• Aucun résultat trouvé

Room-acoustics predictions using a diffusion process – a state of the art

N/A
N/A
Protected

Academic year: 2021

Partager "Room-acoustics predictions using a diffusion process – a state of the art"

Copied!
23
0
0

Texte intégral

(1)

Intelsig

Room-acoustics predictions

using a diffusion process

-A state of the art

Alexis Billon

(2)

Introduction

 Numerical tools are now widely used for buildings projects

 Most popular methods:

- Ray-tracing method; - Statistical theory. Statistical theory Ray-tracing method Quick Slow Rough results Accurate results Intermediate models -Diffusion model

(3)

Summary

 Basic equations

 Mixed specular/diffuse reflections

 Numerical implementation

 Atmospheric attenuation

 Presence of fitting objects

 Rooms coupled through apertures

 Rooms coupled through partition walls

 Conclusions

(4)

1. Basic equations

 Propagation of sound particles in a scattering medium

Morse and Feshbach (1953) Ollendorff , Acustica 21 (1969)

Picaut et al., Acustica 83 (1997) Picaut et al., Applied Acoustics 56 (1999) Valeau et al., JASA 119 (2006)

( )

, 2

( )

( )

, , w t D w t P t t ∂ − ∇ = ∂ r r r  Diffusion equation 3 c D = λ

w acoustic energy density

λ room mean free path (4V/S)

c sound speed

(5)

2. Boundary conditions  Absorption at walls w h w D J = ∂ ∂ − = n n

Picaut et al., Applied Acoustics 56 (1999) 4 α c h = h exchange coefficient n wall normal wall (α)

J

n

 Expressions of the exchange coefficient

(

)

ln 1 4

c

h = − −α

Billon et al., Applied Acoustics 69 (2008) ( ) 2 2 c h α α = − −

Jing and Xiang, JASA

(6)

2. Boundary conditions  Absorption at walls w h w D J = ∂ ∂ − = n n

Picaut et al., Applied Acoustics 56 (1999)

4

α

c h =

 Expressions of the exchange coefficient

(

)

ln 1 4

c

h = − −α

Billon et al., Applied Acoustics 69 (2008) ( ) 2 2 c h α α = − −

Jing and Xiang, JASA

(7)

3. Numerical implementation R oom b ou nd ary V n hw w D = ∂ ∂ − Source

(

,

)

2

(

)

, 0 w t D w t t ∂ − ∇ = ∂ r r Simulations characteristics:

- Finite Element Model (FEM) solver (Femlab); - Unstructured mesh;

- Stationary response Sound Pressure Level = 10 seconds - Impulse response Sound decay < 1minute

( ), 2 ( ) ( ) , , w t D w t P t t ∂ − ∇ = ∂ r r r

(8)

 Generalization Foy et al., submitted to AAuA

4. Mixed specular/diffuse reflections

 Empirical diffusion constant

( )

( )

theorical D s = k s × D

Valeau et al., AAuA 93 (2007)

The empirical model gives good predictions in terms of SPL, but not in terms of sound decay.

(9)

 Generalization Foy et al., submitted to AAuA

4. Mixed specular/diffuse reflections

0 5 10 15 20 25 30 70 75 80 85 90 95 100 x (m) SPL (dB) Diffusion model s=1 Ray−tracing s=1 Diffusion model s=0.2 Ray−tracing s=0.2.

Evolution of the SPL in a long room for two scattering coefficient

 Empirical diffusion constant

( )

( )

theorical D s = k s × D

Valeau et al., AAuA 93 (2007)

The empirical model gives good predictions in terms of SPL, but not in

0 0.2 0.4 0.6 0.8 1 0.7 1.1 1.5 1.9 2.3 s RT 3 0 Diffusion model Ray−tracing

Evolution of the reverberation time as a function of the scattering coefficient [Foy et al., submitted to AAuA]

(10)

5. Atmospheric attenuation

( )

, 2

( )

( )

( )

, , , w t D w t mcw t P t t ∂ ′ − ∇ + = ∂ r r r r  Diffusion constant 1 1 D D m λ ′ = × +  Absorption term

(11)

5. Atmospheric attenuation 0 5 10 15 20 25 30 82 84 86 88 90 92 94 96 x (m) SPL (dB) Diffusion model m=0.01 Ray−tracing m=0.01 Ray−tracing m=0 Diffusion model m=0

Evolution of the sound pressure level in a long room with and without atmospheric attenuation s=0.2

 Diffusion constant 1 1 D D m λ ′ = × +  Absorption term

Billon et al., JASA 123 (2008)

0 5 10 15 20 25 30 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 x (m) RT 3 0 (s) Diffusion model m=0 Ray−tracing m=0 Diffusion model m=0.01 Ray−tracing m=0.01

Evolution of the reverberation time in a long with and without atmospheric attenuation s=1

(12)

6. Presence of fitting objects  Diffusion constant

( )

,

( )

( )

( )

, f , , t f c w t D w t w t P t t α λ ∂ − ∆ + = ∂ r r r r D D D D D f f t + = D Dt Df

Room Fitted zone

(nf, Qf, αf)

(13)

6. Presence of fitting objects  Diffusion constant Df (nf, Qf, αf) 0 5 10 15 20 25 30 −30 −25 −20 −15 −10 Position (m) SPL (dB) Ray−tracing Diffusion Model Experimental Data Fitting objects zone

Evolution of the SPL in a fitted room [Valeau et al. 2007]

(14)

7. Rooms coupled through apertures Source

( )

2

( )

1 , , 0 w t D w t t ∂ − ∇ = ∂ r r ( ) 2 ( ) 2 , , 0 w t D w t t ∂ − ∇ = ∂ r r ( ) 2 ( ) ( ) 1 , , , w t D w t P t t ∂ − ∇ = ∂ r r r

Billon et al., JASA 120 (2006)

(15)

8. Rooms coupled through apertures 3 4 5 6 7 8 9 10 11 12 −14 −12 −10 −8 −6 −4 −2 0 x (m) SPL (dB) Difusion model Experimental data Ray−tracing Source

(16)

8. Rooms coupled through apertures Source 3 4 5 6 7 8 9 10 11 12 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 x (m) RT20 (s) Experimental data Diffusion model Ray−tracing

(17)

8. Rooms coupled through partition walls Source

( )

2 1 1

0

D

w

− ∇

r

=

( )

2 2 2

0

D

w

− ∇

r

=

( ) ( )

2 1 1 D w P − ∇ r = r

Billon et al., JASA 123 (2008)

( )

( )

1 1 1 1 2 1 4 w c D ∂ + h w = τ wr r n ( ) ( ) w τc ∂ + = r Side V1 Side V2 τ Transmission coefficient  Coupling equations

(18)

8. Rooms coupled through partition walls

Norms 3382 and 140-4:

*: Sound source o: Microphones

(19)

8. Rooms coupled through partition walls Norms 3382 and 140-4: *: Sound source o: Microphones 125 250 500 1000 2000 4000 8000 5 10 15 20 25 30 35 40 Frequency (Hz) L C28 −L C 27 (dB) Diffusion model Experimental data

Sound level diffrence between the room as a function of the frequency

(20)

8. Rooms coupled through partition walls Norms 3382 and 140-4: *: Sound source o: Microphones S1 S2 S3 S4 S5 R1 R2 R3 R4 R5 −40 −35 −30 −25 −20 −15 −10 −5 0 5 Receiver Normalized SPL (dB) Diffusion model Diffusion model Experimental data

Normalized sound pressure level at the microphones locations

(21)

Conclusions

 Quick and flexible approach

 Handle main acoustic phenomena

 Adapted in networks of rooms

 Specular reflections in the sound decay

 Coupling with urban diffusion model

Future works

Acknowledgements:

The author would like to thank the ADEME (french agency for environmental studies) for supporting part of this work.

(22)

Application to a virtual factory

Hall A :

• 20m x 25m x 10m • α=0.03

• source 1: 120dB

Fitted zone A’:

• α=0.3 • λf=0.25m Offices D, E: • α=0.06 Workshop C: • α=0.03 Corridor B: • α α α α = 0.06 or 0.6 open apertures

(23)

Application to a virtual factory

 Effect of the acoustic treatment

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Using Planck data, we have measured the scaling relation be- tween Sunyaev-Zeldovich signal and stellar mass for locally brightest galaxies (Y 500 -M ∗ ).. This is the first time such

A comparison table of the specifications of ultracapacitors, Ni-MH batteries and Li-ion batteries is shown in Table 2-1, from which one can get a general overview

1 It is conceivable that the enriched trace element and isotopic signatures of the Schirmacher minettes were produced by the contamination of depleted, mantle-derived magmas

Christian Lepot, Froment, Nodine Clerebaut : L'enfant sourd -

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this study we suggest averages, variances, skewness of row numbers where pawns are put, numbers of times gold and silver generals and nights are moved, which are easily

specialized Gr¨ obner basis algorithm (Section 6.3) and then we detect the valid theta null points using the results of Section 5 (see Theorem 23)... This section is devoted to