbor bonds a t p a r t i a l dislocations i n contrast t o l a t t i c e dislocations. I t i s l i k e l y t h a t a central feature of the mechanisms of motion and shape change in periodic biological s t r u c t u r e s of a l l dimension- a l i t i e s i s the movement of p a r t i a l (coherency) dislocatiors in response t o chemical forces.

As a f i n a l note, man i s credited w i t h making use of martensitic transfornations i n metal1 i c systems f o r about three thousand years and the shape memory e f f e c t f o r a few decades. I t now appears from the behavior of the viruses and bacteria examined here t h a t the e a r l i e s t application of these phenomena dates back 3.5 b i l l i o n years. Me may be unwittingly exploiting even more sophisticated applications as we l i v e .

Conclusions

.-

Displacive phase transformations in virus tail-sheaths and bacterial flagel l a a r e i d e n t i f i e d as martensitic. A1 lowing f o r special constraints of cylindrical symmetry, the geometric, thermodynamic, and k i n e t i c aspects of these transformations a r e consistent with strain-energy-dominated martensitic behavior, as dictated by the long-range constraints of c r y s t a l l i n e periodicity. The trans- formations a r e describable by p a r t i a l dislocation mechanisms which may be of broader relevance t o t h e mechanisms of motion and shape change of periodic biological s t r u c t u r e s i n general.

Acknowledgements

.-

Research on martensi t i c transformation a t M. I .T. i s sponsored by the National Science Foundation under Grant #DMR-79-15196. The authors a r e grateful f o r helpful discussions with Dr. D. Goldenburg, Prof. J . King, Mr. M. Grujicic, and Prof. M. Cohen of M.I.T.

References.

-

1. KING, J . , private communication.

2. KIKUCHI, Y. and K I N G , J . , Mol. Biol.

99

(1975) 695.

3 . CROWTHER, R.A., LENK, E.V., KIKUCHI, Y . , and KING J., J . Mol. Biol.

(1977) 489.

4. HARRIS, W.F., and SCRIVEN, L . E . , J. Theor. Biol.

27

(1970) 233.

5. MOODY, M.F., J . Mol. Biol.

80

(1973) 613.

6. AMOS, L.A., and KLUG, A., J . Mol. Biol.

99

(1975) 51.

7. COHEN, M . , OLSON, G.B., and CLAPP, P.C. Proc. ICOMAT 79, Cambridge, MA, USA, 1.

8. OLSON, G.B., and COHEN,

M.,

Acta Met.

7

(1979) 1907.

9. OLSON, G.B., Acta Met.

3

(1981) 1475.

10. ARISAKA, F., ENGEL, J . , KLUMP, H . , unpublished research, 1980.

11. MACNAB, R.M., and ORNSTON, M.K., J . Mol. Biol

. 112

(1977) 1.

12. KAMIYA, R . , and ASAKURA, S., J . Mol. Biol.

9

(1976) 167.

13. KAMIYA, R . , and ASAKURA, S., J . Mol. Biol.

108

(1977) 513.

(12)

MATSUURA, S., KAMIYA, R., and ASAKURA, S., J . Mol. B i o l .

118

(1978) 431.

O'BRIEN, E.J., and BENNETT, P.M., J. Mol. B i o l .

70

(1972) 133.

CALLADINE, C.R., J. Mol. B i o l .

118

(1978) 457.

HOTANI, H., J. Mol. B i o l .

106

(1976) 151.

FUJIME, S., MARUYAMA, M., and ASAKURA, S., J. Mol. B i o l .

68

(1972) 347.

YANAGIDA, T., and OOSAWA, F., J . Mol. B i o l .

126

(1978) 507.

COHEN, G., and EISENBERG, H., Biopolymers

4

(1966) 429.

HOTANI, H., J. Mol. B i o l .

156

(1982) 791.

PATEL, J.R., and COHEN, M., Acta Met.

1

(1953) 531.

OTSUI:A, K., WAYMAN, C.M., NAKAI, K., SAKAMOTO, H., and SHIMIZU, K., Acta Met.

24

(1976) 207.

OLSON, G.B., and COHEN, M., Met. Trans.

g

(1976) 1897.

CHAN, W. K., and WEBB W.W., Phys. Rev. Let.

46

(1 981 ) 39.

NABARRO, F.R.N.. Theory o f C r y s t a l D i s l o c a t i o n s , Oxford Univ. Press, London (1967) 794.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to