• Aucun résultat trouvé

ELECTRIC FIELD EFFECTS ON EXCITONS IN Alx Ga1-x As QUANTUM WELLS AND THEIR APPLICATIONS TO OPTOELECTRONIC DEVICES

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRIC FIELD EFFECTS ON EXCITONS IN Alx Ga1-x As QUANTUM WELLS AND THEIR APPLICATIONS TO OPTOELECTRONIC DEVICES"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00226718

https://hal.archives-ouvertes.fr/jpa-00226718

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRIC FIELD EFFECTS ON EXCITONS IN Alx Ga1-x As QUANTUM WELLS AND THEIR

APPLICATIONS TO OPTOELECTRONIC DEVICES

S. Tarucha, K. Ploog

To cite this version:

S. Tarucha, K. Ploog. ELECTRIC FIELD EFFECTS ON EXCITONS IN Alx Ga1-x As QUANTUM

WELLS AND THEIR APPLICATIONS TO OPTOELECTRONIC DEVICES. Journal de Physique

Colloques, 1987, 48 (C5), pp.C5-85-C5-92. �10.1051/jphyscol:1987514�. �jpa-00226718�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, suppl6ment au n 0 l l , Tome 4 8 , novembre 1987

ELECTRIC FIELD EFFECTS ON EXCITONS IN AlxGa,-,As QUANTUM WELLS AND THEIR APPLICATIONS TO OPTOELECTRONIC DEVICES

S. TARUCHA'~' and K. PLOOG

Max-Planck-Institut fur Festkorperforschung, 0-7000 Stuttgart 80, F.R.G.

AaSTRACT

T h i s paper d e s c r i b e s o u r r e c e n t work on e l e c t r i c f i e l d e f f e c t s on e x c i - t o n s i n AlGaAs/GaAs quantum w e l l s . We d i s c u s s t h e l a r g e change o f o p t i c a l ab- s o r p t i o n a t t h e l a s i n g wavelength o f a m u l t i p l e - q u a n t u m - w e l l waveguide induced by t h e S t a r k e f f e c t , t h e a b s o r p t i o n s a t u r a t i o n o f e x c i t o n s c o n t r o l l e d by t h e S t a r k e f f e c t , and t h e quenching o f e x c i t o n i c luminescence induced by resonance e f f e c t s o f e l e c t r o n s . I n a d d i t i o n , t h e a p p l i c a t i o n s o f these f e a t u r e s t o f a b r i - c a t e a n o p t i c a l waveguide m o d u l a t o r m o n o l i t h i c a l l y i n t e g r a t e d w i t h a m u l t i p l e - quantum-well l a s e r d i o d e and a v o l t a g e - c o n t r o l l e d b i s t a b l e l a s e r a r e r e p c r t e d .

I

-

INTRODUCTION

E l e c t r i c f i e l d e f f e c t s on e x c i t o n s i n semiconductor quantum we1 l S (QWs) have r e c e n t - l y a t t r a c t e d much a t t e n t i o n due t o p o s s i b l e a p p l i c a t i o n s i n n o v e l p h o t o n i c d e v i c e s . I n t h i s paper we summarize o u r r e c e n t work i n t h i s f i e l d . An e l e c t r i c f i e l d a p p l i e d p e r p e n d i c u l a r t o QW l a y e r s p r o v i d e s two main e f f e c t s on e x c i t o n s , i.e. a S t a r k s h i f t o f t h e e x c i t o n energy / 1 / and a quenching o f t h e e x c i t o n i c photoluminescence (PL) i n t e n s i t y / 2 /

.

The S t a r k s h i f t o f e x c i t o n i c a b s o r p t i o n peaks i s observed a t a f i e l d as h i g h as 100 kV/cm because t h e h e t e r o j u n c t i o n p o t e n t i a l b a r r i e r s p r e v e n t t h e f i e l d i o n i z a t i o n o f e x c i t o n s . U s i n g t h i s e f f e c t , an o p t i c a l m o d u l a t o r / 3 / and an o p t i c a l b i s t a b l e d e v i c e c a l l e d s e l f - e l e c t r o o p t i c e f f e c t d e v i c e (SEED) / 4 / were r e a l i z e d . These d e v i c e s a r e o p e r a t e d w i t h l i g h t t r a n s m i t t e d p e r p e n d i c u l a r t o QW l a y - e r s . We have s t u d i e d t h e e l e c t r i c f i e l d e f f e c t s on t h e t r a n s m i s s i o n o f l i g h t t h r o u g h mu1 t i ple-quantum-well (MQW) waveguides, which a r e s u i t a b l e f o r monol i t h i c i n t e g r a t i c r w i t h MQW l a s e r diodes / 5, 6 /

.

We have f a b r i c a t e d a MQW waveguide m o d u l a t o r mono- l i t h i c a l l y i n t e g r a t e d w i t h a MQW l a s e r d i o d e / 7 / as w e l l as a v o l t a g e - c o n t r o l l e d b i s t a b l e l a s e r / 8 /

.

The quenching o f e x c i t o n i c luminescence i s induced by two main f a c t o r s , i . e . t h e s p a t i a l s e p a r a t i o n o f e l e c t r o n s and h o l e s i n t h e w e l l s / 9 / and t h e c a r r i e r t u n n e l i n g t h r o u g h t h e b a r r i e r s / 9

,

10 /

.

B o t h f a c t o r s have r e c e n t - l y been i n v e s t i g a t e d by t i m e - r e s o l v e d PL measurements / 9 - 1 1 /

.

We have s t u d i e d he f i e l d - i n d u c e d quenching o f e x c i t o n i c PL i n AlGaAs/GaAs s u p e r l a t t i c e s u s i n g time-

("on leave from NTT Electrical Communications Laboratorres. Tokyo 180. Japan

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987514

(3)

J O U R N A L D E PHYSIQUE

5

-

4 - -

3

-

2

-

1 -

r o o m temperature 0 -

1

800 820 840 860 880

WAVELENGTH

(

nm

)

F i g . 1 - PC spectrum o f a p - i - n MQW d i o d e s t r u c t u r e (8-nm GaAs and 5-nm AlGaAs, 16 p e r i o d s ) f o r d i f f e r e n t b i a s v o l t a g e s . XL i s t h e wavelength f o r l a s e r o s c i l l a t i o n .

r e s o l v e d p h o t o c u r r e n t (PC) as w e l l as s t a t i c PL and PC measurements. The t o p i c s p r e - sented h e r e i n c l u d e t h e S t a r k e f f e c t on e x c i t o n s i n AlGaAs/GaAs MQW waveguides a t t h e l a s i n g wavelength o f monol i t h i c a l l y i n t e g r a t e d MQW l a s e r s , t h e a b s o r p t i o n s a t u - r a t i o n o f e x c i t o n s under an e l e c t r i c f i e l d , and t h e f i e l d induced quenching o f e x c i - t o n i c PL i n S e c t i o n 11, and t h e a p p l i c a t i o n s o f these e f f e c t s t o n o v e l o p t i c a l d e v i - ces i n S e c t i o n 111.

I 1 - ELECTRIC FIELD EFFECTS ON EXCITONS I N QWS I 1

-

1 S t a r k E f f e c t i n MQW Waveguides

E x c i t o n s i n QWs e x h i b i t l a r g e a b s o r p t i o n peaks even a t room temperatures due t o t h e c o n f i n e m e n t e f f e c t / 12 /

.

The S t a r k e f f e c t has a l s o a s t r o n g impact on room-tempe- r a t u r e e x c i t o n s / 2 / so t h a t i t becomes a t t r a c t i v e f o r a p p l i c a t i o n s t o o p t o e l e c t r o - n i c d e v i c e s . We have s t u d i e d t h e o p t i c a l p r o p e r t i e s o f AlGaAs/GaAs MQW waveguides, which have s i m i l a r l a y e r s t r u c t u r e s as MQW l a s e r diodes. We have f o u n d t h a t t h e l a s e r o s c i l l a t i o n of t h e MQW waveguide o c c u r s a t t h e low-energy s i d e o f t h e e x c i t o - n i c a b s o r p t i o n peak o b t a i n e d f o r t h e same MQW waveguide under u n e x c i t e d c o n d i t i o n s / 5 / because o f t h e band gap s h r i n k a g e e f f e c t / 13 /

,

and t h a t t h e a b s o r p t i o n co- e f f i c i e n t a t t h e l a s i n g wavelength i s much s m a l l e r f o r t h e MQW waveguide than f o r t h e c o n v e n t i o n a l GaAs DH waveguide / 5 /

.

The f i r s t p r o p e r t y suggests t h a t a l a r g e e x c i t o n i c a b s o r p t i o n can be induced a t t h e l a s i n g wavelength by a p p l y i n g a v o l t a g e t o t h e MQW r e g i o n . The second f e a t u r e suggests t h a t MQW waveguides a r e f a v o r a b l e f o r i n t e g r a t i n g p a s s i v e o p t i c a l components r n o n o l i t h i c a l l y w i t h l a s e r s and o t h e r p a s s i v e o p t i c a l components because o f t h e l o w t r a n s m i s s i o n l o s s . These p r o p e r t i e s a r e con- f i r m e d by PC spectroscopy measurements. I n F i g . 1 we show t h e PC s p e c t r a f o r a p - i - n MQW l a s e r d i o d e s t r u c t u r e measured w i t h d i f f e r e n t b i a s v o l t a g e s (Vb). The PC spec- trum i s a r e p l i c a o f t h e a b s o r p t i o n spectrum f o r t h e i n t r i n s i c MQW r e g i o n . The peaks c l e a r l y observed on t h e spectrum f o r V c l V a r e due t o t h e a b s o r p t i o n peaks of t h e heavy h o l e ( h h ) e x c i t o n and l i g h t Ro7e ( l h ) e x c i t o n . These peaks s h i f t t o l o w e r e n e r g i e s w i t h d e c r e a s i n g Vb a c c o r d i n g t o t h e S t a r k s h i f t s . The l a s i n g wavelength of t h i s d i o d e i s i n d i c a t e d by

x L ,

which i s a b o u t 20 meV below t h e peak o f t h e hh e x c i - t o n . The d a t a o f t h e f i g u r e show t h a t a l a r g e change o f a b s o r p t i o n can b e induced a t XL b y s w i t c h i n g t h e a p p l i e d v o l t a g e , e.g., f r o m + l t o -1 V. The o p t i c a l waveguide m o d u l a t o r d e s c r i b e d i n I 1 1

-

1 u t i l i z e s t h i s change o f t h e e x c i t o n i c a b s o r p t i o n .

(4)

v

1 0 -1

BIAS VOLTAGE ( V

)

F i g . 2

-

P h o t o r e s p o n s i v i t y of a p - i - n MQW d i o d e s t r u c t u r e (8-nm GaAs and 5-nm AlGaAs, 16 p e r i o d s ) f o r d i f f e r e n t e x c i t a t i o n d e n s i t i e s . The i n s e t shows a schematic c o n f i g u r a t i o n o f t h e e x c i t i n g wavelength and t h e PC spectrum under n e a r l y f l a t band c o n d i t i o n .

I 1

-

2 A b s o r p t i o n S a t u r a t i o n o f E x c i t o n s i n E l e c t r i c F i e l d s

The a b s o r p t i o n s a t u r a t i o n o f e x c i t o n s i s an i m p o r t a n t p r o p e r t y f o r a p p l i c a t i o n s t o n o n l i n e a r o p t i c a l devices. Large a b s o r p t i o n s a t u r a t i o n o f e x c i t o n s i n GaAs QWs was r e p o r t e d b y M i l l e r e t a l . and Chemla e t a l . / 14 /

.

A four-wave m i x i n g t e c h n i q u e r e v e a l e d t h a t t h e a b s o r p t i o n s a t u r a t i o n o c c u r s most s t r o n g l y a t t h e low-energy s i d e o f t h e hh e x c i t o n peak / 14 /

.

The mechanism o f t h e a b s o r p t i o n s a t u r a t i o n i s a t t r i - b u t e d t o a s c r e e n i n g e f f e c t o f f r e e c a r r i e r s a t room temperature and t o t h e phase- space f i l l i n g e f f e c t i n a d d i t i o n t o t h e s c r e e n i n g e f f e c t a t l o w temperatures / 14 /.

I n t h e MQW waveguide under i n v e s t i g a t i o n A i s l o c a t e d a t t h e low-energy s i d e o f t h e hh e x c i t o n peak, where a l a r g e a b s o r p t i o n k a t u r a t i o n i s expected. I n a d d i t i o n , t h e magnitude o f t h e e x c i t o n i c a b s o r p t i o n ( i . e . t h e magnitude o f t h e a b s o r p t i o n s a t u r a -

t i o n ) a t A can be changed u s i n g t h e S t a r k e f f e c t . F i g u r e 2 shows t h e p h o t o r e s p o n s i - v i t y o f t h k p - i - n MQW d i o d e s t r u c t u r e as a f u n c t i o n o f a p p l i e d v o l t a g e (V ) o b t a i n e d w i t h d i f f e r e n t e x c i t a t i o n d e n s i t i e s a t 50 K. The p h o t o r e s p o n s i v i t y i s g i v k n by t h e PC d i v i d e d by t h e e x c i t a t i o n d e n s i t y . The e x c i t i n g l a s e r wavelength i s f i x e d j u s t below the a b s o r p t i o n peak o f t h e hh e x c i t o n under n e a r l y f l a t band c o n d i t i o n s , as s c h e m a t i c a l l y shown i n t h e i n s e t . The l a r g e r V v a l u e s ( l e f t hand s i d e ) correspond t o t h e low-energy s i d e o f t h e a b s o r p t i o n spectlum s i n c e t h e a b s o r p t i o n spectrum s h i f t s t o t h e low-energy s i d e w i t h d e c r e a s i n g V

.

The two peaks o f t h e s p e c t r a a r e due t o t h e hh e x c i t o n ( a t l a r g e r V ) and l h excbton ( a t s m a l l e r V ). No peak i s ob- s e r v e d on t h e photorespons i v i t y spkctrum ~i t h w h i t e l i g 5 t e x c i t a t b o n . When t h e e x c i

-

t a t i o n d e n s i t y i s i n c r e a s e d f r o m % 1 W/cm t o % 1 kW/cm

,

t h e hh e x c i t o n a s s o c i a t e d peak becomes s i g n i f i c a n t l y s m a l l e r i n i n t e n s i t y due t o t h e a b s o r p t i o n s a t u r a t i o n . On t h e o t h e r hand, t h e i n t e n s i t y o f t h e l h e x c i t o n a s s o c i a t e d peak i s h a r d l y reduced.

T h i s phenomenon i s a t t r i b u t e d p a r t l y t o t h e s m a l l e r a b s o r p t i o n s a t u r a t i o n o f l h ex- c i t o n s and p a r t l y t o t h e r e d u c t i o n o f t h e c a r r i e r l i f e t i m e w i t h enhanced e l e c t r i c f i e l d . The s h i f t s o f t h e peaks a r e caused by t h e f i e l d s c r e e n i n g due t o t h e p h o t o - gene5ated c a r r i e r s . A n a r r o w i n g o f t h e hh e x c i t o n a s s o c i a t e d peak observed a t

-

100

W/cm i s p r o b a b l y due t o a k i n d o f feedback mechanism a s s o c i a t e d w i t h t h e f i e l d screening. I n a MQW waveguide w i t h 13-nm w e l l s , t h e a b s o r p t i o n s a t u r a t i o n accompani- ed by t h e s m a l l e r s c r e e n i n g e f f e c t i s achieved w i t h a l o w e r e x c i t a t i o n d e n s i t y . The peak observed i n t h e p h o t o r e s p o n s i v i t y c a n n o t be compared d i r e c t l y t o t h e peaks of t h e e x c i t o n i c s p e c t r a because a f i e l d induced change o f t h e e x c i t o n i c a b s o r p t i o n spectrum and an enhancement o f t h e magnitude o f t h e PC s h o u l d be taken i n t o account.

Most r e c e n t l y Iwamura e t a l . have o b t a i n e d a s i m i l a r s a t u r a t i o n b e h a v i o u r by o p t i c a l a b s o r p t i o n measurements / 15 /

.

The s a t u r a t i o n b e h a v i o u r observed h e r e i m p l i e s

(5)

JOURNAL

DE

PHYSIQUE

EXTERNAL FIELD

(

kV1cm)

Fig. 3

-

S t a t i c PC and s p e c t r a l l y i n t e g r a t e d PL i n t e n s i t y versus e x t e r n a l f i e l d measured f o r a p - i - n diode w i t h a AlGaAs/GaAs super- l a t t i c e i n t r i n s i c r e g i o n (12-nm GaAs and 5.8-nm AlGaAs, 100 p e r i o d s ) . E x c i t a t i o n d e n s i t y 5 ~/cm2.

t h a t the magnitude o f the a b s o r p t i o n s a t u r a t i o n o f e x c i t o n s a t an e x c i t i n g l a s e r wa- velength below t h e hh e x c i ton peak can be changed by t h e a p p l i e d v01 tage. T h i s fea- t u r e i s u t i l i z e d i n t h e v o l t a g e - c o n t r o l l e d b i s t a b l e l a s e r described i n Section I 1 1

-

2.

I 1

-

3 Resonance Induced Quenching o f E x c i t o n i c Luminescence

Photoexcited c a r r i e r s i n QWs s u b j e c t t o an e l e c t c r i c f i e l d generate e i t h e r PL o r PC / 11, 16 /

.

A t low temperatures the PL a t moderate e x c i t a t i o n l e v e l s i s mostly gene- r a t e d by e x c i t o n i c recombination, and the PC by c a r r i e r s t u n n e l i n g through the b a r - r i e r s . The time-resolved PL measured f o r i s o l a t e d GaAs QWs a t 5 K e x h i b i t e d an en- hancement of the l i f e t i m e of e x c i t o n s a t low f i e l d s , which i s due t o t h e s p a t i a l charge separation, and a r e d u c t i o n a t h i g h f i e l d s , which i s due t o the t u n n e l i n g from the i n s i d e o f the w e l l t o the o u t s i d e o f t h e QW / 9, 10 /

.

I n s u p e r l a t t i c e s t u n n e l i n g occurs mostly between t h e adjacent r e s p e c t i v e w e l l s . I n AlInAs/GaInAs and AlGaAs/GaAs s u p e r l a t t i c e s , an excess PC due t o sequential resonant t u n n e l i n g was observed i n s t a t i c PC-bias v o l t a g e c h a r a c t e r i s t i c s / 17, 18

/ .

We have s t u d i e d the f i e l d induced quenching o f t h e e x c i t o n i c luminescence i n AlGaAsfGaAs s u p e r l a t t l c e s i n c o r p o r a t e d i n p - i - n diode s t r u c t u r e s using time-resolved PC as w e l l as s t a t i c PL and PC measurements. F i g u r e 3 shows the f i e l d dependences o f the s t a t i c PL i n t e n s i t y and o f t h e PC measured under cw e x c i t a t i o n c o n d i t i o n . The observed PL i s associated w i t h hh e x c i t o n s / 11 /

.

The e x t e r n a l f i e l d , given by ( b u i l t - i n - v o l t a g e

+

a p p l i e d v o l t a g e ) d i v i d e d by t o t a l thickness o f t h e i n t r i n s i c region, i s shown a t the lower h o r i z o n t a l a x i s . A d d i t i o n a l l y , t h e c a l i b r a t e d f i e l d as evaluated from t h e Stark s h i f t o f t h e PL emission peak energy i s shown a t t h e upper h o r i z o n t a l a x i s / 1 1

/ .

The discrepancy between c a l i b r a t e d and e x t e r n a l f i e l d s i s due t o $he f i e l d screening by photogenerated c a r r i e r s under t h e cw and f a i r l y h i g h (a 5 W/cm ) e x c i t a t i o n con- d i t i o n s employed here. The PL i n t e n s i t y i s s t r o n g l y quenched a t the f i e l d s i n d i c a t e d by C and D. I n good agreement w i t h these PL quenchings an excess PC appears a t t h e p o i n t s l a b e l e d by c and d, which i s caused by t h e f i e l d induced d i s s o c i a t i o n of excitons. These PL quenchings a r e a t t r i b u t e d t o resonance e f f e c t s o f e l e c t r o n s b e t - ween t h e f i r s t e x c i t e d s t a t e and the ground s t a t e (quenching C) and between the se- cond e x c i t e d s t a t e and the ground s t a t e (quenching D) o f adjacent w e l l s . The c o r r e s - ponding c a l i b r a t e d f i e l d s a r e we1 l p r e d i c t e d from the c a l c u l a t i o n o f t h e e l e c t r o n subband l e v e l s . The existence o f resonance e f f e c t s i s confirmed by the time-resolved PC measurements. When t h e e x c i t a t i o n power d e n s i t y i s reduced, t h e peaks of t h e PC s h i f t t o lower f i e l d s because o f t h e s m a l l e r f i e l d screening. The e x t e r n a l f i e l d s 2 o f t h e peaks c and d measured w i t h a reduced e x c i t a t i o n d e n s i t y down t o 0.05 W/cm

(6)

Fig. 4

-

Peak value (PC . . - t i r

re!

f i e l d measured w i t h t h e 200 ps p u l s e d u r a t i o n a peak power d e n s i t y . The

2 - 2 2 * L . . .l

1 ana aecay 785n1-n putse excitation

ne

constant ( T - ) o f tffaxtime-

;olved PC as a ' f u n c t i o n o f e x t e r n a l W 20 K

e x c i t a t i o n 2 0 f

a

0.01

.,

nd arrows

-

1 W/cm

! k 1 "

irlaicarea m e peaKs o r PC and t h e I I I I I I I I I I

d i p s o f -ri. max 20 40 60 80 100 120 l40

EXTERNAL FIELD ( kV/cm)

a r e 44 and 88 kV/cm, r e s p e c t i v e l y . These values a r e very c l o s e t o the c a l i b r a t e d f i e l d s o f t h e peaks c and d i n the f i g u r e . Another small PL quenching i n d i c a t e d by A i s p o s s i b l y due t o resonance e f f e c t s o f holes according t o t h e c a l c u l a t i o n o f the h o l e subband l e v e l s . T h i s peak i s n o t discussed f u r t h e r because t h e resonance e f f e c t i s n o t confirmed by time-resolved PC due t o t h e t o o small PC i n t e n s i t y . An excess PC i n d i c a t e d by b i s p o s s i b l y d i f f e r e n t from the i n t r i n s i c e f f e c t because i t accompa- n i e s no PL quenching.

I n F i g . 4 we show the decay time constant T~ and t h e peak value PC, o f t h e PC mea- sured a f t e r s h o r t o p t i c a l p u l s e e x c i t a t i o n . The e x c i t i n g pulse has

$6

e r r o r - f u n c t i o n - l i k e time-resolved p r o f i l e w i t h 200 ps d u r a t i o n . The value o f T . = 60 ps i s t h e lower l i m i t imposed by the time-resolved f a l l p r o f i l e o f t h e

exciting

pulse. r

.

ex- h i b i t s a s t r o n g r e d u c t i o n a t the e x t e r n a l f i e l d s o f 46 and 85 kV/cm, where t h &

PC e x h i b i t s an excess i n t e n s i t y . These two r e d u c t i o n s o f T . c o n f i r m the r e d u c t i o n ofm%e t u n n e l i n g time induced by resonance e f f e c t s o f e l e c t r o a s between t h e f i r s t two e x c i t e d s t a t e s and the ground s t a t e as described before. The e x t e r n a l f i e l d s ob- served f o r the r e d u c t i o n o f T~ a r e lower than those o f the peaks c and d, and they a r e close t o the c a l i b r a t e d f i e l d s (see F i g . 3) because the f i e l d screening e f f e c t

i s s m a l l e r under $he e x c i t a t i o n c o n d i t i o n s o f a s h o r t p u l s e and a smaller peak power d e n s i t y (* 1 W/cm ).

The s t r o n g PL quenching shown i n F i g . 3 and t h e s t r o n g r e d u c t i o n o f 7 . shown i n Fig.

4 a r e c o n s i s t e n t l y understood by comparing the e x c i t o n i c recombinatioa time T and the t u n n e l i n g time T

.

7 . i s 1.5 ns a t low f i e l d s , which was independently deegrmin- ed by time-resolved

PL

m&asurements / 11 /

.

The s t r o n g r e d u c t i o n o f 7 . means t h a t t h e T . values measured under resonance c o n d i t i o n s a r e t o t a l l y d e t e r m i d d by t h e c a r r i & r tunnel ing. These T~ ( Q T ~ ) values a r e s u f f i c i e n t l y small t o quenc,h t h e ex- c i t o n i c luminescence as compared w i t h ,,,T which i s expected t o be enhanced by a fac- t o r o f two o r more a t t h i s f i e l d ( i . e . T,

;

3 n s ) due t o the s p a t i a l charge sepa- r a t i o n e f f e c t / 9 /

.

I n c o n t r a s t , a t the rower f i e l d s , where t h e s t a t i c PL i s a l - most i n v a r i a n t , T . (% l ns) i s comparable t o T ( -1.5 ns) so t h a t i t i s dominated by t h e e x c i t o n i c ?ecombination. Our r e s u l t exp?$ins t h e f i e l d induced c o m p e t i t i o n

(7)

JOURNAL DE PHYSIQUE

a . . A , - * - - Laser

n-contact v

F i g . 5

-

M o n o l i t h i c i n t e g r a t i o n o f a waveguide m o d u l a t o r and a l a s e r diode.

o f e x c i t c n i c r e c o m b i n a t i o n and c a r r i e r t u n n e l i n g i n s u p e r l a t t i c e s c o n s i s t e n t l y w i t h r e s p e c t t o t h e i r dynamical and s t a t i c a s p e c t s .

111.- APPLICATIONS TO OPTICAL DEVICES

111 - 1 Waveguide M o d u l a t o r M o n o l i t h i c a l l y I n t e g r a t e d w i t h MQW Laser

As d e s c r i b e d i n S e c t i o n I 1

-

1, MQW waveguides a r e a t t r a c t i v e f o r o p t i c a l m o d u l a t o r s t o b e m o n o l i t h i c a l l y i n t e g r a t e d w i t h MQW l a s e r diodes because o f t h e l o w l o s s as w e l l as t h e l a r g e change o f t h e e x c i t o n i c a b s o r p t i o n a t t h e l a s i n g wavelength. F i g - u r e 5 s c h e m a t i c a l l y shows t h e m o n o l i t h i c d e v i c e f a b r i c a t e d i n t h e p r e s e n t work. The m o d u l a t o r and t h e l a s e r d i o d e a r e s e p a r a t e d by a narrow gap f a b r i c a t e d by r e a c t i v e

i o n beam e t c h i n g . The gap i s deep enough t o s e p a r a t e t h e m o d u l a t o r and t h e l a s e r d i - ode b o t h o p t i c a l l y and e l e c t r i c a l l y . From t h e measured l i g h t o u t p u t v e r s u s i n j e c t i o n c u r r e n t c u r v e ( L - I c u r v e ) t $ e a b s o r p t i o n l o s s c o e f f i c i e n t o f t h e m o d u l a t o r waveguide i s e s t i m a t e d t o be 2. 60 cm a t t h e l a s i n g wavelength. T h i s v a l u e c o n f i r m s t h e l o w l o s s o f t h e waveguide as d e s c r i b e d i n S e c t i o n I 1 - 1 . O p t i c a l m o d u l a t i o n o f t h i s de- v i c e i s achieved by i n j e c t i n g a c o n s t a n t c u r r e n t i n t o t h e l a s e r d i o d e and a p p l y i n g a m o d u l a t i o n v o l t a g e t o t h e m o d u l a t o r . The a c h i e v e d m o d u l a t i o n depth i s 7 dB f o r a d r i v i n g v o l t a g e o f 2.3 V, and t h e c u t - o f f f r e q u e n c y i s 0.88 GHz. The c u t - o f f f r e - quency i s l i m i t e d by t h e RC t i m e c o n s t a n t , w h i c h i s improved by r e d u c i n g t h e d e v i c e c a p a c i t a n c e . We e x p e c t a c u t - o f f frequency beyond 10 GHz by r e d u c i n g t h e waveguide w i d t h as w e l l as i n s u l a t i n g t h e l a y e r s under t h e w i r i n g pads, e.g., by p r o t o n implan- t a t i o n .

111

-

2 V o l t a g e - C o n t r o l l e d B i s t a b l e Laser

O p t i c a l b i s t a b i l i t y i s one o f t h e most e s s e n t i a l f u n c t i o n s f o r s i g n a l p r o c e s s i n g i n an o p t i c a l computer. A b i s t a b l e l a s e r i s a t t r a c t i v e as an a c t i v e element f o r t h e o p t i c a l b i s t a b i l i t y . T h i s d e v i c e which has a r e g i o n o f a b s o r p t i o n s a t u r a t i o n i n t h e c a v i t y was o r i g i n a l l y proposed by Lasher / 19 /

,

and i t s o p e r a t i o n was l a t e r demon- s t r a t e d i n b u l k InGaAsP / 20 / and GaAs / 21 / DH l a s e r diodes. These b i s t a b l e l a - s e r s p r o b a b l y u t i l i z e d a b s o r p t i o n s a t u r a t i o n a s s o c i a t e d w i t h t h e b a n d - f i l l i n g e f f e c t . Our b i s t a b l e l a s e r u t i l i z e s t h e a b s o r p t i o n s a t u r a t i o n o f e x c i t o n s i n QWs, whose mag- n i t u d e can be changed by t h e S t a r k e f f e c t . The d e v i c e has t h e same waveguide s t r u c - t u r e as shown i n F i g . 5. The d i f f e r e n c e i s t h a t t h e waveguide i s separated i n t o two segments o n l y e l e c t r i c a l l y b u t n o t o p t i c a l l y . The e l e c t r i c a l s e p a r a t i o n o n l y i s r e a - l i z e d by Ga focused i o n beam i m p l a n t a t i o n i n s t e a d o f r e a c t i v e i o n beam e t c h i n g . We show t h e b i s t a b l e o p e r a t i o n by i n j e c t i n g c u r r e n t i n t o one segment A ( I A ) w h i l e a p p l y - i n g a v o l t a g e t o t h e o t h e r segment B (VB

:

b u i l t - i n - v o l t a g e ) . F i g u r e 6 shows t h e c o n t i n u o u s l y o p e r a t i n g L - i A c u r v e s w i t h d i f f e r e n t VB v a l u e s a t 77 K. The h y s t e r e s i s

(8)

F i g . 6

-

Continuously o p e r a t i n g L - I Fig. 7

-

R e l a t i v e w i d t h o f t h e h y s t e r e s i s curves o f a b i s t a b l e MQW l a s e r measfired loop shown i n Fig.6 as a f u n c t i o n o f bfas

a t 77 K. v01 tage.

Inject~on Cunent. I. I m A )

Fig. 8

-

Room-temperature

cw

o p e r a t i o n of a b i s t a b l e MQW l a s e r .

l o o p i s observed i n t h e VB range from 0 t o 1.2 V. The w i d t h . o f the loop changes w i t h the a p p l i e d v o l t a g e V as shown i n F i g . 7. Room-temperature b i s t a b l e o p e r a t i o n of t h i s device i s a1 so aphieved under pulsed e x c i t a t i o n c o n d i t i o n s . The l a s i n g wave- l e n g t h i n t h e b i s t a b l e o p e r a t i o n i s a t t h e low-energy side o f the e x c i t o n absorption peak. More r e c e n t l y , we have obtained cw b i s t a b l e o p e r a t i o n a l s o a t room temperature, u s i n g a more s o p h i s t i c a t e d s t r u c t u r e ( F i g . 8 ) / 22 /

.

I n s p e c t i o n o f Fig. 7 r e v e a l s t h a t the b i s t a b i l i t y o f our device i s c o n t r o l l e d by an a p p l i e d v o l t a g e V smaller than the b u i l t - i n - v o l t a g e so t h a t no c u r r e n t i s i n j e c t e d t o the segment

B.

T h i s con- d i t i o n i s f a v o r a b l e f o r low power consumption t o c o n t r o l the b i s t a b l e operation.

(9)

C5-92 JOURNAL

DE

PHYSIQUE

I V

-

CONCLUSION

We have p r e s e n t e d s e v e r a l i n t e r e s t i n g p r o p e r t i e s o f e x c i t o n s i n AlGaAs/GaAs QWs sub- j e c t t o an e l e c t r i c f i e l d f r o m t h e view p o i n t o f b a s i c p h y s i c s as w e l l as d e v i c e a p p l i c a t i o n . A l a r g e change of o p t i c a l a b s o r p t i o n i s induced a t t h e l a s i n g wave- l e n g t h o f a MQW waveguide b y t h e S t a r k e f f e c t . The magnitude o f t h e a b s o r p t i o n s a t u - r a t i o n o f e x c i t o n s i s changed b y t h e S t a r k e f f e c t . A s t r o n g quenching o f e x c i t o n i c luminescence i s induced by resonance e f f e c t s o f e l e c t r o n s . Using these p r o p e r t i e s we have f a b r i c a t e d novel o p t i c a l devices, i n c l u d i n g a waveguide m o d u l a t o r m o n o l i t h i c a l - l y i n t e g r a t e d w i t h a MQW l a s e r d i o d e and a v o l t a g e - c o n t r o l l e d b i s t a b l e l a s e r . ACKNOWLEDGEMENT

The a u t h o r s a r e g r a t e f u l t o Dr. H. Iwamura, Or. Y. Hirayama, and Mr. T. Saku f o r t h e i r c o l l a b o r a t i o n s i n growing t h e samples and f a b r i c a t i n g t h e devices. They a l s o thank P r o f . K. 'von K l i t z i n g f o r v a l u a b l e d i s c u s s i o n on resonance e f f e c t s i n super- l a t t i c e s and H. Schneider f o r c r i t i c a l r e a d i n g o f t h e manuscript. P a r t o f t h i s work was sponsored b y t h e S t i f t u n g Volkswagenwerk and b y t h e Bundesministerium f u r Forschung und Technologie.

REFERENCES

/ 1 / Mendez, E.E., Bastard, G., Chang, L.L., Esaki, L., Morkoc, M., and Fischer,R., Phys. Rev. 826, (1982) 7101.

/ 2 / M i l l e r , D . A T , Chemla, D.S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C.A., Phys. Rev. L e t t .

53,

(1984) 2173.

/ 3 / Wood, T.H., Burrus, C.A., M i l l e r , D.A.B., Chemla, O.S., Damen, T.C., Gossard, A.C., and Wiegmann, W . , Appl. Phys. L e t t . 44, (1984) 16.

/ 4 / M i l l e r , D.A.B., Chemla, D.S., Oamen T.C., G s s a r d , A.C., Wiegmann, W., Wood, T.H., Burrus, C.A., Appl. Phys. L e t t . 45, (1984) 13.

/ 5 / Tarucha, S., H o r i k o s h i , Y., and O k a m o t c H., Jpn. J. Appl. Phys. 22, (1983) L482. Iwamura, H., Tarucha, S., Saku, T., H o r i k o s h i , Y., and Okamzo, H., Jpn. J. Appl. Phys. 22, (1983) L751.

/ 6 / Tarucha, S., IwamuraTH., Saku, T., and Okamoto, H., Jpn. J . Appl. Phys. - 24, (1985) L442.

/ 7 / Tarucha, S., and Okamoto, H., Appl. Phys. L e t t . 48, (1986) 1.

/ 8 / Tarucha, S., and Okamoto, H., Appl. Phys. L e t t .

m,

(1986) 543.

/ 9 / Polland, H.-J., S c h u l t h e i s , L., and Kuhl, J., P h E . Rev. L e t t .

55,

(1985) 2610.

/ 10 / Kash, A., Mendez, E.E., and Morkoc, H., Appl., Phys. L e t t . 46 (1985) 173.

/ 11 / Masumoto, Y., Tarucha, S., and Okamoto, H., Phys. Rev. 8 3 3 , 7 1 9 8 5 ) 5961.

/ 12 / I s h i b a s h i , T., Tarucha, S., and Okamoto, H., I n t . Symp. GaAs and R e l a t e d Compounds, Oiso, 1981, I n s t . Phys. Conf. Ser. 63, (1982) 587.

/ 13 / Tarucha, S., Kobayashi, H., H o r i k o s h i , Y., andakamoto, H., Jpn. J. Appl.

Phys. 23, (1984) 874.

/ 14 / Miller,-D.A.B., Chemla, D.S., Smith, P.W., Gossard, A.C., and Tsang, W.T., Phys. Rev. B28 (1982) 96. Chemla, D.S., M i l l e r , D.A.B., Smith, P.W., Gossard, A.C., and WEmann, W., IEEE J. Quantum E l e c t r o n .

QW-20,

(1984) 265. S c h m i t t -

Rink, S., Chemla, D.S., and M i l l e r , O.A.B., Phys. Rev. B32 (1985) 6601.

/ 15 / Iwamura, H., and Okamoto, H., S p r i n g M e e t i n g Jpn. Soc.

El.

Phys. (1987).

/ 16 / H o r i k o s h i , Y., F i s c h e r , A., and Ploog, K., Phys. Rev.

831,

(1985) 7859.

/ 17 / Capasso, F., Mohammed, K., and Cho, A.Y., Appl

.

Phys. L e t t . 48, (1986) 478.

/ 18 / F u r u t a , T., Hirakawa, K., Yoshino, I., and Sakaki

,

H., Jpn. Appl

.

Phys.

25,

(1986) L151.

/ 19 / Lasher, G.L., S o l i d - S t a t e E l e c t r o n . 7, (1964) 707.

/ 20 / Kawaguchi, H. and Iwane, G., E l e c t r o n . L e t t . 17 (1981) 167.

/ 21 / Harder, Ch., Lau, K.Y., and Y a r i v , A., Appl. m y s . L e t t .

40

(1982) 124.

/ 22 / Okamoto, H., Jpn. J. Appl. Phys.

6

(1987) 315.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to