• Aucun résultat trouvé

IITBombay ∼ dolbeaulCeremade,UniversitéParis-DauphineOctober7,2019 JeanDolbeaulthttp://www.ceremade.dauphine.fr/ Hypocoercivity

N/A
N/A
Protected

Academic year: 2022

Partager "IITBombay ∼ dolbeaulCeremade,UniversitéParis-DauphineOctober7,2019 JeanDolbeaulthttp://www.ceremade.dauphine.fr/ Hypocoercivity"

Copied!
80
0
0

Texte intégral

(1)

Jean Dolbeault

http://www.ceremade.dauphine.fr/∼dolbeaul Ceremade, Université Paris-Dauphine

October 7, 2019 IIT Bombay

(2)

Outline

From ϕ-entropies to H1 hypocoercivity Bϕ-entropies and diffusions

Bϕ-hypocoercivity (H1 framework)

An L2 abstract result and mode-by-mode hypocoercivity BAbstract statement, toy model, global L2 hypocoercivity result BDiffusion limit, application to the torus and a more numerical point of view

BDecay rates in the Euclidean space without confinement Diffusion and kinetic transport with very weak confinement

The Vlasov-Poisson-Fokker-Planck system: linearization and hypocoercivity

(3)

From ϕ-entropies to H 1 hypocoercivity

BSome references of related works (Chafaï 2004),(Bolley, Gentil 2010) (Baudoin 2017)

(Monmarché),(Evans, 2017)

(Arnold, Erb, 2014),(Arnold, Stürzer), (Achleitner, Arnold, Stürzer, 2016),(Achleitner, Arnold, Carlen, 2017),(Arnold, Einav, Wöhrer, 2017)

BIn collaboration with X. Li

(4)

Definition of the ϕ-entropies

E[w] :=

Z

Rd

ϕ(w)dγ

ϕis a nonnegative convex continuous function onR+ such that ϕ(1) = 0 and 1/ϕ00is concave on (0,+∞):

ϕ00≥0, ϕϕ(1) = 0 and (1/ϕ00)00≤0 Classical examples

ϕp(w) :=p−11 wp−1−p(w−1)

p∈(1,2]

ϕ1(w) :=w logw−(w−1) The invariant measure

=e−ψdx

whereψis apotentialsuch thate−ψ is in L1(Rd,dx) is a probability measure

(5)

Diffusions

Ornstein-Uhlenbeck equationor backward Kolmogorov equation

∂w

∂t =Lw:= ∆w− ∇ψ· ∇w

− Z

Rd

(Lw1)w2= Z

Rd

∇w1· ∇w2w1,w2∈H1(Rd,dγ) 1 =

Z

Rd

w0= Z

Rd

w(t,·) and limt→+∞w(t,·) = 1 d

dtE[w] =− Z

Rd

ϕ00(w)|∇xw|2=:−I[w] (Fisher information) If for some Λ>0: entropy – entropy production inequality

I[w]≥ΛE[w] ∀w∈H1(Rd,dγ) E[w(t,·)]≤E[w0]e−Λtt≥0 Fokker-Planck equation: u= converges tou?=γ

∂u

∂t = ∆u+∇x·(u∇xψ)

(6)

Generalized Csiszár-Kullback-Pinsker inequality

(Pinsker),(Csiszár 1967),(Kullback 1967),(Cáceres, Carrillo, JD, 2002)

Proposition

Let p∈[1,2], w∈L1∩Lp(Rd,dγ)be a nonnegative function, and assume thatϕC2(0,+∞)is a nonnegative strictly convex function such thatϕ(1) =ϕ0(1) = 0. If A:= infs∈(0,∞)s2−pϕ00(s)>0, then

E[w]≥22pAminn

1,kwkp−2Lp(Rd,dγ)

okw−1k2Lp(Rd,dγ)

(7)

Convexity, tensorization and sub-additivity

Z

Rdi

ϕ00(w)|∇w|2i =:Iγi[w]≥ΛiEγi[w] ∀w∈H1(Rdi,dγi)

Theorem

If dγ1 and dγ2 are two probability measures on Rd1×Rd2, then Iγ1⊗γ2[w] =

Z

Rd1×Rd2

ϕ00(w)|∇w|212

≥min{Λ1,Λ2}Eγ1⊗γ2[w] ∀w∈H1(Rd1×Rd2,dγ)

Iγ1γ2[w] = Z

Rd2

Iγ1[w]2+ Z

Rd1

Iγ2[w]1

Eγ1⊗γ2[w]≤ Z

Rd2

Eγ1[w]2+ Z

Rd1

Eγ2[w]1w∈L1(dγ1γ2)

(8)

Perturbation (Holley-Stroock type) results

Withw:=R

Rdw dγ, assume that Λ

Z

Rd

ϕ(w)dγϕ(w)

≤ Z

Rd

ϕ00(w)|∇w|2w∈H1(dγ) and, for some constantsa, b∈R,

e−be−a Lemma

Ifϕis a C2 function such thatϕ00>0andwe:=R

Rdw dµ /R

Rddµ, then

ea−bΛ Z

Rd

ϕ(w)ϕ(w)e −ϕ0(w)(we −w)e

Z

Rd

ϕ00(w)|∇w|2

(9)

Entropy – entropy production inequalities, linear flows

On a smooth convex bounded domain Ω, consider

∂w

∂t =Lw:= ∆w− ∇ψ· ∇w, ∇w·ν = 0 on ∂Ω d

dt Z

wp−1

p−1 =−4 p

Z

|∇z|2 and z =wp/2 d

dt Z

|∇z|2≤ −2 Λ(p) Z

|∇z|2 where Λ(p)>0 is the best constant in the inequality

2 p(p−1)

Z

|∇X|2+ Z

Hessψ:XX dγ≥Λ(p) Z

|X|2 Proposition

Z

wp−1

p−1 ≤ 4 pΛ

Z

|∇wp/2|2 for any w s.t.

Z

w dγ= 1 (Bakry, Emery 1985)

(10)

An interpolation inequality

Corollary

Assume that q∈[1,2). WithΛ = Λ(2/q), we have kfk2L2(Rd,dγ)− kfk2Lq(Rd,dγ)

2−q ≤ 1

Λ Z

Rd

|∇f|2f ∈H1(Rd,dγ)

(11)

Improved entropy – entropy production inequalities

In the special caseψ(x) =|x|2/2, withz =wp/2, we obtain that 1

2 d dt

Z

Rd

|∇z|2+ Z

Rd

|∇z|2≤ −2 p

Z

Rd

|∇z|4 z2 withκp= (p−1) (2−p)/p

Cauchy-Schwarz: R

Rd|∇z|22

≤R

Rd

|∇z|4 z2 R

Rdz2 d

dtI[w] + 2I[w]≤ −κp I[w]2 1 + (p−1)E[w]

Proposition

Assume that q∈(1,2) and dγ= (2π)−d/2e−|x|2/2dx. There exists a strictly convex function F such that F(0) = 0 and F0(0) = 1 and

F

kfk2L2(Rd,dγ)−1

≤ k∇fk2L2(Rd,dγ) if kfkLq(Rd,dγ)= 1

(12)

ϕ-hypocoercivity (H 1 framework)

Badapt the strategy ofϕ-entropies to kinetic equations

BVillani’s strategy: derive H1estimates (using a twisted Fisher information) and then use standard interpolation inequalities to establish entropy decay rates

The twisted Fisher informationis notthe derivative of theϕ-entropy

(13)

Thekinetic Fokker-Planck equation, orVlasov-Fokker-Planck equation:

∂f

∂t +v· ∇xf− ∇xψ· ∇vf = ∆vf+∇v·(v f) (1) withψ(x) =|x|2/2 andkfkL1(Rd×Rd)= 1 has a unique nonnegative stationary solution

f?(x,v) = (2π)−de

1

2(|x|2+|v|2)

and the functiong=f/f? solves thekinetic Ornstein-Uhlenbeck equation

∂g

∂t +Tg=Lg

with transport operatorTand Ornstein-Uhlenbeck operatorLgiven by

Tg:=v· ∇xgx· ∇vg and Lg:= ∆vgv· ∇vg

(14)

Sharp rates for the kinetic Fokker-Planck equation

Letψ(x) =|x|2/2,dµ:=f?dx dv,E[g] :=

Z Z

Rd×Rd

ϕp(g) Proposition

Let p∈[1,2]and consider a nonnegative solution g∈L1(Rd×Rd) of the kinetic Fokker-Planck equation. There is a constantC>0such that

E[g(t,·,·)]≤Ce−tt ≥0 and the rate e−t is sharp as t→+∞

(Villani),(Arnold, Erb): a twistedFisher informationfunctional Jλ[h] = (1−λ)

Z

Rd

|∇vh|2dµ+(1−λ) Z

Rd

|∇xh|2dµ+λ Z

Rd

|∇xh+∇vh|2 (Arnold, Erb)relies onλ= 1/2 and dtdJ1/2[h(t,·)]≤ −J1/2[h(t,·)]

(15)

Improved rates (in the large entropy regime)

Rewrite the decay of theFisher informationfunctional as

12 d dt

Z

Rd

X·M0X dµ= Z

Rd

X·M1X dµ+ Z

Rd

Y·M2Y dµ whereX = (∇vh,xh), Y = (Hvv,Hxv,Mvv,Mxv)

M0=

1 λ λ ν

⊗IdRd, M1=

1−λ 1+λ−ν2

1+λ−ν

2 λ

⊗ IdRd

M2=

1 λκ2κ λ2 λ νκ λ2κ ν2

κ2κ λ2 2κ 2κ λ

κ λ2κ ν2 2κ λ 2κν

⊗IdRd×Rd

With constant coefficients λ?(λ, ν) = max

min

X

X·M1X

X·M0X : (λ, ν)∈R2s.t.M2≥0

(16)

For (λ, ν) = (1/2), λ?= 1/2 and the eigenvalues ofM2(12,1) are given as a function ofκ= 8 (2−p)/p∈[0,8] are all nonnegative

2 4 6 8

0.5 1.0 1.5

λ1(κ)

λ2(κ) λ3(κ)

λ4(κ)

κ

(17)

We know that

Y·M2Yλ1(p, λ)|Y|2

for someλ1(p, λ)>0 and|Y|2≥ kMvvk2so that, by Cauchy-Schwarz, Z

Rd

|∇vh|2 2

≤ Z

Rd

h2 Z

Rd

kMvvk2c0 Z

Rd

kMvvk2 Theorem

Let p∈(1,2)and h be a solution of the kinetic Ornstein-Uhlenbeck equation. Then there exists a functionλ:R+→[1/2,1)such that λ(0) = limt→+∞λ(t) = 1/2 and a function ρ >1/2 s.t.

d

dtJλ(t)[h(t,·)]≤ −2ρ(t)Jλ(t)[h(t,·)]

As a consequence, for any t≥0 we have the global estimate Jλ(t)[h(t,·)]≤J1/2[h0] exp

−2 Z t

0

ρ(s)ds

(18)

Let us definea:=etR

Rd|∇vh|2dµ,b:=etR

Rdvh· ∇xh dµ, c:=etR

Rd|∇xh|2andj:=a+b+c da

dt ≤a−2 (j−c), dc

dt ≤2 (j−a)−c and dj dt ≤0 with the constraintsa≥0,c≥0 andb2≤a c

0.0 0.5 1.0 1.5 2.0

J. Dolbeault Hypocoercivity

(19)

An abstract hypocoercivity result and mode-by-mode hypocoercivity

BAbstract statement, toy model and a global L2hypocoercivity result

BMode-by-mode hypocoercivity

BApplication to the torus and numerics BDecay rates in the whole space

Collaboration with E. Bouin, S. Mischler, C. Mouhot, C. Schmeiser

(20)

An abstract evolution equation

Let us consider the equation dF

dt +TF =LF (2)

In the framework of kinetic equations,TandLare respectively the transport and the collision operators

We assume thatTandL are respectively anti-Hermitian and Hermitian operators defined on the complex Hilbert space (H,h·,·i)

A:= 1 + (TΠ)−1 (TΠ)

denotes the adjoint with respect toh·,·i

Π is the orthogonal projection onto the null space ofL

(21)

The assumptions

λm, λM, andCM are positive constants such that, for anyF ∈H Bmicroscopic coercivity:

− hLF,Fi ≥λmk(1−Π)Fk2 (H1) Bmacroscopic coercivity:

kTΠFk2λMkΠFk2 (H2) Bparabolic macroscopic dynamics:

ΠTΠF = 0 (H3)

Bbounded auxiliary operators:

kAT(1−Π)Fk+kALFk ≤CMk(1−Π)Fk (H4) The estimate

1 2

d

dtkFk2=hLF,Fi ≤ −λmk(1−Π)Fk2 is not enough to conclude thatkF(t,·)k2 decays exponentially

(22)

Equivalence and entropy decay

For someδ >0 to be determined later, the L2 entropy / Lyapunov functional is defined by

H[F] := 12kFk2+δRehAF,Fi

as in(J.D.-Mouhot-Schmeiser) so thathATΠF,Fi ∼ kΠFk2 and

d

dtH[F] = :D[F]

=− hLF,Fi+δhATΠF,Fi

δRehTAF,Fi+δRehAT(1−Π)F,Fi −δRehALF,Fi

Bentropy decay rate: for anyδ >0 small enough andλ=λ(δ) λH[F]≤D[F]

Bnorm equivalenceofH[F] and kFk2 2− δ

4 kFk2≤H[F]≤2 +δ 4 kFk2

(23)

Exponential decay of the entropy

λ= 3 (1+λλM

M)minn

1, λm,(1+λλmλM

M)CM2

o

,δ= 12 min

1, λm,(1+λλmλM

M)CM2

h1(δ, λ) := (δCM)2−4

λmδ−2 +δ

4 λ δ λM

1 +λM

−2 +δ 4 λ

Theorem

LetL andTbe closed linear operators (respectively Hermitian and anti-Hermitian) onH. Under (H1)–(H4), for any t ≥0

H[F(t,·)]≤H[F0]e−λ?t whereλ? is characterized by

λ?:= sup

λ >0 : ∃δ >0s.t. h1(δ, λ) = 0, λmδ14(2 +δ)λ >0

(24)

Sketch of the proof

SinceATΠ = 1 + (TΠ)−1

(TΠ)TΠ, from (H1) and (H2)

− hLF,Fi+δhATΠF,Fi ≥λmk(1−Π)Fk2+ δ λM

1 +λM kΠFk2 By (H4), we know that

|RehAT(1−Π)F,Fi+ RehALF,Fi| ≤CMkΠFk k(1−Π)Fk The equationG=AF is equivalent to (TΠ)F=G+ (TΠ)G hTAF,Fi=hG,(TΠ)Fi=kGk2+kTΠGk2=kAFk2+kTAFk2 hG,(TΠ)Fi ≤ kTAFk k(1−Π)Fk ≤ 1

2µkTAFk2+µ

2 k(1−Π)Fk2 kAFk ≤ 1

2k(1−Π)Fk, kTAFk ≤ k(1−Π)Fk, |hTAF,Fi| ≤ k(1−Π)Fk2 WithX :=k(1−Π)Fkand Y :=kΠFk

D[F]−λH[F]≥(λmδ)X2+ δ λM 1 +λM

Y2δCMX Y−2 +δ

4 λ(X2+Y2)

(25)

Hypocoercivity

Corollary

For anyδ∈(0,2), ifλ(δ)is the largest positive root of h1(δ, λ) = 0for whichλmδ14(2 +δ)λ >0, then for any solution F of (2)

kF(t)k2≤ 2 +δ

2−δe−λ(δ)tkF(0)k2t≥0 From the norm equivalence ofH[F] andkFk2

2− δ

4 kFk2≤H[F]≤2 +δ 4 kFk2 We use 2−4δkF0k2≤H[F0] so thatλ?≥supδ∈(0,2)λ(δ)

(26)

Formal macroscopic (diffusion) limit

Scaled evolution equation εdF

dt +TF =1 εLF

on the Hilbert spaceH. Fε=F0+εF1+ε2F2+O(ε3) asε→0+ ε−1: LF0= 0,

ε0: TF0=LF1, ε1: dFdt0 +TF1=LF2

The first equation reads asF0= ΠF0

The second equation is simply solved byF1=−(TΠ)F0

After projection, the third equation is

d

dt(ΠF0)− ΠT(TΠ)F0= ΠLF2= 0

tu+ (TΠ)(TΠ)u= 0 is such that dtdkuk2=−2k(TΠ)uk2≤ −2λMkuk2

(27)

A toy problem

du

dt = (L−T)u, L=

0 0 0 −1

, T=

0 −k

k 0

, k2≥Λ>0 Non-monotone decay, a well known picture:

see for instance(Filbet, Mouhot, Pareschi, 2006) H-theorem: dtd|u|2=−2u22

macroscopic limit: dudt1 =−k2u1

generalized entropy: H(u) =|u|21+kδk2u1u2

dH

dt = −

2− δk2 1 +k2

u22δk2

1 +k2u21+ δk 1 +k2u1u2

≤ −(2−δ)u22δΛ

1 + Λu21+δ 2u1u2

(28)

Plots for the toy problem

1 2 3 4 5 6

0.2 0.4 0.6 0.8 1 u12

1 2 3 4 5 6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 u12+u22

1 2 3 4 5 6

0.2 0.4 0.6 0.8 u112

u12 u22

1 2 3 4 5 6

0.2 0.4 0.6 0.8 1 H

(29)

Mode-by-mode hypocoercivity

BFokker-Planck equation and scattering collision operators BA mode-by-mode hypocoercivity result

BEnlargement of the space by factorization

BApplication to the torus and some numerical results

(Bouin, J.D., Mischler, Mouhot, Schmeiser)

(30)

Fokker-Planck equation with general equilibria

We consider the Cauchy problem

tf +v· ∇xf =Lf, f(0,x,v) =f0(x,v) (3) for a distribution functionf(t,x,v), withpositionvariablex∈Rd or x∈Td the flat d-dimensional torus

Fokker-Planckcollision operator with a general equilibriumM Lf =∇v·h

Mv M−1fi

Notation and assumptions: anadmissible local equilibrium M is positive, radially symmetric and

Z

Rd

M(v)dv= 1, =γ(v)dv:= dv M(v) γis anexponential weightif

lim

|v|→∞

|v|k

γ(v)= lim

|v|→∞M(v)|v|k= 0 ∀k∈(d,∞)

(31)

Definitions

Θ = 1 d

Z

Rd

|v|2M(v)dv= Z

Rd

(v·e)2M(v)dv for an arbitrarye∈Sd−1

Z

Rd

vv M(v)dv= Θ Id Then

θ= 1

d k∇vMk2L2(dγ)= 4 d

Z

Rd

|∇v

M

2dv<∞ IfM(v) = e

1 2|v|2

(2π)d/2, then Θ = 1 andθ= 1 σ:= 1

2 pθ/Θ

Microscopic coercivity property(Poincaré inequality): for all u=M−1F∈H1(M dv)

Z

Rd

|∇u|2M dvλm

Z

Rd

u

Z

Rd

u M dv 2

M dv

(32)

Scattering collision operators

Scatteringcollision operator Lf =

Z

Rd

σ(·,v0) f(v0)M(·)−f(·)M(v0) dv0

Main assumption on thescattering rateσ: for some positive, finiteσ 1≤σ(v,v0)≤σv,v0∈Rd

Example: linear BGK operator

Lf =ff, ρf(t,x) = Z

Rd

f(t,x,v)dv Local mass conservation

Z

Rd

Lf dv = 0 and we have

Z

Rd

|Lf|2≤4σ2 Z

Rd

|Mρff|2

(33)

The symmetry condition Z

Rd

σ(v,v0)−σ(v0,v)

M(v0)dv0 = 0 ∀v∈Rd implies thelocal mass conservationR

RdLf dv= 0

Micro-reversibility,i.e., the symmetry ofσ, is not required The null space ofLis spanned by the local equilibriumM Lonly acts on the velocity variable

Microscopic coercivity property: for someλm>0 1

2 Z Z

Rd×Rd

σ(v,v0)M(v)M(v0) (u(v)−u(v0))2dv0dv

λm

Z

Rd

(u−ρu M)2M dv holds according to Proposition 2.2 of(Degond, Goudon, Poupaud, 2000)for allu=M−1F ∈L2(M dv). Ifσ≡1, thenλm= 1

(34)

Fourier modes

In order to perform amode-by-mode hypocoercivityanalysis, we introduce the Fourier representation with respect tox,

f(t,x,v) = Z

Rd

ˆf(t, ξ,v)e−i x·ξdµ(ξ)

dµ(ξ) = (2π)−d and is the Lesbesgue measure ifx∈Rd dµ(ξ) = (2π)−d P

z∈Zdδ(ξz) is discrete forx∈Td

Parseval’s identity ifξ∈Zd and Plancherel’s formula ifx ∈Rd read kf(t,·,v)kL2(dx)=

ˆf(t,·,v)

L2(dµ(ξ)) The Cauchy problem is now decoupled in theξ-direction

tˆf +Tˆf =Lˆf, ˆf(0, ξ,v) = ˆf0(ξ,v)f =i(v·ξ) ˆf

(35)

For any fixedξ∈Rd, let us apply the abstract result with H= L2(dγ), kFk2=

Z

Rd

|F|2dγ , ΠF =M Z

Rd

F dv =F

andTˆf =i(v·ξ) ˆf,TΠF=i(v·ξ)ρFM, kTΠFk2=|ρF|2

Z

Rd

|v·ξ|2M(v)dv = Θ|ξ|2F|2= Θ|ξ|2kΠFk2 (H2)Macroscopic coercivitykTΠFk2λMkΠFk2 : λM= Θ|ξ|2 (H3)R

Rdv M(v)dv= 0 The operatorAis given by

AF =−·R

Rdv0F(v0)dv0 1 + Θ|ξ|2 M

(36)

A mode-by-mode hypocoercivity result

kAFk=kA(1−Π)Fk ≤ 1 1 + Θ|ξ|2

Z

Rd

|(1−Π)F|

M |v·ξ|M dv

≤ 1

1 + Θ|ξ|2k(1−Π)Fk Z

Rd

(v·ξ)2M dv 1/2

=

√ Θ|ξ|

1 + Θ|ξ|2k(1−Π)Fk Scattering operatorkLFk2≤4σ2k(1−Π)Fk2

Fokker-Planck (FP) operator kALFk ≤ 2

1 + Θ|ξ|2 Z

Rd

|(1−Π)F|

M |ξ·∇v

M|dv

θ|ξ|

1 + Θ|ξ|2k(1−Π)Fk In both cases withκ=√

θ(FP) orκ= 2σ

Θ we obtain kALFk ≤ κ|ξ|

1 + Θ|ξ|2k(1−Π)Fk

(37)

TAF(v) =−(v·ξ)M 1 + Θ|ξ|2

Z

Rd

(v0·ξ) (1−Π)F(v0)dv0 is estimated by

kTAFk ≤ Θ|ξ|2

1 + Θ|ξ|2k(1−Π)Fk (H4) holds withCM= κ1+Θ|ξ|+Θ|ξ||ξ|22

Two elementary estimates Θ|ξ|2

1 + Θ|ξ|2 ≥ Θ max{1,Θ}

|ξ|2 1 +|ξ|2 λM

(1 +λM)CM2 = Θ (1 + Θ|ξ|2)

(κ+ Θ|ξ|)2 ≥ Θ κ2+ Θ

(38)

Mode-by-mode hypocoercivity with exponential weights

Theorem

Let us consider an admissible M and a collision operatorLsatisfying Assumption(H), and takeξ∈Rd. Ifˆf is a solution such that ˆf0(ξ,·)∈L2(dγ), then for any t≥0, we have

ˆf(t, ξ,·)

2 L2(dγ)

≤3eµξt

ˆf0(ξ,·)

2 L2(dγ)

where

µξ := Λ|ξ|2

1 +|ξ|2 and Λ = Θ

3 max{1,Θ} min

1, λmΘ κ2+ Θ

withκ= 2σ

Θfor scattering operators andκ=√

θfor (FP) operators

(39)

Exponential convergence to equilibrium in T

d

The unique global equilibrium in the casex∈Td is given by f(x,v) =ρM(v) with ρ= 1

|Td| Z Z

Td×Rd

f0dx dv

Theorem

Assume thatγ has an exponential growth. We consider an admissible M , a collision operatorLsatisfying Assumption (H). There exists a positive constant C such that the solution f of (3) onTd×Rd with initial datum f0∈L2(dx dγ)satisfies

kf(t,·,·)−fkL2(dx dγ)C kf0fkL2(dx dγ)e14Λtt≥0

(40)

Enlargement of the space by factorization

A simple case (factorization of order 1) of thefactorization method of(Gualdani, Mischler, Mouhot)

Theorem

LetB1,B2 be Banach spaces and letB2 be continuously imbedded in B1, i.e.,k · k1c1k · k2. Let BandA+B be the generators of the strongly continuous semigroups eBt and e(A+B)t onB1. If for all t≥0,

e(A+B)t

2→2c2e−λ2t, eBt

1→1c3e−λ1t, kAk1→2c4

wherek · ki→j denotes the operator norm for linear mappings fromBi

toBj. Then there exists a positive constant C =C(c1,c2,c3,c4)such that, for all t≥0,

e(A+B)t 1→1

( C(1 +|λ1λ2|−1)emin{λ12}t forλ16=λ2 C(1 +t)e−λ1t forλ1=λ2

(41)

Integrating the identity dsd e(A+B)seB(t−s)

=e(A+B)sAeB(t−s) with respect tos∈[0,t] gives

e(A+B)t =eBt+ Z t

0

e(A+B)sAeB(t−s)ds The proof is completed by the straightforward computation

e(A+B)t

1→1c3e−λ1t+c1 Z t

0

e(A+B)sAeB(t−s) 1→2ds

c3e−λ1t+c1c2c3c4e−λ1t Z t

0

e1−λ2)sds

(42)

Weights with polynomial growth

Let us consider the measure

k:=γk(v)dv where γk(v) =πd/2 Γ((k−d)/2)

Γ(k/2) 1 +|v|2k/2 for an arbitraryk∈(d,+∞)

We chooseB1= L2(dγk) andB2= L2(dγ) Theorem

LetΛ = 3 max{1,Θ}Θ minn 1,κλ2mΘ

o

and k∈(d,∞]. For anyξ∈Rd if ˆf is a solution with initial datumˆf0(ξ,·)∈L2(dγk), then there exists a constant C =C(k,d, σ)such that

ˆf(t, ξ,·)

2 L2(dγk)

C eµξt

ˆf0(ξ,·)

2 L2(dγk)

t≥0

(43)

Fokker-Planck: AF=RF andBF =−i(v·ξ)F+LF−AF N andRare two positive constants,χis a smooth cut-off function andχR:=χ(·/R)

For anyRandN large enough, according to Lemma 3.8 of(Mischler, Mouhot, 2016)

Z

Rd

(L−A)(F)F dγk ≤ −λ1 Z

Rd

F2k for someλ1>0 ifk>d, andλ2=µξ/2≤1/4

Scattering operator:

AF(v) = M(v) Z

Rd

σ(v,v0)F(v0)dv0 BF(v) = −

i(v·ξ) + Z

Rd

σ(v,v0)M(v0)dv0

F(v) Boundedness: kAFkL2(dγ)σ R

Rdγ−1k dv1/2

kFkL2(dγk)

λ1= 1 andλ2=µξ/2≤1/4

(44)

Exponential convergence to equilibrium in T

d

The unique global equilibrium in the casex∈Td is given by f(x,v) =ρM(v) with ρ= 1

|Td| Z Z

Td×Rd

f0dx dv

Theorem

Assume that k∈(d,∞] andγ has an exponential growth if k=∞.

We consider an admissible M , a collision operatorLsatisfying Assumption(H), andΛgiven by (11)

There exists a positive constant Ck such that the solution f of (3) on Td×Rd with initial datum f0∈L2(dx dγk) satisfies

kf(t,·,·)−fkL2(dx dγk)Ck kf0fkL2(dx dγk)e14Λtt ≥0

(45)

If we represent the flat torusTd by the box [0,2π)d with periodic boundary conditions, the Fourier variable satisfiesξ∈Zd. Forξ= 0, the microscopic coercivity implies

ˆf(t,0,·)−ˆf(0,·)

L2(dγ)

ˆf0(0,·)−ˆf(0,·)

L2(dγ)e−t Otherwiseµξ ≥Λ/2 for anyξ6= 0

Parseval’s identity applies, with measuredγ(v) andC=√ 3 The result with weightγk follows from the factorization result for someCk>0

(46)

Computation of the constants

BA more numerical point of view

Two simple examples: Ldenotes either theFokker-Planck operator L1f := ∆vf+∇v·(v f)

or thelinear BGK operator

L2f := Πf −f

Πf =ρfM is the projection operator on the normalized Gaussian function

M(v) = e12|v|2 (2π)d/2 andρf :=R

Rdf dv is the spatial density

(47)

Where do we have space for improvements ?

WithX :=k(1−Π)Fkand Y :=kΠFk, we wrote D[F]−λH[F]

≥(λmδ)X2+ δ λM

1 +λM

Y2δCMX Yλ

2 X2+Y2+δX Y

≥(λmδ)X2+ δ λM

1 +λM

Y2δCMX Y −2 +δ

4 λ(X2+Y2) We can directly study the positivity condition for the quadratic form

mδ)X2+ δ λM

1 +λM

Y2δCMX Yλ

2 X2+Y2+δX Y λm = 1,λM =|ξ|2 andCM =|ξ|(1 +|ξ|)/(1 +|ξ|2)

(48)

2 4 6 8 10 0.1

0.2 0.3 0.4

(49)

Withλm= 1, λM =|ξ|2 andCM =|ξ|(1 +|ξ|)/(1 +|ξ|2), we optimizeλunder the condition that the quadratic form

mδ)X2+ δ λM

1 +λM

Y2δCMX Yλ

2 X2+Y2+δX Y is positive, thus getting aλ(ξ)

By taking alsoδ=δ(ξ) whereξis seen as a parameter, we get a better estimate ofλ(ξ)

(50)

2 4 6 8 10 0.1

0.2 0.3 0.4 0.5

(51)

By takingδ=δ(ξ), for each value ofξ we build a different Lyapunov function, namely

Hξ[F] := 12kFk2+δ(ξ) RehAF,Fi where the operatorAis given by

AF =−·R

Rdv0F(v0)dv0 1 +|ξ|2 M We can consider

AεF =−·R

Rdv0F(v0)dv0 ε+|ξ|2 M and look for the optimal value ofε...

(52)

2 4 6 8 10 0.1

0.2 0.3 0.4 0.5

(53)

The dependence ofλin εis monotone, and the limit asε→0+ gives the optimal estimate ofλ. The operator

A0F =−·R

Rdv0F(v0)dv0

|ξ|2 M

is not bounded anymore, but estimates still make sense and limξ→0δ(ξ) = 0 (see below)

2 4 6 8 10

0.05 0.10 0.15 0.20 0.25 0.30 0.35

(54)

2 4 6 8 10 0.1

0.2 0.3 0.4

(55)

Theorem (Hypocoercivity onTd with exponential weight) Assume thatL=L1 or L=L2. If f is a solution, then

kf(t,·,·)−fk2L2(dx dγ)≤C?kf0k2L2(dx dγ)eλ?tt≥0 with f(x,v) =M(v)RR

Td×Rdf0(x,v)dx dv C?≈1.75863 andλ?= 132(5−2√

3)≈0.236292.

(work in progress)

(56)

Some comments on recent works

A more algebraic approach based on the spectral analysis of symmetric and non-symmetric operators

On BGK models

(Achleitner, Arnold, Carlen) On Fokker-Planck models (Arnold, Erb)

(Arnold, Stürzer) (Arnold, Einav, Wöhrer)

(57)

Decay rates in the whole space

(58)

Algebraic decay rates in R

d

On the whole Euclidean space, we can define the entropy H[f] := 12kfk2L2(dx dγk)+δhAf,fidx dγk

Replacing themacroscopic coercivitycondition byNash’s inequality kuk2L2(dx)≤CNashkuk

4 d+2

L1(dx)k∇uk

2d d+2

L2(dx)

proves that

H[f]≤C

H[f0] +kf0k2L1(dx dv)

(1 +t)d2 Theorem

Assume thatγk has an exponential growth (k =∞) or a polynomial growth of order k>d

There exists a constant C >0 such that, for any t≥0 kf(t,·,·)k2L2(dx dγk)C

kf0k2L2(dx dγk)+kf0k2L2(dγk; L1(dx))

(1 +t)d2

(59)

A direct proof... Recall thatµξ= 1+|ξ|Λ|ξ|22 By the Plancherel formula

kf(t,·,·)k2L2(dx dγk)C Z

Rd

Z

Rd

eµξtf0|2

k

if|ξ|<1, thenµξΛ2 |ξ|2 Z

|ξ|≤1

eµξtf0|2C kf0(·,v)k2L1(dx)

Z

Rd

eΛ2|ξ|2t

C kf0(·,v)k2L1(dx)td2 if|ξ| ≥1, thenµξ ≥Λ/2 when |ξ| ≥1

Z

|ξ|>1

eµξtf0|2C eΛ2t kf0(·,v)k2L2(dx)

(60)

Improved decay rate for zero average solutions

Theorem

Assume that f0∈L1loc(Rd×Rd)withRR

Rd×Rdf0(x,v)dx dv= 0 and C0:=kf0k2L2(dγk+2; L1(dx))+kf0k2L2(dγk; L1(|x|dx))+kf0k2L2(dx dγk)<Then there exists a constant ck>0 such that

kf(t,·,·)k2L2(dx dγk)ckC0(1 +t)(1+d2)

Références

Documents relatifs

– Le taux horaire de l’allocation d’activité partielle versée à l’employeur correspond, pour chaque salarié autorisé à être placé en activité partielle, à un

Hypocoercivity; linear kinetic equation; spectral gap; phase transition; asymptotic behaviour; free energy; spectral gap; convergence to equilibrium;

We study linear inhomogeneous kinetic equations with an external confining potential and a collision operator with several local conservation laws (local density, momentum and

Hypocoercivity; linear kinetic equations; Fokker-Planck operator; scat- tering operator; transport operator; weighted Poincaré inequality; weak Poincaré inequality; sub-

Keywords: Hypocoercivity; linear kinetic equations; fat tail equilibrium; Fokker- Planck operator; anomalous diffusion; fractional diffusion limt; scattering oper- ator;

The method covers various models, ranging from diffusive kinetic equations like Vlasov- Fokker-Planck equations, to scattering models or models with time relaxation collision

However, fractional diffusion might also arise just in macroscopic limits as a consequence of fat-tailed velocity equilibrium distributions and/or scattering rates decaying for

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des