• Aucun résultat trouvé

Quantum expander codes

N/A
N/A
Protected

Academic year: 2021

Partager "Quantum expander codes"

Copied!
59
0
0

Texte intégral

(1)

HAL Id: hal-01671485

https://hal.archives-ouvertes.fr/hal-01671485

Submitted on 22 Dec 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Quantum expander codes

Antoine Grospellier, Anthony Leverrier, Omar Fawzi

To cite this version:

Antoine Grospellier, Anthony Leverrier, Omar Fawzi. Quantum expander codes. Journées codage et cryptographie 2017, Apr 2017, La Bresse, France. �hal-01671485�

(2)

Quantum expander codes

Antoine Grospellier & Anthony Leverrier & Omar Fawzi

27 avril 2017

(3)

Content of the talk

The hypergraph product of an expander code : is an LDPC quantum code

has a constant rate

has a minimal distance : d = Θ(√n) The decoding algorithm :

has a capacity of correction : Θ(√n)

corrects the error with high probability for the depolarizing channel

(4)

Content of the talk

1 Classical expander codes

2 Quantum expander codes

3 My contribution

(5)

Plan

1 Classical expander codes

2 Quantum expander codes

3 My contribution

(6)

Definition : classical error correcting codes

C is a [n, k]-error correcting code if :

C is a k-dimensional subspace of (Z/2Z)n

Definition : parity check matrix of a code

H ∈ Mn−k,n is a parity check matrix for C if :

c ∈ C ⇔ H · c = 0

(7)

Definition : classical error correcting codes

C is a [n, k]-error correcting code if :

C is a k-dimensional subspace of (Z/2Z)n

Definition : parity check matrix of a code

H ∈ Mn−k,n is a parity check matrix for C if :

c ∈ C ⇔ H · c = 0

(8)

Tanner graph of a code

         0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1         

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8

(9)

Classical expander codes [Sipser & Spielman, ’96]

Theorem [Sipser & Spielman, ’96]

We can construct a good family (Cn)n∈N of [n, k, d ]-error

correcting codes. Here ”Good” means : This family is LDPC

k and d are linear in n

There exists an efficient correcting algorithm

Remark

Good expander codes can be found efficiently by picking a random biregular graph

(10)

Decoding algorithm

Error : e0 = {0, 1, 2} Unsatisfied check-nodes (syndrome) : {10, 12, 14, 19} Satisfied check-nodes : {11, 13, 15, 16, 17, 18}

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(11)

Decoding algorithm

INPUT : syndrome The error e0 is unknown OUTPUT : e a set of bits GOAL : e = e0

The algorithm flips a bit when it decreases the syndrome

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(12)

Decoding algorithm : first example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(13)

Decoding algorithm : first example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(14)

Decoding algorithm : first example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(15)

Decoding algorithm : first example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(16)

Decoding algorithm : second example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(17)

Decoding algorithm : second example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(18)

Decoding algorithm : second example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(19)

Decoding algorithm : second example

Bits Parity-check nodes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

(20)

Plan

1 Classical expander codes

2 Quantum expander codes

3 My contribution

(21)

From classical to quantum error correcting codes

Bit : b ∈ Z/2Z

A [n, k]-code is a

k-dimensional subspace of (Z/2Z)n

Classical error : Flip

X -Pauli error :  0 1 1 0  Q-bit : |ψi ∈ C2, k |ψi k2 = 1 A Jn, k K-code is a 2k-dimensional subspace of C2n Quantum error : X-Pauli error Z-Pauli error Z -Pauli error :  1 0 0 −1 

(22)

From classical to quantum error correcting codes

Bit : b ∈ Z/2Z A [n, k]-code is a

k-dimensional subspace of (Z/2Z)n

Classical error : Flip

X -Pauli error :  0 1 1 0  Q-bit : |ψi ∈ C2, k |ψi k2 = 1 A Jn, k K-code is a 2k-dimensional subspace of C2n Quantum error : X-Pauli error Z-Pauli error Z -Pauli error :  1 0 0 −1 

(23)

From classical to quantum error correcting codes

Bit : b ∈ Z/2Z A [n, k]-code is a

k-dimensional subspace of (Z/2Z)n

Classical error : Flip

X -Pauli error :  0 1 1 0  Q-bit : |ψi ∈ C2, k |ψi k2 = 1 A Jn, k K-code is a 2k-dimensional subspace of C2n Quantum error : X-Pauli error Z-Pauli error Z -Pauli error :  1 0 0 −1 

(24)

From classical to quantum error correcting codes

CSS codes : Calderbank, Shor and Steane

We can construct a quantum error correcting code using CX

and CZ two classical error correcting codes such that CX⊥ ⊆ CZ

(25)

Remark

The difficulty for constructing a quantum error correcting code is to find two classical codes which are orthogonal

Hypergraph product [Tillich & Z´emor, ’09]

Using a classical code C, we can construct aJn, k , d K-CSS code with :

k = Θ(n)

d = Θ(√n) : we can correct any error on d Q-bits

Theorem [Leverrier & Tillich & Z´emor, ’15]

For the hypergraph product of an expander code ( < 1/6) : There is an efficient decoding algorithm for this code. This algorithm corrects any error of size ≤ Θ(√n)

This algorithm is very close to the algorithm of Sipser and Spielman

(26)

Remark

The difficulty for constructing a quantum error correcting code is to find two classical codes which are orthogonal

Hypergraph product [Tillich & Z´emor, ’09]

Using a classical code C, we can construct aJn, k , d K-CSS code with :

k = Θ(n)

d = Θ(√n) : we can correct any error on d Q-bits

Theorem [Leverrier & Tillich & Z´emor, ’15]

For the hypergraph product of an expander code ( < 1/6) : There is an efficient decoding algorithm for this code. This algorithm corrects any error of size ≤ Θ(√n)

This algorithm is very close to the algorithm of Sipser and Spielman

(27)

Remark

The difficulty for constructing a quantum error correcting code is to find two classical codes which are orthogonal

Hypergraph product [Tillich & Z´emor, ’09]

Using a classical code C, we can construct aJn, k , d K-CSS code with :

k = Θ(n)

d = Θ(√n) : we can correct any error on d Q-bits

Theorem [Leverrier & Tillich & Z´emor, ’15]

For the hypergraph product of an expander code ( < 1/6) : There is an efficient decoding algorithm for this code. This algorithm corrects any error of size ≤ Θ(√n)

This algorithm is very close to the algorithm of Sipser and Spielman

(28)

Plan

1 Classical expander codes

2 Quantum expander codes

3 My contribution

(29)

Our work

Question : What happens for random errors of size Θ(n) ?

Depolarizing channel : each Q-bit has an X-type error (resp. Z-type error) with probabilty p independently

Theorem : what we proved

For a probability of error p < (ed )12d : lim

n→+∞P(A corrects the error) = 1

Idea : The algorithm is local :

If two errors are far they don’t interact

The initial error can be decomposed in clusters of size O(ln(n))

If there is no cluster of size Θ(√n) during the algorithm, the error will be corrected

(30)

Our work

Question : What happens for random errors of size Θ(n) ?

Depolarizing channel : each Q-bit has an X-type error (resp. Z-type error) with probabilty p independently

Theorem : what we proved

For a probability of error p < (ed )12d : lim

n→+∞P(A corrects the error) = 1

Idea : The algorithm is local :

If two errors are far they don’t interact

The initial error can be decomposed in clusters of size O(ln(n))

If there is no cluster of size Θ(√n) during the algorithm, the error will be corrected

(31)

Our work

Question : What happens for random errors of size Θ(n) ?

Depolarizing channel : each Q-bit has an X-type error (resp. Z-type error) with probabilty p independently

Theorem : what we proved

For a probability of error p < (ed )12d : lim

n→+∞P(A corrects the error) = 1

Idea : The algorithm is local :

If two errors are far they don’t interact

The initial error can be decomposed in clusters of size O(ln(n))

If there is no cluster of size Θ(√n) during the algorithm, the error will be corrected

(32)

A motivation : fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, ’97]

We can simulate a quantum circuit with perfect gates by a circuit with noisy gates of size quasi-linear

Theorem : what we proved

For a probability of error p < (ed )12d : lim

n→+∞P(A corrects the error) = 1

What we hope to prove using [Gottesman, ’13]

We can simulate a quantum circuit with perfect gates by a circuit with noisy gates of size linear

(33)

Locality of the algorithm : the bit-graph

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 1 2 3 4 5 6 7 8 9

(34)
(35)
(36)
(37)

5 < Θ(ln(n))

(38)

In the following, we will say whp P (with high probability the property P holds) if : lim

n→+∞P(P ) = 1

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n)) For a probability of error p > 1

1+d, whp :

There is a connected component of size Θ(n) Good news :

The algorithm corrects any error of size ≤ Θ(√n) The algorithm corrects any error of size ≤ Θ(ln(n)) Problem : Some clusters can merge during the decoding

(39)

In the following, we will say whp P (with high probability the property P holds) if : lim

n→+∞P(P ) = 1

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n)) For a probability of error p > 1+d1 , whp :

There is a connected component of size Θ(n)

Good news :

The algorithm corrects any error of size ≤ Θ(√n) The algorithm corrects any error of size ≤ Θ(ln(n)) Problem : Some clusters can merge during the decoding

(40)

In the following, we will say whp P (with high probability the property P holds) if : lim

n→+∞P(P ) = 1

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n)) For a probability of error p > 1+d1 , whp :

There is a connected component of size Θ(n) Good news :

The algorithm corrects any error of size ≤ Θ(√n) The algorithm corrects any error of size ≤ Θ(ln(n))

Problem : Some clusters can merge during the decoding

(41)

In the following, we will say whp P (with high probability the property P holds) if : lim

n→+∞P(P ) = 1

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n)) For a probability of error p > 1+d1 , whp :

There is a connected component of size Θ(n) Good news :

The algorithm corrects any error of size ≤ Θ(√n) The algorithm corrects any error of size ≤ Θ(ln(n)) Problem : Some clusters can merge during the decoding

(42)
(43)
(44)
(45)
(46)
(47)

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n))

Percolation theorem, reformulation

For a probability of error p < 1+d1 , whp :

if |X ∩ E (p)| ≥ 1 × |X | then |X | < Θ(ln(n))

Percolation theorem, generalisation

∀α > 0, if p < cst(α, d ), whp :

if |X ∩ E (p)| ≥ α × |X | then |X | < Θ(ln(n))

Complexity of the decoding algorithm

The number of flips is linear in the size of the initial error

(48)

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n))

Percolation theorem, reformulation

For a probability of error p < 1+d1 , whp :

if |X ∩ E (p)| ≥ 1 × |X | then |X | < Θ(ln(n))

Percolation theorem, generalisation

∀α > 0, if p < cst(α, d ), whp :

if |X ∩ E (p)| ≥ α × |X | then |X | < Θ(ln(n))

Complexity of the decoding algorithm

The number of flips is linear in the size of the initial error

(49)

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n))

Percolation theorem, reformulation

For a probability of error p < 1+d1 , whp :

if |X ∩ E (p)| ≥ 1 × |X | then |X | < Θ(ln(n))

Percolation theorem, generalisation

∀α > 0, if p < cst(α, d ), whp :

if |X ∩ E (p)| ≥ α × |X | then |X | < Θ(ln(n))

Complexity of the decoding algorithm

The number of flips is linear in the size of the initial error

(50)

Percolation Theorem

For a probability of error p < 1+d1 , whp :

The size of any connected components is ≤ Θ(ln(n))

Percolation theorem, reformulation

For a probability of error p < 1+d1 , whp :

if |X ∩ E (p)| ≥ 1 × |X | then |X | < Θ(ln(n))

Percolation theorem, generalisation

∀α > 0, if p < cst(α, d ), whp :

if |X ∩ E (p)| ≥ α × |X | then |X | < Θ(ln(n))

Complexity of the decoding algorithm

The number of flips is linear in the size of the initial error

(51)
(52)
(53)
(54)
(55)

< Θ(log(n))

(56)

Theorem

For a probability of error p < (ed )12d : lim

n→+∞P(A corrects the error) = 1

Ideas to improve this bound :

1 Improve the bound in the percolation theorem : What is the critical probability ?

2 Restrict the proof to interesting clusters :

* The diameter of an interesting cluster is ≤ Θ(ln(ln(n)))

* The number of edges inside an interesting cluster is large

(ideas from bootstrap percolation)

(57)

Theorem

For a probability of error p < (ed )12d : lim

n→+∞P(A corrects the error) = 1

Ideas to improve this bound :

1 Improve the bound in the percolation theorem : What is the critical probability ?

2 Restrict the proof to interesting clusters :

* The diameter of an interesting cluster is ≤ Θ(ln(ln(n)))

* The number of edges inside an interesting cluster is large

(ideas from bootstrap percolation)

(58)

Conclusion

The hypergraph product of an expander code : is an LDPC quantum code

has a constant rate

has a minimal distance : d = Θ(√n) The decoding algorithm :

has a capacity of correction : Θ(√n)

corrects the error with high probability for the depolarizing channel

Futur work :

improve our bound

apply this result to fault tolerant quantum computation (Gottesman)

(59)

Thank you for your attention

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to