• Aucun résultat trouvé

Seeing is better than believing: visualization of membrane transport in plants

N/A
N/A
Protected

Academic year: 2021

Partager "Seeing is better than believing: visualization of membrane transport in plants"

Copied!
9
0
0

Texte intégral

(1)

membrane

transport

in

plants

Markus

Geisler

Recently,theplanttransportfieldhasshiftedtheirresearch

focustowardamoreintegrativeinvestigationoftransport

networksthoughttoprovidethebasisforlong-rangetransport

routes.Substantialprogresswasprovidedbyofaseriesof

eleganttechniquesthatallowforavisualizationorpredictionof

substratemovementsinplanttissuesincontrasttoestablished

quantitativemethodsofferinglowspatialresolution.These

methodsarecriticallyevaluatedinrespecttotheir

spatio-temporalresolution,invasiveness,dynamicsandoverall

quality.Currentlimitationsoftransportroutepredictions-based

ontransporterlocationsandtransportmodelingare

addressed.Finally,thepotentialofnewtoolsthathavenotyet

beenfullyimplementedintoplantresearchisindicated.

Address

UniversityofFribourg,DepartmentofBiology,CheminduMuse´e10,

CH-1700Fribourg,Switzerland

Correspondingauthor:Geisler,Markus(markus.geisler@unifr.ch)

Introduction

Becauseyouhaveseen me,youhavebelieved;

blessedarethosewhohavenotseenandyethavebelieved.1 John20:29

Thecatalyzedmovementofsubstratesacrossmembranes, commonly referred to as transmembrane transport, has always been a hotspotin plantbiology [1].Throughout

the 80s and90s, the planttransport community concen-trated mainly on biochemical characterization of single transporterisoforms with afocus ona kinetic level (the ‘queen of transport experiments’ [2]). In the last two decades,deepinsightsintotransporterexpression, traffick-ing, regulation and their role in plant physiology were provided.Recently,plantscientistshaveshiftedtheir inter-esttowardamoreintegrativeinvestigationof long-range transportroutesortransportnetworks[3–5]thatisofwater, nutrientsorsomehormones(foranoverview,seeFigure1). Transportwasclassicallyquantifiedonawholeorganor plantlevelusingradiotracers,externalmicroelectrodesor cell-type specific analyses of transport substrates (for reviews on these methods, see Ref. [6]). While these techniquesallowfor ahighleveloftemporalresolution, theyare limited inthe spatialaspect.Therefore,direct andindirecttechniqueshavebeendevelopedinorderto image either local substrate concentrations or intra and intercellulartransportinplanta.Here,wepresentcurrent methods that allow for a quantitative visualization of transmembranetransportandcomparethemwith classi-caltransport measurementsandinsilicotechniques.

Inference

of

transport

routes

by

transporter

imaging

For several substrates, putative transport routes have been deduced from polar transporter localizations [3,5,7–10]. These cell-biological approaches have been partiallybackedupbyanalysesofreporterexpressionand transportmodeling(seebelow).

Thebest-understoodexampleisprobablythepolar trans-port of the auxin, indole-3-acetic acid (IAA), in the Arabidopsis root tip provided by a network of plasma membrane localized im- and exporters of the ABCB, AUX1/LAX and PIN-FORMED (PIN) families [3,11]. Differentdegreesoftissue-specificandpolarlocationsof members of these families have been established by immunolocalizationand fluorescentproteinfusions(see

Figure3)thatareinlinewithcurrentmodelsofareversed fountainauxinfluxpattern(seeFigure1;[8]).Similarly, theboricacidchannel,NIP5;1,and theboronexporter, BOR1, have been localized in a polar fashion in the plasmamembranesfacing towardsoilandstele, respec-tively, and are therefore suspected to function in the uptake and translocationof boron to support growth of various plant species (see Figure 1;[7]). Likewise,the ABCG-typeSLtransporter,PDR1,exhibitsan asymmet-ricallocalizationintheplasmamembraneofpetuniaroot

1Pleasenotethatthisbiblecitationisnotatallmeantasareligious

statement but a stylistic element acknowledging the effort of the

transportfieldtopromotetechniquesallowingforaquantitative

visuali-zationoftransport,whichisthecontentofthisreview.

(2)

tips indicatingadirectionalcell-to-celltransportprocess at least in this region of the root (see Figure 1; [5]). However, presenceof atransporteronacellular subdo-maindoes notautomaticallyreflect localactivitylevels. Moreover,thisapproachfailedsofarinthepredictionof transport routes for non-polartransporters known to be involvedin long-distancetransport[12].

Quantification

of

transporter

activity

or

regulation

Abetterproxymightbetherecentlydevelopedtransport activity sensors, such as AmTrac and MepTrac [13,14], NiTrac1 and PepTrac [15]. Although these transport

activitysensorsdonotstrictlymonitortransport,andhave not yet been tested in planta, they will most likely become valuable, especially in the context of analytes for whichnotracersexist.

An alternative approach might be imaging transporter regulation, such as by protein phosphorylation [16]. AGCkinaseswereshowntophosphorylateandthusalter transport activitiesofauxin transportersof thePINand ABCBfamilies[16–20],buthavenotyetbeenimagedin planta. A future alternative might be offered by novel GFP-based kinase reporters, called SPARK(Separation of Phases-based Activity Reporter of Kinase). SPARK

Figure1

cytokinins strigolactones

abscisic acid auxin boron calcium

stomata

embryo

vasculature

lateral bud

root tip

primary root

Current Opinion in Plant Biology

Illustrationoftrans-membrane,long-rangetransportroutesinplants.

Exemplarylong-rangetransportroutesofindicatedphytohormones,boronandcalciumareindicatedbyarrows.Notethatonlylong-distance

signalingofCa2+whereitactsasasecondmessengerbutnotasanutrientisindicated.Incontrast,boronpathsareindicatingnutritionroutes.

Overallfigureoutlineisbasedon[5];usageofArabidopsismodelwasgrantedbyMaryLouGuerinot.

(3)

metabolites) are by nature fluorescent and can be fol-lowed directly, most are not and thus need either be applied as a radiolabeled or fluorescent version (see below)orrequireanindicatingtool[22].Invivo biochem-istry[23]hasprovideduswith aseriesof cell-biological techniques that allow for an imaging of either local substrate concentrations or intraand intercellular trans-portinplanta(seeFigure2).However,itisimportantto keepinmindthatmostofthesetechniquesindicatelocal substrateconcentrationsthatarethenusedasaproxyfor transport.

Chemicalindicators

Chemical indicators are fluorescent molecules that respond to the binding of substrates by changing their fluorescenceproperties([24];seeFigure2).Theyexistfor differentmetalcations(suchaszinc,potassium,sodium, magnesium, calcium), protons and chloride and their loading and membrane targeting has been optimized bygenerating hydrophobicversionsthatare cytoplasmi-callycleavedandactivated.Inplants,themostcommonly used pH-indicator and calcium-indicator are BCECF

indicatorsinplantcellsisthatdyeloadingishinderedby the cell wall or compartmentalization in organelles (mainlyvacuoles)avoidinganequaldistribution[22,26]. Therefore,geneticallyencoded(GE)indicators,reporters andsensors[27–30]havebeendevelopedthatindirectlyor directly indicate local substrate concentrations, respec-tively (Figure 2). They allow for selective targeting to subcellular compartments (by insertion of signal sequences)ortocelltypes(bychoiceofpromoters)[31].

Reporters

Expression-based(orsignaling)reportersconsistof natu-ralorsyntheticpromotersfusedtoareportergene.Many butnotallplant hormones,includingauxin,ABA, cyto-kinin(CK),ethylen,jasmonicacid(JA)andsalicylicacid canbevisualizedin this manner(for reviews,seeRefs. [23,27,30–32]).Sincepublicationoftheprototype artifi-cialauxin-responsiveelement,DR5[33],severalvariants havebeendeveloped (forareview,seeRef.[22]).DR5 activation is slow (ca. 2hour) and reflects an auxin

Figure2

Chemical Indicator

Reporter Sensor Fluorescent substrate Click-chemistry Imaging of radioactivity Principle

Readout type Change of fluorescent properties Promoter activation, reporter degradation FRET, change of fluorescence intensity

Fluorescence Fluorescence (Digital) Radiography, Micro-autoradiography Dynamic readout + +/-1 + + (+) -Subcellular resolution +/- - (+) + + +/-Calibration +/- +/-1 + - - -Noninvasive + (+)2 (+)2 + -

-Current Opinion in Plant Biology

Comparisonofmethodsusedtoderivetransmembrane,long-rangetransportinplants.

Indicatedapproachesareevaluatedwithrespecttotheirreadouttypeanddynamicrange,theirinvasiveness,theirofferedsubcellularresolution

andtheircorrelationbetweentheamountofdetectedtargetmoleculeandreadout(calibration).Targetmoleculesareinblue;fluorescentproteins

aredepictedasroundedrectangles.Notethatprinciplesareillustrativeexamplesandmightbenotcomplete;bracketsindicatelimitationsof

methods.FigureoutlineisinspiredbyRef.[27].1Dynamicrangeandcalibrationvariesbetweenreportertypes;2Reporterandsensorsrequire

geneticaccessandarethusnotsuitablefornon-modelplants(fordetails,seetext).

(4)

response maximum,and is thusmainly suitable for the roottip [22,34,35].

Reporters-basedontheprinciple of SCF-mediated pro-teasomaldegradationof transcriptionalrepressorsinthe signaling pathway of several hormones weredeveloped increasing the temporal (but also spatial) resolution of expression-based reporters. The blueprint consisted of theDIIdegronsequenceofAux/IAArepressorproteinsof auxin signaling, which was fused to a nuclear targeted VENUS [36].This moduleprovidesa decreaseof DII-VENUS reporterfluorescence in tens of minutes upon auxin perception and is therefore suitable to image unequal auxindistribution in bending roots [36]. Com-biningthedegronmotivefusionwithanauxin-insensitive reportergeneresultedinratiometricreporters.For exam-ple,R2D2,nowofferssemi-quantitativeauxinimagingat very reasonable spatio-temporalresolution[37,38,39]. Degradation-based reporters have also been developed forGA(GFP-RGA;[40]),JA(Jas9-VENUS;[41])andSL (StrigoQuant; [42]).

Despite tremendous improvements in expression and degradation-based reporters with respect to speed and sensitivity,theirindirectmodeofactionallowsonlyfor— at best — semi-quantitative in vivo imaging of local substrate concentrations.Further,reportersdisplayfinal outputs that integrate over transport, biosynthesis and

metabolism. An evenmore limiting aspectis that their sensitivity isprimarilydeterminedbythe expressionof the employed signaling machinery and thus cell and tissue-specific[34].

Sensors

Aseriesofgeneticallyencodedactivitysensorsthatareable to reportdirectly andwithinseconds changesin calcium, proton, energy metabolite, heavy metal or macronutrient concentrations have been established [27,31]. Like reporters, sensorareusedtoassessresidentsubstrateconcentrations thatarethenoftenequalizedastransportactivities[27,43]. The photoprotein aequorin, from jellyfish has been widelyusedinplantsformorethantwodecadesinorder tostudycalciumdynamicsbymeansofemitted biolumi-nescence[44].However,duetoitslowcellularsensitivity, aequorin was slowly replaced by FRET-based sensors (Figure 2; [45]), such as Cameleon [24]. Versions of Cameleon with improved calcium binding affinity and dynamic range [23,27,28] (YC3-60, [46] and YC-nano), wererecentlyusedfordemonstratinglong-rangecalcium signalingintherootandbetweenshootandroot, respec-tively [47–49]. The intensiometric calcium sensor, R-GECO1, exhibits anincreased (>10)sensitivity com-pared with YC3.6 in response to elicitors of the innate immune response to pathogens, flagelin22 and chitin [50],andR-wasusedtoimageauxin-inducedcalcium

Figure3 measured DII predicted DII measured IAA IAA influx WT root geometry WT root geometry transporter location

lrc

ci

5 0 190 0

tip

Current Opinion in Plant Biology

148

0 0.0

14.2

Comparisonofimaged,modeledandmeasuredauxintransportintheroottip.

MeasuredDII-VENUSsignalsandtransporterlocations(here:PINs)wereextractedfromconfocalimagesandarecomparedwithmodeled

DII-VENUSdistributionandpredictedauxinfluxes(alltakenfromRef.[89]).Asreference,imagedauxin(transporter)distributionsarecomparedwith

heatmappresentationofIAAinfluxprofilesmeasuredusinganIAA-specificmicroelectrode[97]orofhigh-resolutionIAAcontentsmeasuredby

MSaftercell-typesorting[97,98].Notethatthelattertwoquantitativetransporttechniquesarenotdescribedinthisreview.Celltypeslabeledon

theschematicsofwild-typerootgeometry(leftandright)aregiven;foridentityrefertoRefs.[89]and[97].Notethatthealignmentofschematics

isbasedonpositionofroottips,columellainitials(ci)andendoflateralrootcaps(lrc).

(5)

plasmic and apoplastic pH [28]. Recently, a pHusion variant allowed measuring pH in and outside of the TGN/early endosome network demonstrated the role oftheV-ATPaseforproteinsecretion[54].

The Frommer group was driving forward the develop-ment of FRET sensors for of a wide range of sugars [23,27,31]. Beside a quantification of intracellular con-centrations, these sensors also permitted the kinetic characterization of individual sugar transporters [1] and theidentification of novel transporters[55].Sensors for transportofATP;[56,57],ROS,heavymetals(eCALWY) (for references, see Refs. [27,31]) and different macro-nutrients have been developed (for a review, see Ref. [58]). Very recently, ATP sensing in living plant cells usingtheFRET-basedsensor, ATeam1.03-nD/nA[56], revealed concentration gradients in plant tissues and stress-relateddynamicsofenergyphysiology[57]. Hormoneimagingbysensorshasbeenachievedfirstfor ABA: two independent groups have developed sensors consisting of a FRET pair that is linked by an ABA-responsive sensory module, called ABACUS [59] and ABAleon[60],respectively.Bothsensorshaveprovento beusefulindemonstratingkineticsofABAtransportand dynamicsupon applicationof externalABA,[30,32,59]. ThenuclearlocalizedGAsensor,GIBBERELLIN PER-CEPTIONSENSOR1(GPS1),allowedsensingof nano-molarconcentrationsinArabidopsis[61].

The intensiometric calcium sensor, R-GECO1, was shown to exhibit an increased (>10) sensitivity com-paredwithclassicalYC3.6inresponsetoelicitorsof the innate immune response to pathogens, flagelin22 and chitin[50].R-GECO1wasusedtoimageauxin-induced calciumgradientsinroot-hairtipsbut alsolong-distance calciumwavesbetweenrootcells[51].

Fluorescentlylabelledsubstrates

Fluorescentlylabeledsubstrateshaveonlyrecentlybeen used in plants (Figure 2). The fluorescent BR analog, Alexa Fluor 647-castasterone (AFCS) [62], GA-fluores-cein [63] and different fluorescent auxins [34,35,64] have been developed. Moreover, a quantum dot-based fluorescent probe, CdTe-JA, was employed to labelJA bindingsitesintissuesectionsofmungbeanand Arabi-dopsisseedlings[65].Recently,differentfluorescentSL analogsweresuccessfully designed:while EGO10A-BP and CISA-1 [66] are constitutively fluorescent variant making it first choice for transport studies,

designedfluorescent auxinanalogsto be actively trans-portedbuttobeinactiveforauxinsignaling[34],while veryrecentlynewfluorescentlylabeledauxinsexhibitan anti-auxinactivity[64].Theformerisimportantbecause auxinsignaling is knownto influenceauxin transporter expressionand location[34].NBD-IAA (7-nitro-2,1,3-benzoxadiazole-IAA)revealedasimilarauxindistribution as found with DII-based reporters [34] but lacked signals in the quiescent center known to be mainly produced by auxin biosynthesis and not transport. A limitationof NBD-auxins is thatthey are for unknown reasons only working in root and not in shoots [34]. Recently,NBD-NAA,whosenuclearimportisrestricted, wasusedasatooltodissectcytoplasmicandERdelivery of nuclear auxin concentrations [39]. This indicates theirusefulnessinanalyzingintracellulartransport,which isusuallyhardtouncoverusingclassicaltools.

Click-chemistryoftransportsubstrates

Inanimalmodels, theproblemofbulkyfluorescenttags interferingwithbindingtotransporter(orreceptor) pro-teinshasbeen partiallysolvedby‘clickchemistry’[68]. This techniquetriggers theselective, covalent connec-tionbetweenamoleculeofinterestandadetectiontagin situ(Figure2).Avarietyoflabelingtagscanbeusedthen formicroscopyoranalytics.

Toourknowledgeonlyonestudyreportedonthe distri-bution of a mobile substrate using this technology in plants: the azido derivative of indole-3-propionic acid (IPA, an active auxin), IPA-N3, was used as an auxin

tracer and provided some evidence of the presence of auxin binding sites in the apoplast of elongating cells [69]. IPA-N3 was detected mainly in the outer cell

layersoftheroot tipand doesthus notfullyreflectthe auxinaccumulationsites.Thisseemsto belessa pene-tration but a fixation problem [69]. However, these technical issues will be overcome and as such ‘click chemistry’ mightsoonbe themethodofchoice despite thefactthatitrequiresafixationsteppreventinginvivo imaging.

Imagingofradiolabeledsubstrates

Radio-autographicanalysisofthedistributionoftransport hasalongtradition inplants (e.g.[70]).Recently,polar auxintransportofArabidopsisstemsegmentswas visual-ized by detecting 14C-IAA with a double-sided silicon strip detector [71].In recent years, the micro-autoradi-ographymethod(MAR)hasbeenestablishedtovisualize thedistributionof109Cdand 33Pwithinsectionsofrice

(6)

tissues [72].Currently, onlyfixed materialcanbeused, preventinganydynamicinformationaboutsubstrate dis-tributions.As14C(and3H)emitbetaparticlesatverylow energy,mosttransportsubstratescouldbelabelledwith suitable isotopes for autoradiography, which would expand the application properties of MAR (Figure 2; [72]).

Immunolocalizationoftransportsubstrates

ABA[73,74],IAA[22]andCK[75]havebeenvisualized in differentplantspeciesbywhole-mount immunoloca-lization using polyclonal and monoclonal antisera ( Fig-ure2;[76]).Despiterequiringoffixation,someofthese antisera have become successful tools for the in situ localization of local maxima[75,77] or thetranslocation ofhormonesinplants[78–82].Anti-IAAantibodysignals werereportedtorecapitulatesignalsfoundwiththeDR5 reporterinthematureandlateralroot[77,79].However,a partofthesepublicationshavebeenheavilydebatedwith respecttotheirinterpretationandtechnicalquality[83].

Modeling

of

transmembrane

transport

over

tissues

Early auxin transportmodels, called flux-basedmodels, wereinspiredbyTsviSachsinthelate1960sand hypoth-esized that the flux of auxin through cell membranes reinforces itself [84,85]. The integration of experimen-tallydeterminedpatternsoftransporterlocalizationinto simulations confirmed this in Arabidopsis [86–88,89]. Gradient-based models were introduced [90,91], pro-vided support for the assumed roles of auxin maxima in shootdevelopment(foran excellentreview,seeRef. [92]).

The primarymotivationof mostofthesestudieswasto predict the movement of a transported substrate (here: auxin;Figure3)withinadevelopingtissue.Inthisregard, thedevelopmentoftheOnGuardplatformformodeling transport processesin stomata has provensuccessful in uncoveringpreviouslyunexpectedfeaturesofguardcell physiology [93].However, today’s interest lies more in testing if a hypothesized role for a substrate can be supportedbyinsilicodata[94].Arecentstudyemploying data-driven modeling of intracellular auxin fluxes between theER or cytoplasm and thenucleus, respec-tively, indicated that the ER has a dominant role in controlling nuclearauxin uptake[39]. This and other approachesarguethatcomputermodelscanprovide(or even go beyond) a ‘proof of principle’. However, any conclusions-basedonhuman-made,and as such subjec-tive, algorithms will always require an experimental validation.

Conclusions

and

perspectives

Recently, the plant transport field has made a major conceptual shift away from a single transporter analysis toward a more integrative transporterapproach, aimed at

exploring transporter networks in order to understand theirinterplayandtheirincorporationintoplant physiol-ogy.Thisprogresshasbeenmadepossiblebythe devel-opmentofaseriesoftechniquesthatallowvisualization of local concentrations and movements of substrates in plant tissues. While early quantitative methods (like radiolabeled substrates, micro-electrodes and cell-type specificanalysesoftransportsubstrates)providetemporal resolution,visualizationoftransportbymeansofchemical indicators, fluorescent analogs and especially reporters and sensorsprovides goodspatial information with rea-sonable resolution for many substrates.In that respect, doubting Thomas was right: seeing is better than believing.

Mosttools havetheirindividualadvantagesand limita-tions(seeFigure2).Someallowonlyfor (semi)-quanti-tative analyses withhigh spatial butonlylowtemporal resolution (such as reporters and sensors), while some indicators, sensorsorfluorescent analogswerefoundto interferewithplantphysiologybyhighsubstratebinding affinities or by competing with endogenous signaling [24,32,57].However, thesekinds ofproblemsmaytoa certaindegreebeovercomebyusingnon-plantsubstrate binding domains[95].

As usual, newtechnology and insightprovidesus with new challenges. For example, the transfer of sensors from singlecellapproaches totheplantlevel hasbeen difficult due tothewideaffinity/sensitivityrange (nM-mM) that is required for some substrates. A solution might be the co-expression of spectrally non-overlap-ping, intensiometric sensors with different affinity ranges. Further, in contrast to intercellular transport, transmembrane transportbetweensubcellular compart-ments hasproven difficult tomeasure directly. Inthat respect, a directed targeting of sensors to individual subdomains of interest as shown recently [54] and design of selective permeable fluorescent dyes [39] willbehelpful.

Another issueis theinadequate separationof transport from signaling/biosynthesisbysomeimagingtools,like reporters orsensors. In that respect it appearsas if we have not yet fully used the potential of fluorescent transport substrates or click chemistry. In the future, structure-activity design will allow us topredict fluor-ophore positions and linker length [63,64] in order to direct uptake, stability and distribution of fluorescent substrates [96].

Acknowledgements

TheauthorwouldliketothanktoMartindiDonatoandAure´lienBaillyfor

discussionandcomments.Theconstructiveinputofreviewersandeditorsis

highlyappreciated.WorkinthegeislerLabiscurrentlyfundedbytheSwiss

NationalFunds(project31003A_165877/1)andtheEuropeanSpace

Association(CORA-GBFprojectLIRAT).

(7)

2. TannerW,CaspariT:Membranetransportcarriers.AnnuRev PlantPhysiolPlantMolBiol1996,47:595-626.

3. ParkJ,LeeY,MartinoiaE,GeislerM:Planthormone

transporters:whatweknowandwhatwewouldliketoknow. BMCBiol2017,15:93.

4. KangJ,LeeY,SakakibaraH,MartinoiaE:Cytokinintransporters: GOandSTOPinsignaling.TrendsPlantSci2017,22:455-461.

5. BorghiL,KangJ,KoD,LeeY,MartinoiaE:TheroleofABCG-type ABCtransportersinphytohormonetransport.BiochemSoc Trans2015,43:924-930.

6. GeislerM,WangB,ZhuJ:Auxintransportduringroot gravitropism:transportersandtechniques.PlantBiol(Stuttg) 2014,16(Suppl.1):50-57.

7. YoshinariA,TakanoJ:Insightsintothemechanismsunderlying boronhomeostasisinplants.FrontPlantSci2017,8:1951.

8. NaramotoS:Polartransportinplantsmediatedbymembrane transporters:focusonmechanismsofpolarauxintransport. CurrOpinPlantBiol2017,40:8-14.

9. KangJ,ParkJ,ChoiH,BurlaB,KretzschmarT,LeeY,MartinoiaE: PlantABCtransporters.ArabidopsisBook2011,9e0153.

10. AdamowskiM,FrimlJ:PIN-dependentauxintransport:action, regulation,andevolution.PlantCell2015,27:20-32.

11. GronesP,FrimlJ:Auxintransportersandbindingproteinsata glance.JCellSci2015,128:1-7.

12. GeislerM,AryalB,diDonatoM,HaoP:AcriticalviewonABC transportersandtheirinteractingpartnersinauxintransport. PlantCellPhysiol2017,58:1601-1614.

13. AstC,DeMicheleR,KumkeMU,FrommerWB: Single-fluorophoremembranetransportactivitysensorswith dual-emissionread-out.eLife2015,4e07113.

14. DeMicheleR,AstC,LoqueD,HoCH,AndradeS,LanquarV, GrossmannG,GehneS,KumkeMU,FrommerWB:Fluorescent sensorsreportingtheactivityofammoniumtransceptorsin livecells.eLife2013,2e00800.

15. HoCH,FrommerWB:Fluorescentsensorsforactivityand regulationofthenitratetransceptorCHL1/NRT1.1and oligopeptidetransporters.eLife2014,3e01917.

16. AryalB,LaurentC,GeislerM:Learningfromeachother:ABC transporterregulationbyproteinphosphorylationinplantand mammaliansystems.BiochemSocTrans2015,43:966-974.

17. ZourelidouM,AbsmannerB,WellerB,BarbosaIC,WilligeBC, FastnerA,StreitV,PortSA,ColcombetJ,delaFuentevan BentemSetal.:AuxineffluxbyPIN-FORMEDproteinsis activatedbytwodifferentproteinkinases,D6PROTEIN KINASEandPINOID.eLife2014e02860.

18. ChristieJM,YangH,RichterGL,SullivanS,ThomsonCE,LinJ, TitapiwatanakunB,EnnisM,KaiserliE,LeeORetal.:Phot1 inhibitionofABCB19primeslateralauxinfluxesintheshoot apexrequiredforphototropism.PLoSBiol2011,9e1001076.

19. HenrichsS,WangB,FukaoY,ZhuJ,CharrierL,BaillyA, OehringSC,LinnertM,WeiwadM,EndlerAetal.:Regulationof ABCB1/PGP1-catalysedauxintransportbylinker

phosphorylation.EMBOJ2012,31:2965-2980.

20. ArmengotL,Marques-BuenoMM,JaillaisY:Regulationofpolar auxintransportbyproteinandlipidkinases.JExpBot2016, 67:4015-4037.

23. JonesAM,GrossmannG,DanielsonJA,SossoD,ChenLQ, HoCH,FrommerWB:Invivobiochemistry:applicationsfor smallmoleculebiosensorsinplantbiology.CurrOpinPlantBiol 2013,16:389-395.

24. KanchiswamyCN,MalnoyM,OcchipintiA,MaffeiME:Calcium imagingperspectivesinplants.IntJMolSci2014, 15:3842-3859.

25. BraunFJ,HegemannP:Directmeasurementofcytosolic calciumandpHinlivingChlamydomonasreinhardtiicells.Eur JCellBiol1999,78:199-208.

26. PliethC:Plantcalciumsignalingandmonitoring:prosand consandrecentexperimentalapproaches.Protoplasma2001, 218:1-23.

27. UsluVV,GrossmannG:Thebiosensortoolboxforplant developmentalbiology.CurrOpinPlantBiol2016,29:138-147.

28. GjettingSK,SchulzA,FuglsangAT:Perspectivesforusing geneticallyencodedfluorescentbiosensorsinplants.Front PlantSci2013,4:234.

29. LemkeEA,SchultzC:Principlesfordesigningfluorescent sensorsandreporters.NatChemBiol2011,7:480-483.

30. WaliaA,WaadtR,JonesAM:Geneticallyencodedbiosensorsin plants:pathwaystodiscovery.AnnuRevPlantBiol2018, 69:497-524.

31. GrossmannG,KrebsM,MaizelA,StahlY,VermeerJEM,OttT: Greenlightforquantitativelive-cellimaginginplants.JCellSci 2018,131.

32. WaadtR,HsuPK,SchroederJI:Abscisicacidandotherplant hormones:methodstovisualizedistributionandsignaling. Bioessays2015,37:1338-1349.

33. UlmasovT,MurfettJ,HagenG,GuilfoyleTJ:Aux/IAAproteins repressexpressionofreportergenescontainingnaturaland highlyactivesyntheticauxinresponseelements.PlantCell 1997,9:1963-1971.

34.

 HayashiMurphyAS,K,NakamuraMotoseH,S,NozakiFukunagaH,FurutaniS,NishimuraM,AoyamaT,JennessT:AuxinMK, transportsitesarevisualizedinplantausingfluorescentauxin analogs.ProcNatlAcadSciUSA2014,111:11557-11562.

Innovativedesignoffluorescentauxinanalogstobeactivelytransported

buttobeinactiveforauxinsignalingavoidingunwantedauxintransporter

expressionandlocation.UsedtodissectcytoplasmicandERdeliveryof

nuclearauxinconcentrations[45].

35. SokolowskaK,KizinskaJ,SzewczukZ,BanasiakA:Auxin conjugatedtofluorescentdyes—atoolfortheanalysisof auxintransportpathways.PlantBiol(Stuttg)2014,16:866-877.

36. BrunoudG,WellsDM,OlivaM,LarrieuA,MirabetV,BurrowAH, BeeckmanT,KepinskiS,TraasJ,BennettMJetal.:Anovel sensortomapauxinresponseanddistributionathigh spatio-temporalresolution.Nature2012,482:103-106.

37.

 LiaoReportersCY,SmetforsensitiveW,BrunoudandG,quantitativeYoshidaS,measurementVernouxT,WeijersofauxinD: response.NatMethods2015,12:207-210202-210.

Asetofauxinreportersthatallowsensitiveandsemi-quantitative

detec-tionofauxinsignalingandresponsesinplants.DR5v2offersbydual-color

imaginganextendedrangeofauxinresponses,while,R2D2allowsfora

ratiometricanalysisofauxin.

38. WendS,DalBoscoC,KampfMM,RenF,PalmeK,WeberW, DovzhenkoA,ZurbriggenMD:Aquantitativeratiometricsensor fortime-resolvedanalysisofauxindynamics.SciRep2013, 3:2052.

(8)

39.

 BergmannMiddletonAM,S,WendDalBoscoS,WeberC,ChlapW,HayashiP,BenschKIetR,al.:HarzData-drivenH,RenF, modelingofintracellularauxinfluxesindicatesadominant roleoftheERincontrollingnuclearauxinuptake.CellRep 2018,22:3044-3057.

Elegantstudythatbyemployingadata-drivenmodelingofintracellular

auxinfluxesbetweentheERorcytoplasmandthenucleus,respectively,

andafluorescentauxinanalogwithrestrictednuclearpassageindicated

thattheERhasadominantroleincontrollingnuclearauxinuptake.

40. LofkeC,ZwiewkaM,HeilmannI,VanMontaguMC,TeichmannT, FrimlJ:Asymmetricgibberellinsignalingregulatesvacuolar traffickingofPINauxintransportersduringrootgravitropism. ProcNatlAcadSciUSA2013,110:3627-3632.

41. LarrieuA,ChampionA,LegrandJ,LavenusJ,MastD,BrunoudG, OhJ,Guyomarc’hS,PizotM,FarmerEEetal.:Afluorescent hormonebiosensorrevealsthedynamicsofjasmonate signallinginplants.NatCommun2015,6:6043.

42. SamodelovSL,BeyerHM,GuoX,AugustinM,JiaKP,BazL, EbenhohO,BeyerP,WeberW,Al-BabiliSetal.:StrigoQuant:a geneticallyencodedbiosensorforquantifyingstrigolactone activityandspecificity.SciAdv2016,2e1601266.

43. OkumotoS,JonesA,FrommerWB:Quantitativeimagingwith fluorescentbiosensors.AnnuRevPlantBiol2012,63:663-706.

44. ZhuX,FengY,LiangG,LiuN,ZhuJK:Aequorin-based luminescenceimagingrevealsstimulus-andtissue-specific Ca2+dynamicsinArabidopsisplants.MolPlant2013, 6:444-455.

45. HillearyaR,ChoibWG,KimbSH,LimbSH,GilroyS:Senseand

sensibility:theuseoffluorescentprotein-basedgenetically

encodedbiosensorsinplants.CurrOpinPlantBiol2018,46

:32-38http://dx.doi.org/10.1016/j.pbi.2018.07.004.

46. MonshausenGB,MesserliMA,GilroyS:ImagingoftheYellow Cameleon3.6indicatorrevealsthatelevationsincytosolicCa2 +followoscillatingincreasesingrowthinroothairsof Arabidopsis.PlantPhysiol2008,147:1690-1698.

47. ChoiWG,GilroyS:PlantbiologistsFREToverstress.eLife2014, 3e02763.

48. ChoiWG,ToyotaM,KimSH,HillearyR,GilroyS:Salt stress-inducedCa2+wavesareassociatedwithrapid,long-distance root-to-shootsignalinginplants.ProcNatlAcadSciUSA2014, 111:6497-6502.

49. MonshausenGB,MillerND,MurphyAS,GilroyS:Dynamicsof auxin-dependentCa2+andpHsignalinginrootgrowth revealedbyintegratinghigh-resolutionimagingwith automatedcomputervision-basedanalysis.PlantJ2011, 65:309-318.

50.

 KeinathSchumacherNF,WaadtK,KrebsR,M:BrugmanLivecellR,imagingSchroederwithJI,R-GECO1GrossmannshedsG, lightonflg22-andchitin-inducedtransient[Ca(2+)]cyt patternsinarabidopsis.MolPlant2015,8:1188-1200.

Thedirectcomparisonbetweentheratiometricandintensiometric

cal-ciumsensors,YC3.6andR-GECO,revealedahigherdynamicrangefor

R-GECOinresponsetoelicitorsoftheinnateimmuneresponse.

51.

 DindasAl-RasheidJ,ScherzerKAS,PalmeS,RoelfsemaK,DietrichMRG,P,BeckervonMeyerD,BennettK,MullerMJetHM,al.: AUX1-mediatedroothairauxininfluxgoverns SCF(TIR1/AFB)-typeCa(2+)signaling.NatCommun2018,9:1174.

Thecalciumsensor,R-GECO1,wasusedtoimageauxin-induced

cal-cium gradientsinroot-hairtipsbut alsolong-distancecalciumwaves

betweenrootcells.

52. MiesenbockG,DeAngelisDA,RothmanJE:Visualizing secretionandsynaptictransmissionwithpH-sensitivegreen fluorescentproteins.Nature1998,394:192-195.

53.

 Gjettingintra-andKS,extracellularYttingCK,SchulzpHinA,plantsFuglsangusingAT:pHusion,Liveimaginganovelof geneticallyencodedbiosensor.JExpBot2012,63:3207-3218.

The pH sensor, pHusion, allowed for a ratiometric quantification of

cytoplasmicandespeciallyapoplasticpH,demonstratedbythe

immedi-ate alkalinization of the subepidermal apoplast upon external auxin

treatment.

54.

 LuoNeumetzlerY,SchollL,S,KrishnamoorthyDoeringA,ZhangP,VanY,IraniHoutteNG,I,RubboMylleESD,etal.: V-ATPaseactivityintheTGN/EEisrequiredforexocytosisand recyclinginArabidopsis.NatPlants2015,1:15094.

Usageoftheratiometricsensor,pHusion,formeasuringpHinsideand

outsideofTGN/earlyendosomesunveiledtheimportanceofacidification

forsecretionandrecycling.

55. ChenLQ,HouBH,LalondeS,TakanagaH,HartungML,QuXQ, GuoWJ,KimJG,UnderwoodW,ChaudhuriBetal.:Sugar transportersforintercellularexchangeandnutritionof pathogens.Nature2010,468:527-532.

56. ImamuraH,NhatKP,TogawaH,SaitoK,IinoR,Kato-YamadaY, NagaiT,NojiH:VisualizationofATPlevelsinsidesingleliving cellswithfluorescenceresonanceenergytransfer-based geneticallyencodedindicators.ProcNatlAcadSciUSA2009, 106:15651-15656.

57. DeColV,FuchsP,NietzelT,ElsasserM,VoonCP,CandeoA, SeeligerI,FrickerMD,GrefenC,MollerIMetal.:ATPsensingin livingplantcellsrevealstissuegradientsandstressdynamics ofenergyphysiology.eLife2017,6.

58. OkumotoS,VersawW:Geneticallyencodedsensorsfor monitoringthetransportandconcentrationof nitrogen-containingandphosphorus-containingmoleculesinplants. CurrOpinPlantBiol2017,39:129-135.

59.

 JonesGrossmannAM,DanielsonG,FrommerJA,WB:ManojkumarAbscisicSN,acidLanquardynamicsV, inroots detectedwithgeneticallyencodedFRETsensors.eLife2014, 3e01741.

This studyas well as [59] developed thefirst phytohormone (ABA)

sensor. 60.

 WaadtSchroederR,HitomiJI:FRET-basedK,NishimurareportersN,HitomiforC,theAdamsdirectSR,visualizationGetzoffED, ofabscisicacidconcentrationchangesanddistributionin Arabidopsis.eLife2014,3e01739.

Thisstudyaswellas[59]developedthefirstphytohormone(ABA)sensor

61. RizzaA,WaliaA,LanquarV,FrommerWB,JonesAM:Invivo gibberellingradientsvisualizedinrapidlyelongatingtissues. NatPlants2017,3:803-813.

62. IraniNG,DiRubboS,MylleE,VandenBeginJ,Schneider-PizonJ, HnilikovaJ,SisaM,BuystD,Vilarrasa-BlasiJ,SzatmariAMetal.: FluorescentcastasteronerevealsBRI1signalingfromthe plasmamembrane.NatChemBiol2012,8:583-589.

63. ShaniE,WeinstainR,ZhangY,CastillejoC,KaiserliE,ChoryJ, TsienRY,EstelleM:Gibberellinsaccumulateintheelongating endodermalcellsofArabidopsisroot.ProcNatlAcadSciUSA 2013,110:4834-4839.

64. BieleszovaK,ParizkovaB,KubesM,HusickovaA,KubalaM, MaQ,SedlarovaM,RobertS,DolezalK,StrnadMetal.:New fluorescentlylabeledauxinsexhibitpromisinganti-auxin activity.NBiotechnol2018.Jun25.pii:S1871-6784(17)30572-1. doi:10.1016/j.nbt.2018.06.003.[Epubaheadofprint].

65. GaoY,YuY,HuX,CaoY,WuJ:Imagingofjasmonicacid bindingsitesintissue.AnalBiochem2013,440:205-211.

66. RasmussenA,HeugebaertT,MatthysC,VanDeunR,BoyerFD, GoormachtigS,StevensC,GeelenD:Afluorescent alternativetothesyntheticstrigolactoneGR24.MolPlant 2013,6:100-112.

67. KameokaH,KyozukaJ:Spatialregulationofstrigolactone

function.JExpBot2018,69(9April):2255-2264http://dx.doi.org/

10.1093/jxb/erx434.

68. HorisawaK:Specificandquantitativelabelingofbiomolecules usingclickchemistry.FrontPhysiol2014,5:457.

69.

 MravecPicmanovaJ,KracunM,SorensenSK,ZemlyanskayaKK,RuzickaE,K,RydahlWillatsMG,WGT:GuoClickX, chemistry-basedtrackingrevealsputativecellwall-located auxinbindingsitesinexpandingcells.SciRep2017,7:15988.

Firststudyusing‘clickchemistry’inorderimageahormone(auxin)tracer

inplantsprovidingevidenceforthepresenceofauxinbindingsitesinthe

apoplastofelongatingcells.

(9)

microautoradiographicmethodforfresh-frozensectionsto revealthedistributionofradionuclidesatthecellularlevelin plants.PlantCellPhysiol2014,55:1194-1202.

73. PastorACN,AlegreL:Immunolocalizationofabscisicacidby monoclonalantibodiesinLavandulastoechasL.leaves.Plant GrowthRegul1995,16:287-292.

74. SharipovaG,VeselovD,KudoyarovaG,FrickeW,DoddIC, KatsuharaM,FuruichiT,IvanovI,VeselovS:Exogenous applicationofabscisicacid(ABA)increasesrootandcell hydraulicconductivityandabundanceofsomeaquaporin isoformsintheABA-deficientbarleymutantAz34.AnnBot 2016,118(4):777-785.

75. CasanovaE,ValdesAE,FernandezB,MoyssetL,TrillasMI: Levelsandimmunolocalizationofendogenouscytokininsin thidiazuron-inducedshootorganogenesisincarnation.JPlant Physiol2004,161:95-104.

76. PasternakT,TietzO,RappK,BegheldoM,NitschkeR,RupertiB, PalmeK:Protocol:animprovedanduniversalprocedurefor whole-mountimmunolocalizationinplants.PlantMethods 2015,11:50.

77. BenkovaE,MichniewiczM,SauerM,TeichmannT,SeifertovaD, JurgensG,FrimlJ:Local,efflux-dependentauxingradientsasa commonmoduleforplantorganformation.Cell2003, 115:591-602.

78. BouchardR,BaillyA,BlakesleeJJ,OehringSC,VincenzettiV, LeeOR,PaponovI,PalmeK,MancusoS,MurphyASetal.: Immunophilin-likeTWISTEDDWARF1modulatesauxinefflux activitiesofArabidopsisP-glycoproteins.JBiolChem2006, 281:30603-30612.

79. KroukG,LacombeB,BielachA,Perrine-WalkerF,MalinskaK, MounierE,HoyerovaK,TillardP,LeonS,LjungKetal.: Nitrate-regulatedauxintransportbyNRT1.1definesamechanismfor nutrientsensinginplants.DevCell2010,18:927-937.

80. NishimuraT,ToyookaK,SatoM,MatsumotoS,LucasMM, StrnadM,BaluskaF,KoshibaT:Immunohistochemical observationofindole-3-aceticacidattheIAAsyntheticmaize coleoptiletips.PlantSignalBehav2011,6:2013-2022.

81. MettbachU,StrnadM,MancusoS,BaluskaF:Immunogold-EM analysisrevealbrefeldina-sensitiveclustersofauxinin Arabidopsisrootapexcells.CommunIntegrBiol2017, 10e1327105.

82. SchlichtM,StrnadM,ScanlonMJ,MancusoS,HochholdingerF, PalmeK,VolkmannD,MenzelD,BalukaF:Auxin

immunolocalizationimplicatesvesicular neurotransmitter-likemodeofpolarauxintransportinrootapices.PlantSignal Behav2006,1:122-133.

83. RobinsonDG,HawesC,HillmerS,JurgensG,SchwechheimerC, StierhofYD,ViottiC:Auxinandvesicletraffic.PlantPhysiol2018, 176:1884-1888.

87. GrieneisenVA,XuJ,MareeAF,HogewegP,ScheresB:Auxin transportissufficienttogenerateamaximumandgradient guidingrootgrowth.Nature2007,449:1008-1013.

88. PeretB,MiddletonAM,FrenchAP,LarrieuA,BishoppA,NjoM, WellsDM,PorcoS,MellorN,BandLRetal.:Sequentialinduction ofauxineffluxandinfluxcarriersregulateslateralroot emergence.MolSystBiol2013,9:699.

89.

 BandWilsonLR,MH,WellsYuL,DM,LiW,FozardHijaziJA,HIetGhetiual.:SystemsT,FrenchanalysisAP,PoundofauxinMP, transportintheArabidopsisrootapex.PlantCell2014, 26:862-875.

An auxin transport model-based onactual root cell geometries and

subcellularlocalizationsofauxincarrierswastestedusing

DII-VENUS-deriveddata.ThisstudyrevealedthatAUX1/LAXinfluxcarriersarealso

requiredbesideeffluxcarrierstocreatethepatternofauxindistributionat

theroottip.

90. SmithRS,Guyomarc’hS,MandelT,ReinhardtD,KuhlemeierC, PrusinkiewiczP:Aplausiblemodelofphyllotaxis.ProcNatl AcadSciUSA2006,103:1301-1306.

91. JonssonH,HeislerMG,ShapiroBE,MeyerowitzEM,MjolsnessE: Anauxin-drivenpolarizedtransportmodelforphyllotaxis. ProcNatlAcadSciUSA2006,103:1633-1638.

92. VossU,BishoppA,FarcotE,BennettMJ:Modellinghormonal responseanddevelopment.TrendsPlantSci2014,19:311-319.

93. HillsA,ChenZH,AmtmannA,BlattMR,LewVL:OnGuard,a computationalplatformforquantitativekineticmodelingof guardcellphysiology.PlantPhysiol2012,159:1026-1042.

94. KramerEM:Computermodelsofauxintransport:areviewand commentary.JExpBot2008,59:45-53.

95. HeimN,GaraschukO,FriedrichMW,MankM,MilosRI, KovalchukY,KonnerthA,GriesbeckO:Improvedcalcium imagingintransgenicmiceexpressingatroponinC-based biosensor.NatMethods2007,4:127-129.

96. LaceB,PrandiC:Shapingsmallbioactivemoleculesto untangletheirbiologicalfunction:afocusonfluorescentplant hormones.MolPlant2016,9:1099-1118.

97. WangB,BaillyA,ZwiewkaM,HenrichsS,AzzarelloE,MancusoS, MaeshimaM,FrimlJ,SchulzA,GeislerM:ArabidopsisTWISTED DWARF1functionallyinteractswithauxinexporterABCB1on therootplasmamembrane.PlantCell2013,25:202-214.

98. PeterssonSV,JohanssonAI,KowalczykM,MakoveychukA, WangJY,MoritzT,GrebeM,BenfeyPN,SandbergG,LjungK:An auxingradientandmaximuminthearabidopsisrootapex shownbyhigh-resolutioncell-specificanalysisofiaa distributionandsynthesis.PlantCell2009,21(6):1659-1668.

Figure

Figure 3 measured DII predictedDII measuredIAA IAA influxWT rootgeometry WT root geometrytransporterlocation lrc ci 5 0 190 tip 0

Références

Documents relatifs

After some checks on the possible configurations we decided to accept to have only 90% of the fuel present in the reference in our annular fuel bundle. This will allow

The first question lies at the core of our approach: we have assumed that variations in the radial surface density of the gas (and with it, of population of small dust grains) are

Here, we propose a dedicated k-space sampling scheme that can take better advantage of the available signal life- times T 2 ∗ and is more immune to gas diffusion-induced

Il m’en fallait plus pour me convaincre d’échanger nos alliances orthodoxes sur l’autel des Dieux géorgiens, surtout si cette alliance ne pouvait se dissoudre avant

Significance of a multiple biomarkers strategy in- cluding endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary

I. Ciocio, et al.. A measurement of Lorentz angle and spatial resolution of radiation hard silicon pixel sensors. Nuclear Instruments and Methods in Physics Research Section

In particular, we show tracking of lipid molecules in supported lipid bilayers (SLBs), tracking of gold nanoparticles with diameters as small as 5 nm and at frame rates close to 1

However we need to use the original signal in each case for accurate positioning, so we have to be able to filter out the interfering signals with the help of different