• Aucun résultat trouvé

A new methodology for assessing the global dynamic response of large shell structures under impact loading

N/A
N/A
Protected

Academic year: 2021

Partager "A new methodology for assessing the global dynamic response of large shell structures under impact loading"

Copied!
37
0
0

Texte intégral

(1)

HAL Id: hal-01240476

https://hal.archives-ouvertes.fr/hal-01240476

Submitted on 9 Dec 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

A new methodology for assessing the global dynamic

response of large shell structures under impact loading

Christophe Rouzaud, Fabrice Gatuingt, Olivier Dorival, Hervé Guillaume,

Louis Kovalevsky

To cite this version:

Christophe Rouzaud, Fabrice Gatuingt, Olivier Dorival, Hervé Guillaume, Louis Kovalevsky. A new

methodology for assessing the global dynamic response of large shell structures under impact loading.

Engineering Computations, Emerald, 2015, 32 (8), pp.2343-2382. �10.1108/EC-06-2014-0124�.

�hal-01240476�

(2)

1,2,3 1 4,5 2 6 1 2 3 4 5 6 m m m

(3)
(4)
(5)

m1 m2 k1 k2

m1x¨1(t) + k1[x1(t)− x2(t)] = 0

m2x¨2(t)− k1[x1(t)− x2(t)] + k2x2(t) = 0

x1(t)� x2(t)

(6)

m1x¨1(t) + k1x1(t) = 0 m2x¨2(t) + k2x2(t) = F (t) F (t) F (t) = Rcr(xcr) + mc(xcr) �dx cr dt �2 mc xcr dxcr dt Rcr 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 0 0,2 0,4 0,6 0,8 1 N or med mas s / u nit leng th

Normed distance from front of plane

Rcr mc mc

Gd = ¨x =−�L Rcr(xcr)n (xcr)nmc(xcr)dxcr

(7)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Impac t f or ce / Ma x. impa ct f or ce

(8)

f ω Ω Ωi i Γ x y z eα eβ e3 r(α, β) B R ∂Ωi n t kr kt ηr ηt U u w σ K N M h ρ η K CP E D ν � Sad Uh σh Un Cn X P ϕ θ C R Etot Ed T n l λ c c c

(9)

n

f = ω hi ρi Ui Ui(x, y, z) = ui(x, y) + wi(x, y) e3i+ zθi θi(x, y) =−grad wi(x, y)− Biui(x, y) ui wi Bi αi βi ri(αi, βi) Ωi ri(αi, βi) ∂ri ∂αi = Aieαi ∂ri ∂βi = Bieβi eαi eβ i e3i e3i = eαi∧ eβi αi βi αi�→ ri(αi, β0i) βi�→ ri(α0i, βi) eαi, eβi, e3i � Bi=   − 1 Rαi 0 0 0 1 Rβi 0 0 0 0   � eα i,eβ i,e3 i � Rαi Rβi Ω n Ωi Γ Ωi ∂wΩi ∂uΩi ∂w,nΩi ∂KΩi ∂NΩi ∂MΩi Ωi Ωj

(10)

(ui, wi, Ki, Ni,Mi)

ui−ktbi(1+iη1 tbi)Ni= uid ∂uΩi

wi−ktbi(1+iη1 tbi)Ki= wid ∂wΩi

wi,n+krbi(1+iη1 rbi)n �

i .Mi.ni= wi,nd ∂w,nΩi

u�i .ni=− αiju�j.nj+ (1 + αij) wj−ktij(1+iη1 tij)(−N�i .ni− αijN�j.nj+ (1 + αij) Kj) Γij

wi= −αijwj+ (1 + αij) u�j.nj−ktij(1+iη1 tij)(−Ki− αijKj+ (1 + αij) N �

j.nj) Γij

u�i .ti=−βijuj�.tj−ktij(1+iη1 tij)

−N�i .ti− βijN�j.tj

Γij

wi,n = βijwj,n−krij(1+iη1 rij)

n�i Mini− βijn�j.Mj.nj

Γij

αij= n�i .nj βij = t�i .tj

krbi ktbi ηrbi ηtbi

Ωi

krij ktij ηrij ηtij

Γij Ωi Ωj Ωi Ni− Bi � div Mi�=−ρiω2hiui Ωi div�div M i � + T r�N i.Bi � =−ρiω2hiwi Ωi Ni= Ni.ni− Bi.Mi.ni = Nid ∂NΩi Ki= n�i .div Mi+ � t�i .Mi.ni � ,t= Kid ∂KΩi n�i .Mi.ni=Mid ∂MΩi �� t�i .Mi.ni �� ∂Ωi = 0 Γij N�i .ni= αijNj�.nj− (1 + αij) Kj Γij Ki = αijKj− (1 + αij) N�j.nj Γij N�i .ti= βijN�j.tj Γij n�i .Mi.ni=−βijn�j.Mj.nj Γij �n i=1(n�i .Mi.ni)ti= 0 �n i=1(N�i .ni− Ki) = 0

(11)

Mi=hi3 12K CPi :X (wi) Ωi Ni = hiK CPi : γ (ui) Ωi K CPi = (1 + iηi)K0i ρi ηi X γ K CPi = (1 + iηi)     Eαi 1−ναiνβi ναiEαi 1−ναiνβi 0 νβiEβi 1−ναiνβi Eβi 1−ναiνβi 0 0 0 √E αiEβi 2(1+√ναiνβi)     � eα i,eβ i,e3 i � X (ui) = � (θi)− � Bi. �(ui+ wie3i) � γ (ui) = �(ui+ wie3i)

� Eα,βi να,βi eαi

i hi st (Ui, σi) = (ui, wi, Ki, Ni,Mi)∈ Sad,i A   � � � � � � s1 . . . sn , � � � � � � δs1 . . . δsn   = L   � � � � � � δs1 . . . δsn   A   � � � � � � s1 . . . sn , � � � � � � δs1 . . . δsn   =Re � −iω �n i=1 � ∂uΩi δσi.ni.U∗idS + n � i=1 � ∂FΩi σi.ni.δU∗idS + � Γij    n−1 n �n i=1 � δσi.ni � .(Ui)∗+n1 � i�=j � δσi.ni � .�Uj �∗ +n1�ni=1�σi.ni � .(δUi)∗−n1 � i�=j � σi.ni � .�δUj �∗   dS      L   � � � � � � δs1 . . . δsn   = Re � −iω � n � i=1 � ∂uΩi δσi.ni.U∗iddS + n � i=1 � ∂FΩi Fid.δU∗idS �� ∂uΩi Ωi ∂FΩi Ωi Γij Γij Re S0 ad,i Ωi fd,i = 0 i = 1, . . . , n Sad,i0 ≡ Sad,i i = 1, . . . , n

(12)

Sad,i KCP i ηi > ∀ i = 1, . . . , n ∀ j �= i        kriηri≥ 0 ktiηti≥ 0 krijηrij ≥ 0 ktijηtij≥ 0 (Uih, σh i) Ui(Xi, Pi) = � Pi�CiUni(Pi) .e Pi.Xi i σi(Xi, Pi) = � Pi�CiCni(Pi) .e Pi.Xi i Xi Uni Cn i n Pi Ci � Ui, σi � Sad,i Pi

(13)

wi Ωi hi3 12div � div � K CPi :X (wi) �� + hiT r �� K CPi : γ (ui) � .Bi � =−ρiω2hiwi Ωi

(14)

Pi (PTi.Pi)4= 12(1− ναiνβi)ρiω2 (1 + iηi)Eα,βih2i (PTi.Pi)2 −12(1− νh2αiνβi) i (PTi.R.B i.R.Pi) 2 R = � 0 −1 1 0 � RT =−R Bi (PTi.Pi)4= 12(1− ναiνβi)ρiω2 (1 + iηi)Eα,βih2i (PTi.Pi)2 u1i w0i= wi wi Pi R.Pi u1i u1i=APi+BR.Pi

A = w0i1−νEα/βiαiνβi PT i.K CPi .B i.Pi (PT i.Pi)2

B = w0i1+√ν2Eα/βiαiνβi PT i.K CPi .B i.R.Pi (PT i.Pi)2 u0i= 0 wi γ (ui) = �(ui + wie3i) Pi    wh interior,i � Xi, Pint,i � = Wh interior,i � Pint,i � .ePint,i.Xi Ω i wh edge,i � Xi, Pedg,i � = Wh edge,i � Pedg,i � .ePedg,i.Xi i whcorner,i � Xi, Pcor,i � = Wcorner,ih � Pcor,i � .ePcor,i.Xi i

Pint,i(ϕint,i) =−ipint,i(ϕint,i)

� cosϕint,i sinϕint,i � � eα i,eβ i �=−i �

pα,int,i(ϕint,i).cosϕint,i

pβ,int,i(ϕint,i).sinϕint,i

� � eα i,eβ i � pα/β,int,i(ϕ)

pα/β,int,i4(ϕint,i) = pplate,α/β,i4−

(pshell,α,i.sinϕint,i)2+ (pshell,β,i.cosϕint,i)2

�2 pplate,α/β,i= �12ρ iω2(1−ναiνβi) (1+iηi)Eα/βih2i �1 4 pshell,α/β,i= � 12ρiω2(1−ναiνβi) R2 α/βih2i �1 4

(15)

pint,i(ϕint,i) Cint,i

Cint,i

pint,i ϕint,i= 0 45 90

pint,i(ϕint,i)

Pedg,i(ϕedg,i) = Pt,edg,i(ϕedg,i)t + Pn,edg,i(ϕedg,i)n

Re(Pn,edg,i)� Im(Pn,edg,i)

t n

Pn,edg,i(ϕedg,i) = (1 + iηi) 1 4��1 + sin2(ϕedg,i)− iηi 4. 1 √ 1+sin2 edg,i) � � pplate,α,i pplate,β,i � � eα i,eβ i �

Pt,edg,i(ϕedg,i) = i(1 + iηi) 1 4sinϕedg,i � pplate,α,i pplate,β,i � � eα i,eβ i �

(16)

Re(Pcor,i) � Im(Pcor,i)

Pcor,i(ϕcor,i) = pcor,i

� cosϕcor,i sinϕcor,i � � eα i,eβ i �= �

pplate,α,i.cosϕcor,i

pplate,β,i.sinϕcor,i

� � eα i,eβ i � ui Ωi ui hiK CPi : γ (ui)−hi 3 12Bi.div � K CPi :X (wi) � =−ρiω2hiui Ωi (uh, Nh i) ui(Xi, Pi) = � Pi�Ciuni(Pi) .e Pi.Xi Ω i Ni(Xi, Pi) = � Pi�CiNni(Pi) .e Pi.Xi i Xi Pi Ci uni Nni n Xi Pi (ui, Ni) Sad,i          Ni− Bi � div Mi�=−ρiω2hiui Ωi Mi= hi3 12K CPi :X (wi) Ωi Ni= hiK CPi : γ (ui) Ωi 0 u0i= ui N0i= Ni u0pres,i Ppres,i upres,i � Xi, Ppres,i � = u0pressure,i�Ppres,i � .ePpres,i.Xi Ω i u0pressure,i�Ppres,i � = u0pres,i � cosθpres,i sinθpres,i � � eα i,eβ i �

Ppres,i(θpres,i) = ippres,i(θpres,i) = i(pα,pres,i.cos(θpres,i)eαi+ pβ,pres,i.sin(θpres,i)eβ i)

(17)

p2α/β,pres,i= ρiω2(1− ναiνβi) Eα/βi(1 + iηi) ppres,i(θpres,i) Cpres,i Cpres,i Cpres,i u0shea,i Pshea,i e3i ushea,i � Xi, Pshea,i � = u0shear,i�Pshea,i � .ePshea,i.Xi i u0shear,i�Pshea,i � = u0shea,i � −sinθshea,i cosθshea,i � � eα i,eβ i �

Pshea,i(θshea,i) = ipshea,i(θshea,i) = i(pα,shea,i.cos(θshea,i)eαi+ pβ,shea,i.sin(θshea,i)eβi)

p2α/β,shea,i= 2ρiω

2(1 + √ν αiνβi)

Eα/βi(1 + iηi)

(18)

Cshea,i Etot = Ed+ T Etot Ed T Uhi (Pi) ϕint/edg/cor,i θpres/shea,i Cint/edg/cor/pres/shea,i Cint/edg/cor/pres/shea,i whi (xi) = � ϕint,i�Cint,i

Winterior,ih (ϕint,i)ePint,i(ϕint,i).xidϕint,i

+ �

ϕedg,i�Cedg,i

Wedge,ih (ϕedg,i)ePedg,i(ϕedg,i).xidϕedg,i

+ �

ϕcor,i�Ccor,i

Wh

corner,i(ϕcor,i)ePcor,i(ϕcor,i).xidϕcor,i

                            

Pint,i(ϕint,i) =−i

pα,int,i(ϕint,i).cosϕint,i

pβ,int,i(ϕint,i).sinϕint,i

� � eα i,eβ i � Pedg,i(ϕedg,i) =      (1 + iηi) 1 4��1 + sin2(ϕedg,i)− iηi 4. 1 √ 1+sin2 edg,i) � � pplate,α,i pplate,β,i � � eα i,eβ i �.t +i(1 + iηi) 1 4sinϕedg,i � pplate,α,i pplate,β,i � � eα i,eβ i �.n      Pcor,i(ϕcor,i) = �

pplate,α,i.cosϕcor,i

pplate,β,i.sinϕcor,i

� eα i,eβ

i �

(19)

uh(xi) =

θpres,i�Cpres,i

u0hpressure,i(θpres,i) .ePpres,i(θpres,i).xidθpres,i

+ �

θshea,i�Cshea,i

u0hshear,i(θshea,i) .ePshea,i(θshea,i).xidθshea,i

                  

u0hpressure,i(θpres,i) = u0pres,i

� cosθpres,i sinθpres,i � � eα i,eβ i �

Ppres,i(θpres,i) = i(pα,pres,i.cos(θpres,i)eαi+ pβ,pres,i.sin(θpres,i)eβ i)

u0hshear,i(θshea,i) = u0shea,i

� −sinθshea,i cosθshea,i � � eα i,eβ i �

Pshea,i(θshea,i) = i(pα,shea,i.cos(θshea,i)eαi+ pβ,shea,i.sin(θshea,i)eβ i) Sad,i pi Sad,i Sad,ih Uh(Pi(ϕi)) ni lα/βi Ωi ni= 2lα/βi λα/βi = ωlα/βi πc α/βi = lα/βi √ω π 4 � ρihi Dα/βi

(20)

λα/βi eαii ω c α/βi = √ω4 �D α/βi ρihi ρi hi Dα/βi Dα/βi = Eα/βih3i 12(1−ναiνβi) ni c α/βi = � E α/βi ρi(1−ναiνβi) c α/βi = � EαiEβi 2ρi(1+√ναiνβi) ϕmn wanalytical(x, y) = ∞ � m=1 ∞ � n=1 amnϕmn(x, y)

(21)

amn=

F sin(mπxFLx )sin�nπyFLy � LxLy 4 ρh(wmn2 −w2) ϕmn= sin � mπx Lx � sin�nπyL y � whanalytical(x, y) = M � m=1 N � n=1 amnϕmn(x, y) M N M � Lx π 4 � 12ω2ρ(1−ν2) Eh2 N � Ly π 4 � 12ω2ρ(1−ν2) Eh2 k3h2 k h

wF,inf inite(x, y) = −iF

8 Eh3 12(1−ν2) � 12ω2ρ(1−ν2) Eh2 � J0( 4 � 12ω2ρ(1− ν2) Eh2 r) − iY0( 4 � 12ω2ρ(1− ν2) Eh2 r) −2iπK0( 4 � 12ω2ρ(1− ν2) Eh2 r) � r xF J0 Y0 K0 ≈

(22)
(23)

                          ͳͲ݉   ʹͲ݉   ͳͲ݉   ͵݉   ͵݉   Load ͳͲͲܯܰ  

(24)

≈ ͲǤͲ   ͲǤ͸Ͷ   ͳǤʹͺ   ͳǤͻʹ   ʹǤͷ͸   ͵ǤʹͲ   ͵ǤͺͶ   ͶǤͶͺ   ൈ ͳͲିଵ   ͲǤͲ   ͲǤʹͳ   ͲǤͶ͵   ͲǤ͸Ͷ   ͲǤͺ͸   ͳǤͲ͹   ͳǤʹ͸   ͳǤͷͲ   ൈ ͳͲିଵ  

(25)

ͲǤͲ   ͲǤ͸Ͷ   ͳǤʹͺ   ͳǤͻʹ   ʹǤͷ͸   ͵ǤʹͲ   ͵ǤͺͶ   ͶǤͶͺ   ൈ ͳͲିଵ   ͲǤͲ   ͲǤʹͳ   ͲǤͶ͵   ͲǤ͸Ͷ   ͲǤͺ͸   ͳǤͲ͹   ͳǤʹ͸   ͳǤͷͲ   ൈ ͳͲିଵ   P 2

(26)

P 1

wP 1(t) =100 sin (2π10t + 10)− 200 sin (2π20t + 20)

+ 300 sin (2π30t + 30)− 400 sin(2π40t + 40)

(27)
(28)

wP 1

(29)

rd

(30)
(31)

wP 2 P 2 P 2 -­‐200 -­‐150 -­‐100 -­‐50 0 50 100 150 0 50 100 150 200 250 300 Disp la cem ent w P2 (mm) Time (ms)

Time loading function w

P2

(t)

Frequency VTCR approach (6000 DOFs)

Temporal FEM approach (25 elements per wavelength)

(32)
(33)
(34)
(35)
(36)
(37)

A   � � � � � � s1 . . . sn , � � � � � � δs1 . . . δsn   = Re                                                                                      −iω                                            �n i=1 � ∂w,nΩi � δniMini � .�wi,n+kri(1+iη1 ri)niMini �∗ dl −�ni=1 � ∂wΩiδKi. � wi−kti(1+iη1 ti)Ki �∗ dl�ni=1uiδNi. � ui−kti(1+iη1 ti)Ni �∗ dl +�ni=1 MΩi � niMini � .δw∗i,ndl− �n i=1 � ∂KΩiKi.δw ∗ idl− �n i=1 � ∂NΩiNi.δu ∗ idl −�ni=1 � ∂Ωi �� (tiMini).δw∗i �� +n−1n �ni=1Γij�δniMini �

.�wi,n+krij(1+iη1 rij)

� niMini ��∗ dl −1 n � i�=j � Γij � δniMini �

.�βijwj,n−krij(1+iη1 rij)

� −βijnjMjnj ��∗ dl +n1�ni=1Γij�δwi,n �∗ .�niMini � dl + 1ni�=jΓij�δwj,n �∗ .�βijniMini � dl −n−1n �n i=1 � Γij(δKi) . �

wi+ktij(1+iη1 tij)(−Ki)

�∗ dl −1 n � i�=j � Γij(δKi) . �

αijwj− (1 + αij) ujnj+ktij(1+iη1 tij)(−αijKj+ (1 + αij) Njnj)

�∗ dl −1 n �n i=1 � Γij(δwi) ∗. (K i) dl−1n�i�=j � Γij(δwi) ∗.� −αijKj+ (1 + αij)Njnj � dl −n−1n �n i=1 � Γij(δNini) . �

uini+ktij(1+iη1 tij)(−Nini)

�∗ dl −1 n � i�=j � Γij(δNini) . �

αijujnj− (1 + αij) wj+ktij(1+iη1 tij)(−αijNjnj+ (1 + αij) Kj)

�∗ dl −1 n �n i=1 � Γij(δuini) ∗. (N ini) dl−1n � i�=j � Γij(δuini) ∗.� −αijNjnj+ (1 + αij)Kj�dl −n−1n �n i=1 � Γij(δNiti) . �

uiti+ktij(1+iη1 tij)(−Niti)

�∗ dl −1 n � i�=j � Γij(δNiti) . �

βijujtj+ktij(1+iη1 tij)

� −βijNjtj ��∗ dl −1 n �n i=1 � Γij(δuiti) ∗. (N iti) dl−1n � i�=j � Γij(δuiti) ∗.� −βijNjtj � dl                                                                                                                                 L   � � � � � � δs1 . . . δsn   = Re            −iω       �n i=1 � ∂w,nΩi � δniMini � .w∗ i,nddl− �n i=1 � ∂wΩiδKi.w ∗ iddl −�ni=1 � ∂uΩiδNi.u ∗ iddl +�ni=1 MΩiMid.δw ∗ i,ndl−� n i=1 � ∂KΩiKid.δw ∗ idl −�ni=1 � ∂NΩiNid.δu ∗ idl                  Sad,i

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to