• Aucun résultat trouvé

Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression

N/A
N/A
Protected

Academic year: 2021

Partager "Antidepressant-like effect of the mGluR5 antagonist MTEP in an astroglial degeneration model of depression"

Copied!
11
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Behavioural

Brain

Research

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / b b r

Research

report

Antidepressant-like

effect

of

the

mGluR5

antagonist

MTEP

in

an

astroglial

degeneration

model

of

depression

Helena

Domin,

Bernadeta

Szewczyk,

Monika

Wo ´zniak,

Anika

Wawrzak-Wleciał,

Maria ´Smiałowska

DepartmentofNeurobiology,InstituteofPharmacology,PolishAcademyofSciences,Sm˛etna12,31-343Kraków,Poland

h

i

g

h

l

i

g

h

t

s

•Astroglialdegenerationintheratprefrontalcortexasamodelofdepression.

•Gliotoxinl-AAAinduceddepressive-likebehaviorintheforcedswimtest.

•Antidepressant-likeeffectofmGluR5antagonistMTEPinthegliotoxinmodel.

•Imipramineantidepressantactivityinthegliotoxinmodel.

•MTEPandimipramineexertedglioprotectiveeffectsinl-AAAtreatedrats.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received16April2014

Receivedinrevisedform8July2014 Accepted11July2014

Availableonline18July2014 Keywords: Gliotoxin l-AAA Depression mGluR5antagonist MTEP

a

b

s

t

r

a

c

t

Theglutamatergicpredominanceintheexcitatory-inhibitorybalanceispostulatedtobeinvolvedin thepathogenesisofdepression.Suchimbalancemaybeinducedbyastrocyteablationwhichreduces glutamateuptakeandincreasesglutamatelevelinthesynapticcleft.Inthepresentstudy,wetriedto ascertainwhetherastroglialdegenerationintheprefrontalcortexcouldserveasananimalmodelof depressionandwhetherinhibitionofglutamatergictransmissionbythemGluR5antagonistMTEPcould haveantidepressantpotential.

Astrocytictoxinsl-ordl-alpha-aminoadipicacid(AAA),100␮g/2␮l,weremicroinjected,bilaterally intotheratmedialprefrontalcortex(PFC)onthefirstandseconddayofexperiment.MTEP(10mg/kg) orimipramine(30mg/kg)wereadministeredonthefifthday.FollowingadministrationofMTEPor imipraminetheforcedswimtest(FST)wasperformedforassessmentofdepressive-likebehavior.The brainsweretakenoutforanalysisondayeight.Theastrocyticmarker,glialfibrillaryacidicprotein(GFAP) wasquantifiedinPFCbyWesternblotmethodandbystereologicalcountingofimmunohistochemically stainedsections.

Bothl-AAAanddl-AAAinducedasignificantincreaseinimmobilitytimeintheFST.Thiseffectwas reversedbyimipramine,whichindicatesdepressive-likeeffectsofthesetoxins.Asignificantdecreasein GFAP(about50%)wasfoundafterl-AAA.BoththebehavioralandGFAPlevelchangeswerepreventedby MTEPinjection.

TheobtainedresultsindicatethatthedegenerationofastrocytesinthePFCbyl-AAAmaybeauseful animalmodelofdepressionandsuggestantidepressantpotentialofMTEP.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Adecreaseinthedensityofglialcellsincorticalregions, espe-cially intheprefrontaland cingularareaswasone ofthemost consistentfindingsfrompostmortemstudiesofbrainsofdepressed patients[1–5].Moreover,adeclineinthenumberofastrocytesin

∗ Correspondingauthor.Tel.:+48126623270;fax:+48126374500. E-mailaddress:nfsmialo@cyf-kr.edu.pl(M. ´Smiałowska).

theprefrontalcortexwasobserved inratssubjected tochronic unpredictablestresswhichisoneofthegenerallyaccepted ani-malmodelsof depression [6]. Themain functionsmediatedby astrocytes includetrophic support,neuronal differentiationand synapticefficacy[7].Theyregulatethelocalconcentrationofions and neuroactivesubstances [8–12]which is crucialfor keeping thecentralnervoussystem(CNS)homeostasis.Astrocytesarean integralpartoftripartitesynapsewheretheyregulateneuronal excitability[13,14].Intheglutamatergicsynapses,themost abun-danttypeofsynapsesintheCNS,astrocytescontrolthelevelsof

http://dx.doi.org/10.1016/j.bbr.2014.07.019 0166-4328/©2014ElsevierB.V.Allrightsreserved.

(2)

extracellularglutamate,themainexcitatoryneurotransmitterin themammalianbrain,sotheymaintaintheexcitatory/inhibitory balancethere[15,16].

Ithasbeenhypothesizedlatelythatdysregulationofthisbalance underliesmooddisordersandanxietyandthattheglutamatergic predominanceinthisGlu/GABAbalanceisinvolvedinthe patho-genesisofdepression[17–20].Indeed,anincreaseinglutamateor glutaminelevelwasdocumentedinthebrainsandcerebrospinal fluidofdepressedpatients[21,22]aswellasintheirplasmaand platelets[23–25].Moreover,theinhibitionofglutamatergic func-tion had antidepressant effects [26,27]. It was also found that chronictreatmentwithantidepressantscaused thereduction of up-regulatedglutamaterelease[28–30].

Asmentionedabove, astrocyteshave a crucialrole in main-tainingtheproperGlu/GABAbalance,astheytakeupthereleased glutamate.Hence,thebasicconsequencesofthedisappearanceor dysfunctionofastrocytesincludethereductionofglutamateuptake andthus excessiveglutamatelevelsin thesynapticcleft which disturbsthebalanceandmayleadtodepression.

Recently,depressive-likebehavior hasbeendemonstrated in ratsafterdegenerationofastrocytesbygliotoxins[6].Theauthors postulatedthatastroglialdegenerationinducedbytheastrocytic toxinl-alpha-aminoadipicacid(l-AAA) in theprefrontalcortex wassufficienttotriggerdepressive-likebehavior.Previousstudies ofotherauthorsperformedin cellcultures and mice hypothal-amusshowedthat not only l-AAAbut also d-AAAand dl-AAA inducedgliotoxicdamage[31–34].Therefore,inthepresentstudy wetriedtofindoutwhethersuchgliotoxins,notonlyl-AAAbut alsodl-AAAmicroinjected intotheratmedial prefrontalcortex (mPFC), couldserve as a new animal model ofdepression and whetherourmodelofgliotoxin-induceddepressionmaybeuseful forstudyinganantidepressantactionofcompounds.Moreover,we examinedifbothtoxinsdecreasedastrocytesdensityspecifically intheprefrontalcortex.Atthebeginning,weverifiedifthe classi-calantidepressantdrug,imipramine,antagonizeddepressive-like effectsofthegliotoxinsandthenwestudiedtheeffectofa com-poundengagedintheregulationofglutamatergictransmission.

Asmentionedabove,theoveractivationofglutamatergic func-tionintheprefrontalandlimbiccorticesmaybeessentialinthe pathophysiologyofdepression[35].Itwasconfirmedbytheresults in which inhibition of glutamatergic activity by NMDA recep-torantagonistsexertedantidepressant-likeeffects inlaboratory animals[36,37]and hadantidepressantproperties indepressed patients[38–41].Ketamineisthefirstdrugofclinicalsignificance whichhasamechanismofactionassociatedwiththeNMDA recep-tor.ThisNMDAantagonistexhibitsarapidonsetofactionandhas hightherapeuticefficacy.Unfortunately,thehighantidepressant activityof ketamineis associatedwithariskof seriousadverse effects(dissociativeandpsychotomimeticeffectsandthe poten-tialtoabuse)thatgreatlyrestrictitsapplicationonalargerscale

[42].Since thetherapeutic useofdirect NMDAreceptor antag-onismisdiminishedbytheirundesirableside-effects,therefore, anindirectinhibitionofglutamatergicfunctionviametabotropic glutamatereceptors(mGluR)seemstobeamuchmore promis-ingwayfortreatmentofdepressionthanthedirectblockadeof ionotropicglutamatergicreceptors(iGluR).Indeed,mGluRligands weredemonstratedtoproduceantidepressant-likeandanxiolytic effects.MetabotropicGluRsconstituteafamilyofeightsubtypes subdividedintothreegroupsonthebasisofsequencehomology, pharmacologicalprofileand transductionpathways[43].Group I comprises mGluR1 and mGluR5 are primarilylocalized post-synaptically and are positively coupled with phosphoinositide hydrolysis, activationof phospholipase C, protein kinaseC and calciumrelease [44]. Many studies showed that stimulation of these receptors potentiated the excitatory effect of glutamate by modulation of ion channels [45], while blockade of these

receptorsattenuatedtheseexcitatoryeffects.Behavioralstudies in thelast yearshave revealed thatgroupI mGluRantagonists producedantidepressant-likeactivityinseveraltestsandmodels inrodents.Recently,MTEP (3-[(methyl-1,3-thiazol-4-yl)ethynyl]-pyridine), a highly selective, non-competitive antagonist of metabotropicglutamatereceptorssubtype5(mGluR5),hasbeen describedasanantidepressantandanxiolyticcompoundinanimal experimentsinthebehavioraldespairtestsandinthe bulbectomy-inducedmodelofdepression[46–50].Moreover,inourprevious studieswefoundneuroprotectiveeffectofMTEPwhichwasrelated to the inhibition of glutamatergic transmission and glutamate release[51].

Therefore, the goal of the present study was to find out if themGluR5antagonistMTEPmayhavepotentialantidepressant effectsintheastrocytictoxin-inducedratmodelofdepression.Such suppositionseemstobereasonableasanoveractivationof gluta-mateactivitywhichispostulatedtooccuringliotoxicmodelmay beinhibitedbyMTEP.

2. Materialsandmethods

2.1. Animals

MaleSpraque-Dawleyrats(CharlesRiver,Germany)weighing about250–300gatthebeginningoftheexperiment, wereused inthe study.Theanimalswere keptunder standard laboratory conditionsofconstant temperature(19–21◦C),controlled12:12 light-darkcycle.Theratswereage-matchedandwerehousedsix toacageona12:12light-darkcycle,withfreeaccesstofoodand tapwater.Theratsaftercannulaeimplantationwerehousedsingly. Duringtheexperiment,alleffortsweremadetominimizeanimal sufferingandtoreducethenumberofanimalsused,inaccordance withtheLocalBioethicalCommissionGuidefortheCareandUse ofLaboratoryAnimals.

2.2. Cannulaeimplantation

The rats anaesthetized with ketamine (75mg/kg i.m.) and xylazine(10mg/kgi.m.)werestereotaxically,bilaterallyimplanted withguidecannulaeaimedatthemedialprefrontalcortex(mPFC) regionusingthefollowingcoordinates:AP=+3.2mm,L=+1.0mm fromtheBregma, H=−3.5mm fromtheskull, accordingtothe Paxinos and Watson stereotaxic atlas [52]. The guide cannulae (23-gaugestainlesssteeltubing),securedbydentalcement,were anchoredtotheskullbythreestainlesssteelscrews.Inorderto preventclogging,stainlesssteelstyletswereplacedintheguide cannulaeandleftuntiltheanimalsweremicroinjected.Animals wereleftfor7daysforrecovery.

2.3. Drugtreatments

On the 1st and 2nd day of the experiment, the rats were bilaterally microinjected into medial prefrontal cortex (mPFC) withastrocytic toxins l-alpha-aminoadipic acid(l-AAA), or dl -alphaaminoadipicacid(dl-AAA)(Sigma–Aldrich ChemieGmbH, Germany).The gliotoxinswerefreshly dissolvedin0.1M phos-phatebuffer,pH7.4andweremicroinjectedatdosesof100␮g/2␮l. Control ratswere bilaterally injected with a phosphate buffer. Afterwardsdepressive-likebehaviorwasassessedbyaforcedswim test(FST)24h,72hor144hafterthesecondgliotoxinsorbuffer administrationinthetime courseexperiment,and 72h(on day 5)in all other experiments.The other groupof rats was addi-tionallytreatedwiththeantidepressantimipraminehydrochloride (Sigma–AldrichChemieGmbH,Germany)inadoseof30mg/kg, threetimes:24,5and1hbeforetheforcedswimtest(FST)orwith mGluR5antagonistMTEP(Tocris,USA)inadose10mg/kg,once

(3)

Fig.1.Experimentaldesign:scheduleoftreatmentsandtestsinthegliotoxinmodel.Arrowsindicatethetimeoftreatmentsandtestsonthetimeline.

20minbeforetheFST.Imipraminewasdissolvedinsaline,MTEP wassuspendedin0.5%methylcelluloseandbothcompoundswere administeredintraperitoneally(i.p.)ina volumeof2ml/kg.The scheduleoftreatmentisshownatFig.1.

2.4. Behavioralstudies

2.4.1. Forcedswimtest(FST)

TheratsweresubjectedtotheFSTaccordingtothemethod described inthe paperof Nowaket al. [53].Briefly, duringthe pretesttheratswereplacedindividuallyinaglasscylinders(40cm high,18cmindiameter)containing15cmofwater,maintainedat 25◦C.After15minswimmingsessionratswereremovedfromthe cylindersandreturnedtotheirhomecages.Ratswereplacedagain inthecylinder24hlaterandthetotaldurationofimmobilitywas measuredduringa5mintest.Ratswerejudgedtobeimmobile whenitremainedfloatingpassivelyinthewater.Theeffectofl -AAAordl-AAAaloneandincombinationwithimipramineorMTEP wasmeasured72hafterthesecondadministrationoftoxins.To obtainatimecourseeffectofl-AAAadministrationintheFST,the totaldurationofimmobilityinratswasmeasuredintheseparated groups24,72and144hafterthesecondl-AAAadministration.

2.4.2. Locomotoractivity

Locomotoractivitywasrecordedindividuallyforeachanimalin Opto-Varimexcages(ColumbusInstruments,USA)linkedon-line toacompatibleIBM-PC.Thebehavioroftheratswasanalyzedusing Auto-Track software (Columbus Instruments, Columbus, USA). Eachcage(43cm×43×21cm)wasequippedwitha15×15array ofinfraredemitterslocated3cmfromthefloorsurface.The num-beroflightbeamsinterruptedbyananimalwasrecordedat5min intervalsandwaspresentedasthedistancetraveledincm. Loco-motoractivitywasrecorded24or72hafterthesecondgliotoxin administration;1hafterthelastdoseofimipramineor20minafter MTEPinjection.

2.4.3. Statisticalanalysis

Theobtaineddatawerepresentedasmeans±SEM,and eval-uatedeitherbyatwo-wayANOVAanalysisofvariance,followed byBonferronimultiplecomparisontest(resultsonFigs.2and4) orStudent’st-test(resultsonFig.3).Thelevelofsignificancewas determinedasp<0.05.

2.5. Westernblotanalysis

Ondayeighth(144hafterthesecondgliotoxininjection)the ratsweredecapitated,brainsweretakenoutandtheglial fibril-laryacidicprotein(GFAP)levelwasdeterminedintheprefrontal cortex(PFC),hippocampus,amygdalaandposteriorcorticalareas. Prefrontalcortexwastakenbycuttingtheanteriorpartofthe fore-brainatthelevelofBregma2.20mmaccordingtothePaxinosand Watsonstereotaxicatlas[52].Olfactorybulbsandtheanterior stri-atumwerecutoff.Therefore,thetissuetakenforanalysiscontained majorityoftheprefrontalcortex.AdditionallyNeuNproteinlevel

Fig.2.Theeffectofcombinedadministrationofl-AAA,dl-AAAandimipramine (IMI)onthetotaldurationofimmobilityintheFSTinrats.l-AAAanddl-AAAwere administeredtwiceintotheratmPFC,atadoseof100␮g/2␮l,onthefirstandthe seconddayofexperiment.TheFSTwasperformedonday5(72hafterthesecond injection).Imipramine(30mg/kg)wasadministeredi.p.,treetimes:24,5and1h beforethetest.Theobtaineddatawerepresentedasthemeans±SEM(n=10–12 ratspergroup)andevaluatedbytwo-wayANOVA,followedbyBonferronimultiple comparisontest.*p<0.05vscontrol;#p<0.001vsl-AAAordl-AAAtreatedgroup.

(biomarker forneurons) wasestimatedafterl-AAAinjectionin thePFC.

Thetissuewashomogenizedin2%SDSandcentrifugedfor5min at10,000rpmat4◦C.Proteinconcentrationintheobtained super-natant was determinedusing a BCA Protein AssayKit (Pierce). Thesamplescontaining30␮gofproteinwereseparatedby10% SDS-polyacrylamidegelelectrophoresisandtransferredto nitro-cellulose membranes using an electrophoretic transfer system. Non-specificbindingwasblockedfor30mininblockingreagent (Roche).Then,membraneswereincubatedovernightat4◦Cwith mousemonoclonalanti-GFAPantibody(1:5000,Millipore)or anti-NeuN(1:1000,Millipore).Themembraneswerethenwashedwith TBS-Tand incubatedfor 30minwitha horseradish peroxidase-conjugatedanti-mouseIgGsecondary antibody(1:1000,Roche). ThereactionwasvisualizedbyusingBMChemiluminescence West-ern BlottingKit, Roche). Chemiluminescence wasrecorded and evaluatedwithaluminescentimageanalyzer(FUJI-LAS-4000).The

Fig.3. Theeffectofl-AAAadministrationonthetotaldurationofimmobilityinthe FSTinratsatdifferenttimepoints.l-AAAwasadministeredtwiceintotheratmPFC atadoseof100␮g/2␮l,onthefirstandtheseconddayofexperiment.TheFSTwas performed24,72and144hafterthesecondtoxininjection.Theobtaineddatawere presentedasthemeans±SEM(n=10–12ratspergroup)andevaluatedbyStudent’s t-test.Significancewasassumedatp<0.05.

(4)

Fig.4.Theeffectofcombinedadministrationofl-AAAandMTEPonthetotal dura-tionofimmobilityintheFSTinrats.l-AAAwasadministeredtwiceintotheratmPFC atadoseof100␮g/2␮l,onthefirstandtheseconddayofexperimentandMTEP, 10mg/kg,i.p.,wasgiven20minbeforetheFST.Theobtaineddatawerepresented asthemeans±SEM(n=10–12ratspergroup)andevaluatedbytwo-wayANOVA, followedbyBonferronimultiplecomparisontest.*p<0.05vscontrol;#p<0.001vs

l-AAAtreatedgroup.

relativelevelsofimmunoreactivitywerequantifiedusingImage Gaugev4.0software.Toconfirmequalloadingofthesampleson thegel,theblotswereincubatedwithmouseanti-␤-actin anti-body(1:5000,Sigma)andthenprocessedasdescribedabove.The densityofGFAPproteinbandwasnormalizedtothedensityofthe ␤-actin.

TheWestern blotanalysis ofGFAP was performedin group of rats treated with l-AAA, dl-AAA, l-AAA+imipramine, dl -AAA+imipramine,imipramine,MTEPand l-AAA+MTEP.Forthe timecourseeffectofl-AAAonGFAPandNeuNproteinlevelinthe PFC,ratsweredecapitatedandthebrainswerecollected24,48and 72hafterthesecondinjectionofgliotoxin.Westernblotanalysis wasperformedasdescribedabove.

2.5.1. Statisticalanalysis

Theobtaineddatawerepresentedasmeans±SEM,and eval-uatedeitherbyatwo-wayANOVAanalysisofvariance,followed byBonferronimultiplecomparisontest(resultsonFigs.6and7) orStudent’st-test(resultsonFig.5).Thelevelofsignificancewas determinedasp<0.05.

2.6. Histologicalandimmunohistochemicalstudies

Ondayeighth(144hafterthesecondinjectionofthetoxin) thebrainsweretakenforanalysis.Ratsunderdeeppentobarbital anesthesiawereperfusedthroughtheascendingaortawith0.9% physiologicalsaline,followedbyacold4%paraformaldehyde(PF) in0.1Msodiumphosphatebuffer,pH7.4.Next,theirbrainswere removed,postfixedincoldbufferedPFfor3h,andcryoprotectedin abuffered20%sucrosesolutionforatleast5daysat4◦C.Thebrains werethenfrozenondryice,and40␮mcoronalsectionswerecutat levelscontainingmedialprefrontalcortex(betweenbregma4.70 to1.70mm,accordingtothePaxinosandWatsonstereotaxicatlas

[52].Free-floatingsectionswerecollectedandeverysixthsection weretakenforglial fibrillaryacidic protein(GFAP) immunohis-tochemicalstaining,usinganti-GFAPmousemonoclonalantibody (Millipore)dilutedat1:800insodiumphosphate-buffer(PBS) con-taining0.2%TritonX-100and1%normalhorseserum.Adjacent sectionswerestainedwithcresylvioletandusedforahistological analysisandverificationoftheinjectionsites.Theimmunostained sections,afterreactionwithprimaryantibodywererinsedinPBS andprocessed byan avidin–biotinperoxidasecomplexmethod usinganABC-peroxidasekit(Vector Lab)anddiaminobenzidine

Fig.5.Theeffectofl-AAAadministrationontheGFAPlevelintheratPFC,measured atdifferenttimepoints.Westernblotanalysis.l-AAAwasadministeredtwiceinto theratmPFCatadoseof100␮g/2␮l,onthefirstandtheseconddayofexperiment. TheGFAPlevelintheprefrontalcortex(PFC)wasdetermined7h,24h,48h,72h and144hafterthesecondtoxininjection.(A)Theimmunoblotbandscorresponding toGFAP(upperpanels)and␤-actin(lowerpanels)areseen.Aweakerintensityof theGFAPbandisobservedinsamplestakenfromrats72and144hafterthel-AAA injection.(B)AnalysisofdataoftheGFAPlevel.Theobtaineddatawerepresented asthemeans±SEM(n=6–7ratspergroup)andevaluatedbyaStudent’st-test. *p<0.05,**p<0.01vscontrol.

(DAB)as a chromogen.The stained sectionswere mounted on slides,dried,dehydrated,clearedinxylene,cover-slippedwith Per-mountandanalyzedunderalightmicroscope.

Additionally,somesectionsfromeachgroupwerestainedby immunofluorescencemethodusinganti-GFAPantibody.After1h incubation in a blocking buffer(5% normal donkey serum and 0.2% Triton X-100 in 0.01MPBS) the sections were incubated (48hat4◦C)withtheprimaryanti-GFAPmouseantibody (Mil-lipore)diluted at1:800in theblockingbuffer. Afterincubation withtheprimaryantibody,thesectionswerewashedand incu-batedovernightat4◦CinthesecondaryantibodyCy3-conjugated anti-mouseIgG(1:200,JacksonImmunoResearch,USA).The sec-tionswerethenwashedandmountedwithacoverslipoverlay.The

Fig.6.Theeffectofl-AAAandimipramine(IMI)administrationontheGFAPlevel intheratPFC.Westernblotanalysis.l-AAAwasadministeredtwiceintotherat mPFCatadoseof100␮g/2␮l,onthefirstandtheseconddayofexperiment.The GFAPlevelwasdeterminedonday8(144hafterthesecondtoxininjection).(A) Theimmunoblotbands.(B)AnalysisofdataoftheGFAPlevel.Theobtaineddata werepresentedasthemeans±SEM(n=6–7ratspergroup)andevaluatedby two-wayANOVA,followedbyBonferronimultiplecomparisontest.*p<0.05vscontrol;

(5)

Fig.7. Theeffectofl-AAAandMTEPadministrationontheGFAPlevelintherat PFC.Westernblotanalysis.l-AAAwasadministeredtwiceintotheratmPFCata doseof100␮g/2␮l,onthefirstandtheseconddayofexperiment.TheGFAPlevel wasdetermined144hafterthesecondtoxininjection.(A)Theimmunoblotbands. (B)AnalysisofdataoftheGFAPlevel.Theobtaineddatawerepresentedasthe means±SEM(n=6–7ratspergroup)andevaluatedbytwo-wayANOVA,followed byBonferronimultiplecomparisontest.*p<0.05vscontrol;#p<0.05vsl-AAA.

sectionswereanalyzedwithaconfocallaserscanningmicroscope, DMRXA2TCSSP2(Leica),witha63×/1.40–0.70oilobjective(Leica) drivenbyconfocalsoftware(Leica)usingthesequentialscan sett-ings,asdescribedpreviously[54].WorkingwithGreNelaserline emittingat543nmwasusedtoexciteCy3-conjugatedantibody. Thebackgroundnoiseofeachconfocalimagewasthenreducedby averagingfourscans/lineandsixframes/image.Thepinholevalue ofoneairywasusedtoobtainflatimages.

2.7. StereologicalcountingofGFAP-immunoreactiveastrocytes

The number of GFAP-immunoreactive astrocyte cell bodies stainedwithDAB,inthemedialprefrontalcortex(mPFC)was eval-uatedbystereologicalcounting.Theprocedureswereperformed usingamicroscope(Leica,DMLB;Leica,Denmark)equippedwith aprojectingcamera(BaslerVisionTechnologies,Germany)anda microscopestage connectedtoan xyzstepper (PRIORProScan) controlledbya computerusingVisiopharm NewCASTsoftware (Visiopharm,Denmark).

Systemic uniform, random sampling was used to choose thesectionsfor theanalysis.For stereologicalestimates, GFAP-ir astrocytes were counted within the contours of the mPFC [AP=4.70–1.70mm]from bregmaaccordingtothePaxinos and Watsonstereotaxicatlas[52]inatleast8–12sectionsat240␮m intervals.ThemPFCwasoutlinedunderalowermagnification(5×) anduniformlysampleddissectorpointswereusedatrandomalong thewholestructureusingthemeandersampling.

The total number of GFAP-positive cells in the mPFC was unbiasedly estimated using a three dimensional probe under a higher magnification (63×) according to the formula: N=Q×V(ref)/

v

(dis)×P,whereQisatotalcountofGFAP-ir astrocytesintheuniformlysampleddissectors,V(ref)–thetotal volumeof themPFC,

v

(dis)– thetotal volume ofthe dissector

[55]andP–thetotal numberofalldissectorpoints.A count-ingframeof74.61␮m×74.61␮m(5567.27␮m2),asamplinggrid

of333.68␮m×333.68␮m(111,342.3␮m2)andadissectorheight

of20␮mbelowthesurfacewereemployed.Samplingwas opti-mizedtoproduceacoefficientoferrorwellundertheobserved biologicalvariability[56].ThetotalvolumeofthemPFCV(ref)was estimatedusingCavalieri’sprinciple[56]accordingtotheformula:

V(ref)=t×a(p)×P,wheretistheknowndistancebetweenthe sampledsections,a(p)istheareaassociatedwitheachpointofa grid,Pisthetotalnumberofcountedpointsoverallsectionsfrom onerat.

2.7.1. Statisticalanalysis

Thedatawerepresentedasmeans±SEM,andevaluatedbya one-wayANOVAanalysisofvariance,followedbyTukey’s multi-plecomparisontest.Thelevelofsignificancewasdeterminedas p<0.05.

3. Results

3.1. Behavioralstudies

3.1.1. Effectofcombinedadministrationofl-AAAordl-AAAand imipramineintheFST

Theeffectof l-AAAand dl-AAAonthetotal durationof the immobility time in the FST in rats is shown in Fig. 2. l-AAA and dl-AAA administered twice into the rat mPFC, at a dose of100␮g/2␮l,inducesdepressive-like behaviorin theFST.The immobilitytimeofratsincreasedsignificantlybothinl-AAAand dl-AAAtreatedgroupascomparedtocontrolgroup. Administra-tion of imipraminesignificantly decreased the immobilitytime of rats and antagonized the effects elicited by l-AAA and dl -AAAadministration. Twoway ANOVAdemonstrated significant effectofgliotoxin[F(2,47)=3.32,p=0.0448];significanteffectof imipramine[F(1,47)=83.87,p=0.0001]andsignificantinteraction [F(2,47)=4.03,p=0.0242].

3.1.2. Effectofl-AAAintheFSTatdifferenttimepoints

Thetime courseeffectofl-AAAonthetotal durationof the immobilitytimeintheFSTinratsisshowninFig.3. Depressive-likebehavior,observedasincreasedimmobilitytime intheFST wasfound 24h(p=0.0445) and 72h(p=0.0491) but not 144h (p=0.5103)afterthesecondgliotoxininjection.

3.1.3. Effectofcombinedadministrationofl-AAAandMTEPin theFST

The effect of combined administration of l-AAA and MTEP on the total duration of the immobilitytime in FST in rats is showninFig.4.l-AAAadministeredalonesignificantlyincreased the immobility time in FST. MTEP given alone significantly decreasedtheimmobilitytimeinratsandantagonizedtheeffect induced by l-AAA.Two way ANOVA demonstrated the signifi-canteffectofMTEP[F(1,39)=13,49,p=0.0007],significanteffect of l-AAA [F(1,39)=5.44, p=0.0249] and significant interaction [F(1,39)=4.21,p=0.047].

3.1.4. Effectofl-AAAanddl-AAAaloneorincombined administrationwithimipramineandMTEPonthelocomotor activityinrats

Theeffectofl-AAAanddl-AAAadministrationaloneorin com-bined treatment withimipramine and MTEPon thelocomotor activityinratsisshowninTable1.

l-AAA anddl-AAAadministered alone didnotinfluence the locomotor activityinrats (Table1A).However,theimipramine alone or in combined administration with l-AAA and dl-AAA significantlydecreased thelocomotor activityin rats,measured 72hafterthesecondinjectionoftoxin(Table1B).Nosignificant effectonthelocomotoractivitywasfoundafterMTEPand com-binedl-AAAand MTEPinjections.Onlyatendencyfordecrease was observed (Table 1C). Two way ANOVA demonstrated no effectof gliotoxinsF(2,25)=1.01, p=0.3802,significanteffectof

(6)

Fig.8.MicrophotographsofcoronalsectionsoftheratbrainmPFC.(A,B,CandD)Cresylvioletstaining.Generalviewofthesectionsofcontrol(A)andl-AAA(B)treatedrats underlowermagnification.Glialscar(inA)andtissuedestruction(inB)isseenintheinjectionsites.Blacksquarespointtheregionspresentedunderhighermagnification onCandDrespectively.Stainednervecellbodiesareseenneartheinjectionsitebothinacontrolrat(C)andinanl-AAAinjectedrat(D).Glialscarisvisibleatthebottom ofthephotographs.(EandF)SectionsimmunostainedwithGFAPantibody.NumerousGFAPpositiveastrocytesareseeninthesectionfromacontrolrat(E),incontrastto nearlynoastrocytesinthesectionfromanl-AAAtreatedrat(F).CalibrationbarsforAandB500␮m,for(C),(D),(E),(F)25␮m.(Forinterpretationofthereferencestocolor inthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

imipramineF(1,25)=56.50,p<0.0001andnotsignificant interac-tionF(2,25)=0.15,p=0.8642.

3.2. Westernblotanalysis

3.2.1. Effectofl-AAAadministrationontheGFAPandNeuN proteinlevelintheratPFCatdifferenttimepointsandindifferent structures

Thetimecourseeffectofl-AAAontheGFAPproteinlevelinrat PFCisshowninFig.5.SignificantdecreaseintheGFAPproteinlevel wasobserved72h(p=0.0298)and144h(p=0.0195)aftersecond l-AAAadministration.NochangesintheGFAPproteinlevelwere observed7,24and48hafterl-AAAtreatment.l-AAAinjectiondid notinfluencetheNeuNlevelinPFCatanytimepoints(datanot shown).NochangesintheGFAPlevelwerefoundintheposterior

corticalareas,hippocampusandamygdala(datanotshown)after thetoxinadministration.

3.2.2. Effectofl-AAA,dl-AAAandimipramineadministrationon theGFAPproteinlevelintheratPFC

Theeffectsofl-AAAaloneandcombinedadministrationofl -AAAwithimipramineontheGFAPproteinlevelinPFC(144hafter thetoxininjection)areshowninFig.6.

l-AAA administration induced a significant reduction in the GFAP protein level in the rat PFC (to 46% of control level). Imipraminealone hadnoeffectonGFAPprotein levelhowever antagonizedtheeffectinducedbyl-AAA.TwowayANOVA demon-strated no effect of l-AAA [F(1,21)=2.18, p=0.1544]; no effect of imipramine [F(1,21)=0.33, p=0.569] and significant interac-tion[F(1.21)=8.85,p=0.007].Nosignificantchangeswerefound

(7)

Table1

Theeffectofl-AAAanddl-AAAaloneorincombinedadministrationofl-AAAand MTEPonthelocomotoractivityinrats.

Treatment Activitycounts(5mintest)

A Control 662.08±66.1 l-AAA 670.37±32.5 dl-AAA 693.79±49.3 B Control 583.7±10.08 Imipramine 213.9±43.03a l-AAA+imipramine 311.5±81.43a dl-AAA+imipramine 212.9±28.25a C Control 622.5±64.99 MTEP(10mg/kg) 466.54±37.19 l-AAA+MTEP(10mg/kg) 487.5±45.55

Locomotoractivitywasexamined;(A)24hafterthesecondl-AAAordl-AAA admin-istration;(B)72hafterthesecondadministrationofl-AAAand1hafterthelastdose ofimipramine(triplicateinjectionsofimipramine24,5,1hbeforethetest);(C)72h afterthesecondadministrationofl-AAAand20minaftertheMTEPtreatment.The valuesrepresentmean±SEM(n=6–8ratspergroup).

ap<0.05vscontrol.

afterdl-AAAaloneandincombinationwithimipramine(datanot shown).

3.2.3. Effectofcombinedadministrationofl-AAAandMTEPon theGFAPproteinlevelintheratPFC

Theeffectsofl-AAAaloneandtheeffectofcombined adminis-trationofl-AAAwithMTEPontheGFAPproteinlevelinPFC(144h afterthetoxininjection)areshowninFig.7.

l-AAAadministrationinducedsignificantreductionintheGFAP proteinlevelintheratPFC(to52,8%ofcontrol).MTEPantagonized theeffectinducedbyl-AAAbutdidnotchangetheGFAPprotein levelwhengivenalone.TwowayANOVAdemonstratednoeffectof l-AAA[F(1,30)=0.75,p=0.3523];noeffectofMTEP[F(1,30)=0.44, p=0.5102]andsignificantinteraction[F(1.30)=7.54,p=0.0101].

3.3. Histologicalandimmunohistochemicalanalysis

3.3.1. Effectofl-AAAanddl-AAAaloneorincombined administrationofl-AAAandMTEPonthenumberof GFAP-positivecells

Histological analysis of sections stained with cresyl violet showedtheproperlocalizationoftheinjectionsites(inmPFC), and CVstainedneuronswereseen inthewholemPFC (Fig.8A andB), alsoveryneara scar(Fig.8Cand D)GFAP immunohis-tochemistryshowedadecreaseinadensityofastrocytesinthe mPFC of rats treated with l-AAA (Fig. 8E and F). Stereological countingshowedastrong,significantdecreaseinthenumberof GFAP-immunoreactive(ir)astrocytesinmPFCafterl-AAAin com-parisontocontrolrats(to54,18%ofcontrol)(Fig.9A).Theeffectof dl-AAAonthenumberofGFAP-irastrocyteswasweakand insignif-icant.Thedecreasingeffectofl-AAAonthenumber ofGFAP-ir cellswassignificantlyinhibitedbyMTEP,reaching81,2%ofcontrol (Fig.9B).TheglioprotectiveeffectofMTEPfoundinstereological countingwasconfirmedbythemorphologicalobservationof astro-cytesinthemPFCimmunostainedwithananti-GFAPantibody.A densityofGFAPimmunofluorescentastrocytesdecreasedbyprior l-AAAadministrationwasnearlynormalizedafterMTEPtreatment (Fig.10).

4. Discussion

Our results indicate that gliotoxin induced degeneration of astrocytesin therat medialprefrontalcortexmaybeusedasa

Fig.9.Theeffectofl-AAAanddl-AAAadministration(A)andtheeffectofcombined administrationofL-AAAandMTEP(B)onthenumberofGFAPpositivecellsinthe ratmPFCcountedbystereologicalmethod.l-AAAwasadministeredtwiceintothe ratmPFCatadoseof100␮g/2␮l,onthefirstandtheseconddayofexperimentand MTEP10mg/kg,i.p.,wasinjectedonday5(20minbeforeFST).Brainsweretaken foranalysisonday8(144hafterthesecondtoxininjection).Thedataarepresented asthemeans±SEM,(n=5–8ratspergroup)andevaluatedbyone-wayANOVA, followedbyTukey’smultiplecomparisontest.p<0.05wasconsideredsignificant. **p<0.01vscontrol;#p<0.05vsl-AAA.

good experimentalmodel ofdepression. The resultsarein line withtheideaarisingfromnumerousstudiesindicatingthat astro-cytedysfunctionplaysacrucialroleinpathogenesisofdepression. Actually, anhedonia wasobserved in ratsafter theblockade of astrocyticglutamateuptakeintheprefrontalcortex[57]. Intracere-broventricularinfusionofdihydrokainate,anastrocyticglutamate uptake blocker,alsoinducedsomesignsofanhedoniaobserved intheintracranial stimulationandplaceconditioningtests[58]. Theblockadeof astrocyticglutamateuptakein theamygdala, a limbicstructureengagedintheregulationofmoodandanxiety hasbeenreportedtoinducesomebehavioraleffectscharacteristic ofdepressive-likesymptoms[59].Reducedglutamatetransporter activityandexpressionwasreportedtooccurinthehippocampus inthemousestressmodelofdepressionandinthecortexinthe learnedhelplessmodelinrats[60].Alsoinhumanpostmortem studies,downregulationofgenescodingforastrocyticglutamate transporterswasobservedinthecingulateandprefrontalcortexof depressedsubjects[61].Dysfunctionofastrocytegapjunction com-municationwasalsofoundintheratprefrontalcortexafterchronic unpredictablestressanditwasreversedbytreatmentwith antide-pressants,moreover,thepharmacologicalgapjunctionblockade inthePFCinduceddepressive-likebehaviorinrats[62].Allthese findingsindicatethatdamageorimpairmentofproperfunctionof astrocytesintheprefrontalcortexmaybeagoodmodelof depres-sion.

Inourstudies,wedamagedastrocytesintheratmPFCbythe gliotoxin,alpha-aminoadipicacid(AAA).Itwasdemonstratedtobe aspecifictoxinforastrocytesalreadyin1971byOlneyand cowork-ers[63],anditsspecificitywasconfirmedinlateryearsbothinvivo

(8)

Fig.10.MicrophotographsofcoronalsectionoftheratbrainmPFC,showingGFAPpositiveastrocytesstainedbyimmunofluorescencemethod.(A)Numerousastrocytesare seeninthesectionfromacontrolrat;(B)thedecreaseinastrocytedensityanddiminutionoftheirprocessesarefoundafterl-AAAinjection;(C)MTEPpartiallypreventsthe l-AAAeffect:numerousastrocytesarevisiblelikeinthecontrolsection.

andinvitro[32,33,64].Itistakenupspecificallybyastrocytesand accumulatinginthesecellsexertsitsgliotoxiceffectbyinterference withproteinsynthesis[31,34,65].

Studies of other authors concerning the effects of d- and l-isomers or racemic form of AAA gave conflicting, heteroge-neousresults.Whenadministeredsubcutaneouslyintoinfantmice, it exerted a toxic effects in thearcuate hypothalamic nucleus, whereas d-AAA and dl-AAA induced, respectively, a mild to extremegliotoxicbutnotneurotoxicdamageandl-AAAinduced notonly gliotoxicbut alsosomeneurotoxic changes,moreover d-isomerhadevenanti-neurotoxicproperties[32,64,66].Similar resultswereobtainedinastrocytesormixedneuronal/astrocyte cultures [33] but additionally d-isomer appeared to be toxic onlyfor mitoticcells [31]. Theeffectof AAAonastrocyteswas alsostudiedinadultratsafterintracerebralinjectioninto differ-entbrainstructures.Asinglel-AAAinjectionintotheamygdala induced loss of astrocytes and their markers (GFAP, S-100) in a wide areaaroundthe injectionsite, while neuronsremained undamaged[67].Astroglialdegenerationwasalsoobservedafter l-AAAinjectionintothestriatum[68],substantianigraandlocus coeruleus[69].OntheotherhandSaffranandCrutcher[70]failedto observegliotoxicpropertiesofl-AAAordl-AAAinthe hippocam-pus and striatum afterinjections into those structures. Allthe abovementionedstudies,werefocusedonlyonthecellulareffects ofthetoxins,andtheauthorsdidnot examinetheirbehavioral effects.

Inourstudiesweusedl-AAAanddl-AAAasamodelof depres-sionbasedonastrocyteablationinthemedialprefrontalcortex (mPFC).SuchmodelwasdevelopedbyBanasrandDuman[6].The authorsdemonstrated thata double microinjectionof gliotoxin l-alpha-aminoadipicacid(l-AAA)intotherat medialprefrontal cortexinducedastroglialdegenerationintheprefrontalcortexand triggeredadepressive-likebehaviorsimilartothatobservedafter chronicunpredictablestress,agenerallyacceptedmodelof depres-sion.Dosesoftoxinandgeneralscheduleofourexperimentwere similarbutweusednotonlyl-AAAbutalsodl-AAA,asthisracemic formhasbeensuggestedbysomeauthorstobemorespecificfor astrocytes(asalreadymentionedabove).

Ourpresentresultsshowedthatbothgliotoxinsl-AAAanddl -AAAmicroinjected into the medial prefrontalcortex of the rat induceddepressive-likebehavioraleffects,becauseanincreasein immobilitytimeintheforcedswimtest(FST)withoutchanging locomotoractivitywasobservedafterthesetoxins.Theeffectwas observed24and72hafterthesecondgliotoxininjectionbutnot after144h.TheresultsareinagreementwiththefindingsofBanasr andDuman[6]whodemonstratedl-AAA-induceddepressive-like behavioralchangesinratsinthesucrosepreferencetestandforced swim test,in thenovelty suppressedfeedingmodel and active avoidancetestatsimilartimepoints,buttheydidnotstudythe

behavioraleffectafter144h. Wefoundthatnotonlyl-AAAbut alsodl-AAA revealed similar depressive-like action and, more-over,theeffectwaspreventedbytheclassicalantidepressantdrug, imipramine,usedindosesandscheduletypicalforsuchstudies

[71].Theseresultsindicatethattheintra-mPFCgliotoxininjection maybeagoodmodelforstudyingantidepressanteffectsofdrugs.

Weverifiedalsotheeffectsofthegliotoxinsonastrocytesby studyingtheappearanceandthelevelofGFAP,aprotein character-isticofastrocytes[72],usingimmunohistochemicalandWestern blotanalysis.BothmethodsshowedadecreaseinGFAP-irinthe PFCafterl-AAAmicroinjection,whichindicatedadamageof astro-cytes.TheeffectisinlinewiththeresultsofBanasrandDuman[6]

whofoundadecreaseindensityofGFAPpositivecells144hafter l-AAAinchosenfieldsoftheprefrontalcortex.dl-AAAdisplayeda tendencytowarddecreasingoftheaboveparametersbuttheeffect wasstatisticallynon-significantprobablybecauseofhigh variabil-ityoftheresults.Forthatreason,wehavechosenl-AAAforfurther studies.

TheWesternblotanalysisofthetime-courseofl-AAA-induced changesshowedaprogressivedecreaseinGFAPleveldisplaying anon-significantlowering48handastrongsignificantdecrease 72and144hafterthesecondtoxininjection.Nosuchtime-course studieswereperformedearlier.Itisdifficulttoexplainthe discrep-ancybetweenlowGFAPlevel144hafterthetoxinandthelackof depressive-likebehavioraleffectintheFSTatthesametimepoint. Wemayhypothesizethatsomecompensatorychangesmighttake placeafterthelongertimeperiod,eveninotherbrainstructures, whichinfluenced animal behavior.Thishypothesis seemstobe supportedbyourpreliminaryfindingswhich showedthatGAD (glutamicaciddecarboxylase)proteinlevel,amarkerofGABA neu-rons,increasedinthehippocampus144hafterthel-AAAinjection (ourunpublishedobservations).Asdepressionispostulatedtobea resultofGABA/Gluimbalancewithglutamatergicoveractivity(see introduction),theactivationofGABAfunctionmayhavepositive antidepressanteffectsonbehavior.

We verified whether our gliotoxin model may be a useful modelofdepression.Forthispurposeweadministeredimipramine, a standard antidepressantdrug,tol-and dl-AAAinjected rats. Imipraminewasgivenintripledoseswhichisroutinetreatment forscreeningantidepressiveeffectsinFST(accordingto[73,74,75]). Weevidencedthatimipraminereversedthebehavioraleffectsof bothl-AAAanddl-AAA.Thetimeofimmobilitydecreasedeven belowthecontrollevel.Theimipramineeffectseemstobe specif-icallyconnectedwithanantidepressantaction,becausethedrug decreasednotincreased,thelocomotoractivity.

Wealsostudiedwhetherimipraminepreventedthegliotoxin induced astrocyticdegeneration in thePFC using Western blot method.While imipramine reversed decreasingeffectof l-AAA on GFAP level, the effect of dl-AAA was only weakly and

(9)

non-significantlyinfluenced(datanotshown).Summingup,l-AAA toxinseemstobemorepromisingasamodelofdepression.

Therearenostudiesyetontheeffectofimipramineorother antidepressantsinthegliotoxicmodelboth onbehaviorand on astrocyte density and GFAP protein level. However, in another model,chronicunpredictablestressinrats,bothastrocyte pathol-ogyanddepression-likebehaviorwerereversedbyantidepressants clomipramine, fluoxetine and magnolol [76–79]. The effect of antidepressanttherapyonastrocyteswasdemonstrated bothin experimentalstudiesandindepressedpatients[80].

Wealsoexaminedwhetherthetoxinsusedinourexperiments, l-AAAanddl-AAA,killedneuronsbesidesastrocytes.Wedidnot observeneuronal loss in histologicaland Westernblotstudies. Nodiminutionofnerve cellsdensitywasseeninbrainsections fromthemPFC,stainedwithcresylviolet.Nervecellbodieswere observedevennearthecannulaetrackandglialscar(Fig.8Aand B).WesternBlotanalysisofNeuNproteinlevel wasfocused on theeffectofl-AAAonly,because,asmentionedabove,Lisomer ofAAAwaspostulatedbysomeauthorstohavesomeneurotoxic effects[32,33].NochangesinNeuNlevelwerefoundduring7h to144hafterthetoxininjection.Thisresultisinagreementwith theobservationsofBanasrandDuman[6]whofoundno notice-ableneuronallossintheprefrontalcortexafterl-AAAinsections stainedimmunohistochemicallywithNeuNantibody.

As mentioned in the introduction, the glutamatergic over-activityhas been postulatedto be essential in pathogenesis of depression,andthemodelofastrocyteablationisbasedonthe dys-regulationoftheGlu/GABAbalance.Therefore,inthepresentstudy, weusedpotentialantidepressantcompound, MTEP,toexamine whetheritcanpreventthedepressive-likeeffectsofl-AAAtoxin,as measuredbybehavioraltestandastrocytedegenerationmarkers. MTEPisahighlyselectivenegativeallostericmodulatorofmGlu5 receptors[81–83].

Antidepressant-likeeffectofMTEPwasobservedin previous studies in rat and mouse models. Pałucha et al. [47] showed thatasingleintraperitonealinjectionofMTEPproduceda signif-icant,dosedependentdecrease in theimmobilitytime ofmice inthetail-suspentiontest(TST)andchronictreatmentwiththis compound inhibited bulbectomy induced hyperactivity in rats. Antidepressant-likeeffectsofMTEPandothermGluR1andmGluR5 antagonistswerealsodemonstratedintheforcedswimtestinrats andtheTSTinmice[84–86].Similarly,theothernegativeallosteric modulatorofmGluR5,GRN-529,givenorally,1hbeforethetest,in asingledoseintomiceinducedantidepressant-likeandanxiolytic effects[83].

Ourresultsindicatethat MTEPpossessesantidepressant-like activityalsoin thegliotoxininduced modelof depression.This compoundinjectedonce20minbeforetheforcedswimtest(FST), preventedthel-AAAinducedincreaseinimmobilitytimeofrats. Italsoreversed thedecreasingeffectofl-AAAonGFAP levelin PFC,measured144hafterthetoxinusingWesternblotmethod, andonthenumberofGFAP-ircellsdeterminedbystereological counting.

Itisespeciallyinterestingthattheantidepressant-likeeffectof MTEPwasfoundafterasingleinjection.Tillnow,mostofthestudies concerningantidepressantdrugsdescribedthattheywereeffective afterchronictreatmentonly,bothinhumanandanimal experi-mentalstudies[87,88],butthosestudieswerefocusedmainlyon thedrugsactingthroughthemonoaminergicmechanismsandthey neededweeksormonthsfordevelopingtheirtherapeuticeffects. Moreover,about30–50%ofpatientsremainsresistanttotreatment

[89].Ontheotherhand,thecompoundsactingbyinhibitionof glu-tamatergicactivity,likeNMDAreceptorblockers(i.e.dizocilpin), revealedtheirantidepressantactivityquicklyafterasingledose

[90,91].MetabotropicGlu5receptorsareanatomicallyand func-tionallycoupledwithNMDAreceptors[92–94]andtheiractivation

potentiatesNMDAreceptor activity,sothemGluR5 antagonists indirectlyinhibitthem[95].

MTEPcounteractednotonlythedepressive-likebehaviorafter l-AAAbutalsopreventedtheastrocyticdegenerationsinthemPFC inducedbythetoxin.Themechanismofsuchprotectiveeffects isnotclearbutitmaybeconnectedwithmGluR5inhibitionand in consequence witha diminution of NMDAreceptor function. NMDAreceptors arepresent onastrocytes and otherglial cells

[96].MetabotropicGlu5receptorsareveryabundantinastrocytes

[97–101] and are found tobe connected with NMDA receptor currents [102–104]. Inhibitionof mGluR5 and NMDA receptors hasneuroprotectiveand glioprotectiveeffects [51,105,106].Itis worthwhile noting that l-AAA-induced astrocytic degeneration developedgradually(seeresults,Fig.5),andat72hafterthetoxin, whenMTEPwasinjected,thelevelofGFAPwasstillmaintained atabout50%,sothedrugcouldaffecttheseremainingastrocytes. Manystudieshaveshownthatantidepressantsstimulate prolifer-ationofastrocytesandproductionoftrophicfactorsbythesecells, suchasBDNF,GDNF,FGFandothersmodulatorswhichmay resti-tute properneuroglia networkand theirfunction[79,107–111]. Moreover,sucheffectsmayappeareven afterashorttreatment and a single dose. The first molecularresponses in ERK/MAPK signalingpathwayin astrocytesmayappear alreadyafteracute administration ofdesipramineor fluoxetine[110].Primary cul-turesofratastrocytestreatedwithfluoxetinerevealedinductionof MAPK,BDNF,GDNFandtheirreceptorgenesalready2hafterthe beginningofthetreatment[112].Especiallyfasteffectswerefound afterthecompoundsactingthroughtheglutamatergicreceptors, butmostof thosestudiesinvestigatedonly behavioralchanges, orreceptorresponses[113,114].Inclinicalstudies,rapid(during 2h)antidepressanteffectswereproducedbytheNMDAreceptor antagonistketamineorthelow-trappingNMDAchannelblocker AZD6765[26,115].Thebehavioralantidepressant-likeeffectswere alsorevealedsoonafterasinglemGluR5antagonisttreatment(as mentionedabove).

Therefore we can hypothesize that antidepressant-like and antigliotoxiceffectsofMTEPdemonstratedinthepresentgliotoxic model of depression, may result from its inhibitory action on mGluR5andindirectlyonNMDAreceptorsboth inneuronsand astrocytes. The astrocytes surviving after the toxin application may be stimulated for proliferation and production of growth factorsandgliotransmitterswhichcanimprovestructureand glia-neuronalconnectionsintheprefrontalcortexandrestoreproper behavior.However,thishypothesisneedsfurtherstudies.

Acknowledgments

WewishtothankAssoc.Prof.MarzenaMackowiakforher valu-ablecommentsandassistanceinusingconfocalmicroscopy.

This study was supported by the grant “Depression-mechanisms-therapy”POIG.01.01.02-12-004/09.

References

[1]OngürD,DrevetsWC,PriceJL.Glialreductioninthesubgenualprefrontal cortexinmooddisorders.ProcNatlAcadSciUSA1998;95:13290–5. [2]CotterD,MackayD,LandauS,KerwinR,EverallI.Reducedglialcell

den-sityandneuronalsizeintheanteriorcingulatecortexinmajordepressive disorder.ArchGenPsychiatry2001;58:545–53.

[3]SanacoraG,BanasrM.Frompathophysiologytonovelantidepressantdrugs: glialcontributionstothepathologyandtreatmentofmooddisorders.Biol Psychiatry2013;73:1172–9.

[4]RajkowskaG,StockmeierCA.Astrocytepathologyinmajordepressive dis-order:insightsfromhumanpostmortembraintissue.CurrDrugTargets 2013;14:1225–36.

[5]RajkowskaG,Miguel-HidalgoJJ.Gliogenesisandglialpathologyindepression. CNSNeurolDisordDrugTargets2007;6:219–33.

[6]BanasrM,DumanRS.Gliallossintheprefrontalcortexissufficienttoinduce depressive-likebehaviors.BiolPsychiatry2008;64:863–70.

(10)

[7]VolterraA,MeldolesiJ.Astrocytes,frombraingluetocommunication ele-ments:therevolutioncontinues.NatRevNeurosci2005;6:626–40. [8]LargoC,CuevasP,SomjenGG,MartíndelRíoR,HerrerasO.Theeffectof

depressingglialfunctioninratbraininsituonionhomeostasis,synaptic transmission,andneuronsurvival.JNeurosci1996;16:1219–29.

[9]BerglesDE,JahrCE.Synapticactivationofglutamatetransportersin hip-pocampalastrocytes.Neuron1997;19:1297–308.

[10]MennerickS,ZorumskiCF.Glialcontributionstoexcitatory neurotransmis-sioninculturedhippocampalcells.Nature1994;368:59–62.

[11]AraqueA,CarmignotoG,HaydonPG.Dynamicsignalingbetweenastrocytes andneurons.AnnuRevPhysiol2001;63:795–813.

[12]SofroniewMV,VintersHV.Astrocytes:biologyandpathology.Acta Neu-ropathol2010;119:7–35.

[13]AraqueA,ParpuraV,SanzgiriRP,HaydonPG.Tripartitesynapses:glia,the unacknowledgedpartner.TrendsNeurosci1999;22:208–15.

[14]PereaG,NavarreteM,AraqueA.Tripartitesynapses:astrocytesprocessand controlsynapticinformation.TrendsNeurosci2009;32:421–31.

[15]HaydonPG,CarmignotoG.Astrocytecontrolofsynaptictransmissionand neurovascularcoupling.PhysiolRev2006;86:1009–31.

[16]AndersonCM,SwansonRA.Astrocyteglutamatetransport:reviewof prop-erties,regulation,andphysiologicalfunctions.Glia2000;32:1–14. [17]Wiero ´nska JM,Pilc A. Metabotropic glutamatereceptors in the

tripar-tite synapse as a target for new psychotropic drugs. Neurochem Int 2009;55:85–97.

[18]SmiałowskaM,SzewczykB,Wo ´zniakM,Wawrzak-WleciałA,DominH.Glial degenerationasamodelofdepression.PharmacolRep2013;65:1572–9. [19]HashimotoK.Emergingroleofglutamateinthepathophysiologyofmajor

depressivedisorder.BrainResRev2009;61:105–23.

[20]HashimotoK.Theroleofglutamateontheactionofantidepressants.Prog NeuropsychopharmacolBiolPsychiatry2011;35:1558–68.

[21]HashimotoK,SawaA,IyoM.Increasedlevelsofglutamateinbrainsfrom patientswithmooddisorders.BiolPsychiatry2007;62:1310–6.

[22]LevineJ,PanchalingamK,RapoportA,GershonS,McClureRJ,PettegrewJW. Increasedcerebrospinalfluidglutaminelevelsindepressedpatients.Biol Psychiatry2000;47:586–93.

[23]AltamuraCA,MauriMC,FerraraA,MoroAR,D’AndreaG,ZamberlanF.Plasma andplateletexcitatoryaminoacidsinpsychiatricdisorders.AmJPsychiatry 1993;150:1731–3.

[24]MauriMC,FerraraA,BoscatiL,BravinS,ZamberlanF,AlecciM,etal.Plasma andplateletaminoacidconcentrationsinpatientsaffectedbymajor depres-sionandunderfluvoxaminetreatment.Neuropsychobiology1998;37:124–9. [25]Mitani H,ShirayamaY, YamadaT,MaedaK,Ashby JrCR, KawaharaR. Correlationbetweenplasmalevelsofglutamate,alanineandserinewith severityofdepression.ProgNeuropsychopharmacolBiolPsychiatry2006;30: 1155–8.

[26]ZarateJrCA,SinghJB,CarlsonPJ,BrutscheNE,AmeliR,LuckenbaughDA, etal.ArandomizedtrialofanN-methyl-d-aspartateantagonistin treatment-resistantmajordepression.ArchGenPsychiatry2006;63:856–64. [27]MaesM,VerkerkR,VandoolaegheE,LinA,ScharpéS.Serumlevelsof

excit-atoryaminoacids,serine,glycine,histidine,threonine,taurine,alanineand arginineintreatment-resistantdepression:modulationbytreatmentwith antidepressantsandpredictionofclinicalresponsivity.ActaPsychiatrScand 1998;97:302–8.

[28]BonannoG,GiambelliR,RaiteriL,TiraboschiE,ZappettiniS,MusazziL,etal. Chronicantidepressantsreducedepolarization-evokedglutamatereleaseand proteininteractionsfavoringformationofSNAREcomplexinhippocampus. JNeurosci2005;25:3270–9.

[29]TokarskiK,BobulaB,WabnoJ,HessG.Repeatedadministrationofimipramine attenuatesglutamatergictransmissioninratfrontalcortex.Neuroscience 2008;153:789–95.

[30]MusazziL,MilaneseM,FariselloP,ZappettiniS,TarditoD,BarbieroVS,etal. Acutestressincreasesdepolarization-evokedglutamatereleaseintherat pre-frontal/frontalcortex:thedampeningactionofantidepressants.PLOSONE 2010;5:e8566.

[31]BrownDR,KretzschmarHA.Theglio-toxicmechanismofalpha-aminoadipic acidonculturedastrocytes.JNeurocytol1998;27:109–18.

[32]OlneyJW,deGubareffT,CollinsJF.Stereospecificityofthegliotoxicand anti-neurotoxicactionsofalpha-aminoadipate.NeurosciLett1980;19:277–82. [33]HuckS,GrassF,HattenME.Gliotoxiceffectsofalpha-aminoadipicacidon

monolayerculturesofdissociatedpostnatalmousecerebellum.Neuroscience 1984;12:783–91.

[34]HuckS,GrassF,HörtnaglH.Theglutamateanaloguealpha-aminoadipicacid istakenupbyastrocytesbeforeexertingitsgliotoxiceffectinvitro.JNeurosci 1984;4:2650–7.

[35]SanacoraG,ZarateCA,KrystalJH,ManjiHK.Targetingtheglutamatergic sys-temtodevelopnovel,improvedtherapeuticsformooddisorders.NatRev DrugDiscov2008;7:426–37.

[36]SkolnickP,LayerRT,PopikP,NowakG,PaulIA,TrullasR.Adaptationof N-methyl-d-aspartate(NMDA)receptorsfollowingantidepressanttreatment: implicationsforthepharmacotherapyofdepression.Pharmacopsychiatry 1996;29:23–6.

[37]Skolnick P. Antidepressants for the new millennium. Eur J Pharmacol 1999;375:31–40.

[38]BermanRM,CappielloA,AnandA,OrenDA,HeningerGR,CharneyDS,etal. Antidepressanteffectsofketamineindepressedpatients.BiolPsychiatry 2000;47:351–4.

[39]KendellSF,KrystalJH,SanacoraG.GABAandglutamatesystemsas thera-peutictargetsindepressionandmooddisorders.ExpertOpinTherTargets 2005;9:153–68.

[40]OstroffR,GonzalesM,SanacoraG.Antidepressanteffectofketamineduring ECT.AmJPsychiatry2005;162:1385–6.

[41]ChungC.Newperspectivesonglutamatereceptorantagonistsas antidepres-sants.ArchPharmRes2012;35:573–7.

[42]PochwatB,Pałucha-PoniewieraA,SzewczykB,PilcA,NowakG.NMDA antag-onistsunderinvestigationforthetreatmentofmajordepressivedisorder. ExpertOpinInvestigDrugs2014;12:1–12.

[43]PinJP,DuvoisinR.Themetabotropicglutamatereceptors:structureand func-tions.Neuropharmacology1995;34:1–26.

[44]ConnPJ,PinJP.Pharmacologyandfunctionsofmetabotropicglutamate recep-tors.AnnuRevPharmacolToxicol1997;37:205–37.

[45]SchoeppDD,JaneDE,MonnJA.Pharmacologicalagentsactingatsubtypesof metabotropicglutamatereceptors.Neuropharmacology1999;38:1431–76. [46]BusseCS,BrodkinJ,TattersallD,AndersonJJ,WarrenN,TehraniL,etal.

ThebehavioralprofileofthepotentandselectivemGlu5receptorantagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine(MTEP)inrodentmodelsof anxiety.Neuropsychopharmacology2004;29:1971–9.

[47]PałuchaA,Bra ´nskiP,SzewczykB,Wiero ´nskaJM,KłakK,PilcA.Potential antidepressant-likeeffectofMTEP,apotentandhighlyselectivemGluR5 antagonist.PharmacolBiochemBehav2005;81:901–6.

[48]Pałucha-PoniewieraA,Wiero ´nskaJM,Bra ´nskiP,BurnatG,Chru´scickaB,Pilc A.IsthemGlu5receptorapossibletargetfornewantidepressantdrugs. PharmacolRep2013;65:1506–11.

[49]Pałucha-PoniewieraA,Bra ´nskiP,Wiero ´nskaJM,StachowiczK,Sławi ´nskaA, PilcA.Theantidepressant-likeactionofmGlu5receptorantagonist,MTEP,in thetailsuspensiontestinmiceisserotonindependent.Psychopharmacology (Berl)2014;231:97–107.

[50]StachowiczK,GołembiowskaK,SowaM,NowakG,Chojnacka-WójcikE,Pilc A.Anxiolytic-likeactionofMTEPexpressedintheconflictdrinkingVogeltest inratsisserotonindependent.Neuropharmacology2007;53:741–8. [51]DominH,Zi ˛ebaB,GołembiowskaK,KowalskaM,DziubinaA, ´Smiałowska

M. Neuroprotective potential of mGluR5 antagonist MTEP: effects on kainate-induced excitotoxicityin the rat hippocampus. Pharmacol Rep 2010;62:1051–61.

[52]PaxinosG,WatsonC.Theratbraininstereotaxiccoordinates.2nded.San Diego:AcademicPress;1986.

[53]NowakG,SzewczykB,WieronskaJM,BranskiP,PaluchaA,PilcA,etal. Antidepressant-likeeffectsof acuteandchronictreatment withzincin forcedswimtestandolfactorybulbectomymodelinrats.BrainResBull 2003;61:159–64.

[54]Ma ´ckowiakM,BatorE,LatuszJ,MordalskaP,W ˛edzonyK.PrenatalMAM administrationaffectshistoneH3methylationinpostnatallifeintherat medialprefrontalcortex.EurNeuropsychopharmacol2014;24:271–89. [55]SterioDC.Theunbiasedestimationofnumberandsizesofarbitraryparticles

usingthedisector.JMicrosc1984;134:127–36.

[56]GundersenHJ,JensenEB,KiêuK,NielsenJ.Theefficiencyofsystematic samp-linginstereology–reconsidered.JMicrosc1999;193:199–211.

[57]JohnCS,SmithKL,Van’tVeerA,GompfHS,CarlezonJrWA,CohenBM,etal. Blockadeofastrocyticglutamateuptakeintheprefrontalcortexinduces anhedonia.Neuropsychopharmacology2012;37:2467–75.

[58]Bechtholt-GompfAJ,WaltherHV,AdamsMA,CarlezonJrWA,OngürD, CohenBM.Blockadeofastrocyticglutamateuptakeinratsinducessigns ofanhedonia and impairedspatial memory. Neuropsychopharmacology 2010;35:2049–59.

[59]LeeY,GaskinsD,AnandA,ShekharA.Gliamechanismsinmoodregulation:a novelmodelofmooddisorders.Psychopharmacology(Berl)2007;191:55–65. [60]ZinkM,VollmayrB,Gebicke-HaerterPJ,HennFA.Reducedexpressionof glu-tamatetransportersvGluT1,EAAT2andEAAT4inlearnedhelplessrats,an animalmodelofdepression.Neuropharmacology2010;58:465–73. [61]ChaudhryFA,LehreKP,vanLookerenCampagneM,OttersenOP,Danbolt

NC,Storm-MathisenJ.Glutamatetransportersinglialplasmamembranes: highlydifferentiatedlocalizationsrevealedbyquantitativeultrastructural immunocytochemistry.Neuron1995;15:711–20.

[62]SunJD,LiuY,YuanYH,LiJ,ChenNH.Gapjunctiondysfunctionintheprefrontal cortexinducesdepressive-likebehaviorsinrats.Neuropsychopharmacology 2012;37:1305–20.

[63]OlneyJW,HoOL,RheeV.Cytotoxiceffectsofacidicandsulphur contain-ingaminoacidsontheinfantmousecentralnervoussystem.ExpBrainRes 1971;14:61–76.

[64]Bruni JE,Vriend J. Effect of d,l-alpha-aminoadipate onthe mediobasal hypothalamus and endocrine function in the rat. Acta Neuropathol 1984;64:129–38.

[65]NishimuraRN,SantosD,FuST,DwyerBE.Inductionofcelldeathbyl -alpha-aminoadipicacidexposureinculturedratastrocytes:relationshiptoprotein synthesis.Neurotoxicology2000;21:313–20.

[66]PannickeT,StabelJ,HeinemannU,ReicheltW.alpha-Aminoadipicacidblocks theNa(+)-dependentglutamatetransportintoacutelyisolatedMüllerglial cellsfromguineapigretina.PflugersArch1994;429:140–2.

[67]KhurgelM,KooAC,IvyGO.Selectiveablationofastrocytesbyintracerebral injectionsofalpha-aminoadipate.Glia1996;16:351–8.

[68]TakadaM,HattoriT.Finestructuralchangesintheratbrainafter local injectionsofgliotoxin,alpha-aminoadipicacid.HistolHistopathol1986;1: 271–5.

(11)

[69]ChangFW,WangSD,LuKT,LeeEH.Differentialinteractiveeffectsofgliotoxin andMPTPinthesubstantianigraandthelocuscoeruleusinBALB/cmice.Brain ResBull1993;31:253–66.

[70]SaffranBN,CrutcherKA.Putativegliotoxin,alpha-aminoadipicacid,failsto killhippocampalastrocytesinvivo.NeurosciLett1987;81:215–20. [71]KroczkaB,BranskiP,PaluchaA,PilcA,NowakG.Antidepressant-like

proper-tiesofzincinrodentforcedswimtest.BrainResBull2001;55:297–300. [72]SofroniewMV,VintersHV.Astrocytes:biologyandpathology.Acta

Neu-ropathol2010;119:7–35.

[73]Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978;47:379–91.

[74]RogózZ,BudziszewskaB,KuberaM,Basta-KaimA,Jaworska-FeilL,Skuza G,etal.Effectofcombinedtreatmentwithimipramineandmetyraponeon theimmobilitytime,theactivityofhypothalamo-pituitary-adrenocortical axisandimmunologicalparametersintheforcedswimmingtestintherat.J PhysiolPharmacol2005;56:49–61.

[75]PappM,WieronskaJ.Antidepressant-likeactivityofamisulprideintwo ani-malmodelsofdepression.JPsychopharmacol2000;14:46–52.

[76]LiLF,YangJ,MaSP,QuR.Magnololtreatmentreversedtheglialpathologyin anunpredictablechronicmildstress-inducedratmodelofdepression.EurJ Pharmacol2013;711:42–9.

[77]LiuQ,LiB,ZhuHY,WangYQ,YuJ,WuGC.Clomipraminetreatmentreversed theglialpathologyinachronicunpredictablestress-inducedratmodelof depression.EurNeuropsychopharmacol2009;19:796–805.

[78]CzéhB,SimonM,SchmeltingB,HiemkeC,FuchsE.Astroglialplasticityin thehippocampusisaffectedbychronicpsychosocialstressandconcomitant fluoxetinetreatment.Neuropsychopharmacology2006;31:1616–26. [79]CzéhB,Müller-KeukerJI,RygulaR,AbumariaN,HiemkeC,DomeniciE,etal.

Chronicsocialstressinhibitscellproliferationintheadultmedialprefrontal cortex:hemisphericasymmetryandreversalbyfluoxetinetreatment. Neu-ropsychopharmacology2007;32:1490–503.

[80]CzéhB,DiBenedettoB.Antidepressantsactdirectlyonastrocytes:evidences andfunctionalconsequences.EurNeuropsychopharmacol2013;23:171–85. [81]Anderson JJ, Rao SP, Rowe B, Giracello DR, Holtz G, Chapman DF,

et al. [3H]Methoxymethyl-3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine bindingtometabotropicglutamatereceptorsubtype5inrodentbrain:invitro andinvivocharacterization.JPharmacolExpTher2002;303:1044–51. [82]CosfordND,RoppeJ,TehraniL,SchweigerEJ,SeidersTJ,ChaudaryA,etal.

[3H]-methoxymethyl-MTEPand[3H]-methoxy-PEPy:potentandselective radioligandsforthemetabotropicglutamatesubtype5(mGlu5)receptor. BioorgMedChemLett2003;13:351–4.

[83]HughesZA,NealSJ,SmithDL,SukoffRizzoSJ,PulicicchioCM,LotarskiS, etal.Negativeallostericmodulationofmetabotropicglutamatereceptor5 resultsinbroadspectrumactivityrelevanttotreatmentresistantdepression. Neuropharmacology2013;66:202–14.

[84]Tatarczy ´nskaE,Klodzi ´nskaA,Chojnacka-WójcikE,PaluchaA,GaspariniF, KuhnR,etal.Potentialanxiolytic-andantidepressant-likeeffectsofMPEP, apotent,selectiveandsystemicallyactivemGlu5receptorantagonist.BrJ Pharmacol2001;132:1423–30.

[85]LiX,NeedAB,BaezM,WitkinJM.Metabotropicglutamate5receptor antag-onismisassociatedwithantidepressant-likeeffectsinmice.JPharmacolExp Ther2006;319:254–9.

[86]BelozertsevaIV,KosT,PopikP,DanyszW,BespalovAY.Antidepressant-like effectsofmGluR1andmGluR5antagonistsintheratforcedswimandthe mousetailsuspensiontests.EurNeuropsychopharmacol2007;17:172–9. [87]SlatteryDA,HudsonAL,NuttDJ.Invitedreview:theevolutionof

antidepres-santmechanisms.FundamClinPharmacol2004;18:1–21.

[88]DumanRS.Neurobiologyofstress,depression,andrapidacting antidepres-sants:remodelingsynapticconnections.DepressAnxiety2014;31:291–6. [89]LangUE,BorgwardtS.Molecularmechanismsofdepression:perspectiveson

newtreatmentstrategies.CellPhysiolBiochem2013;31:761–77.

[90]ZarateJrCA,MathewsDC,FureyML.Humanbiomarkersofrapid antidepres-santeffects.BiolPsychiatry2013;73:1142–55.

[91]SzewczykB,Pałucha-PoniewieraA,PoleszakE,PilcA,NowakG. Investiga-tionalNMDAreceptormodulatorsfordepression.ExpertOpinInvestigDrugs 2012;21:91–102.

[92]TuJC,XiaoB,NaisbittS,YuanJP,PetraliaRS,BrakemanP,etal.Couplingof mGluR/HomerandPSD-95complexesbytheShankfamilyofpostsynaptic densityproteins.Neuron1999;23:583–92.

[93]XiaoB,TuJC,PetraliaRS,YuanJP,DoanA,BrederCD,etal.Homer reg-ulatestheassociationofgroup1metabotropicglutamatereceptorswith

multivalentcomplexesofhomer-related,synapticproteins.Neuron1998;21: 707–16.

[94]JinDZ,GuoML,XueB,MaoLM,WangJQ.DifferentialregulationofCaMKII␣ interactionswithmGluR5andNMDAreceptorsbyCa(2+)inneurons.J Neu-rochem2013;127:620–31.

[95]DohertyAJ,PalmerMJ,BortolottoZA,HargreavesA,KingstonAE,OrnsteinPL, etal.Anovel,competitivemGlu(5)receptorantagonist(LY344545)blocks DHPG-inducedpotentiationofNMDAresponsesbutnottheinductionofLTP inrathippocampalslices.BrJPharmacol2000;131:239–44.

[96]DzambaD,HonsaP,AnderovaM.NMDAreceptorsinglialcells:pending questions.CurrNeuropharmacol2013;11:250–62.

[97]BalázsR,MillerS,RomanoC,deVriesA,ChunY,CotmanCW.Metabotropic glutamatereceptormGluR5inastrocytes:pharmacologicalpropertiesand agonistregulation.JNeurochem1997;69:151–63.

[98]ZhangY,RodriguezAL,ConnPJ.Allostericpotentiatorsofmetabotropic glu-tamatereceptorsubtype5havedifferentialeffectsondifferentsignaling pathwaysincorticalastrocytes.JPharmacolExpTher2005;315:1212–9. [99]PaquetM,RibeiroFM,GuadagnoJ,EsseltineJL,FergusonSS,CreganSP.Role

ofmetabotropicglutamatereceptor5signalingandhomerinoxygenglucose deprivation-mediatedastrocyteapoptosis.MolBrain2013;6:9.

[100]MishraA,MishraR,GottschalkS,PalR,SimN,EngelmannJ,etal. Micro-scopicvisualizationofmetabotropicglutamatereceptorsonthesurfaceof livingcellsusingbifunctionalmagneticresonanceimagingprobes.ACSChem Neurosci2014;5:128–37.

[101]TamuraA,YamadaN,YaguchiY,MachidaY,MoriI,OsanaiM.Both neu-ronsandastrocytesexhibitedtetrodotoxin-resistantmetabotropicglutamate receptor-dependentspontaneousslowCa2+oscillationsinstriatum.PLOS ONE2014;9:e85351.

[102]LeaPM,CusterSJ,ViciniS,FadenAI.NeuronalandglialmGluR5modulation preventsstretch-inducedenhancementofNMDAreceptorcurrent. Pharma-colBiochemBehav2002;73:287–98.

[103]D’AscenzoM,FellinT,TerunumaM,Revilla-SanchezR,MeaneyDF,Auberson YP,etal.mGluR5stimulatesgliotransmissioninthenucleusaccumbens.Proc NatlAcadSciUSA2007;104:1995–2000.

[104]ClevaRM,OliveMF.Positiveallostericmodulatorsoftype5metabotropic glu-tamatereceptors(mGluR5)andtheirtherapeuticpotentialforthetreatment ofCNSdisorders.Molecules2011;16:2097–106.

[105]DominH,KajtaM,SmiałowskaM.NeuroprotectiveeffectsofMTEP,aselective mGluR5antagonistsandneuropeptideYonthekainate-inducedtoxicityin primaryneuronalcultures.PharmacolRep2006;58:846–58.

[106]AbushikPA,NiittykoskiM,GiniatullinaR,ShakirzyanovaA,BartG,FayukD, etal.TheroleofNMDAandmGluR5receptorsincalciummobilizationand neurotoxicityofhomocysteineintrigeminalandcorticalneuronsandglial cells.JNeurochem2014;129:264–74.

[107]TakanoK,YamasakiH,KawabeK,MoriyamaM,NakamuraY.Imipramine inducesbrain-derivedneurotrophic factormRNA expressionincultured astrocytes.JPharmacolSci2012;120:176–86.

[108]SchmidtHD,Banasr M,DumanRS.Futureantidepressanttargets: neu-rotrophicfactorsandrelatedsignalingcascades.DrugDiscovTodayTher Strateg2008;5:151–6.

[109]ElsayedM,BanasrM,DuricV,FournierNM,LicznerskiP,DumanRS. Antide-pressanteffectsof fibroblastgrowthfactor-2 inbehavioral andcellular modelsofdepression.BiolPsychiatry2012;72:258–65.

[110]DiBenedettoB,RadeckeJ,SchmidtMV,RupprechtR. Acute antidepres-santtreatmentdifferentlymodulatesERK/MAPKactivationinneuronsand astrocytesoftheadultmouseprefrontalcortex.Neuroscience2013;232: 161–8.

[111]FatemiSH,FolsomTD,ReutimanTJ,PandianT,BraunNN,HaugK.Chronic psychotropicdrugtreatmentcausesdifferentialexpressionofconnexin43 andGFAPinfrontalcortexofrats.SchizophrRes2008;104:127–34. [112]MercierG,LennonAM,RenoufB,DessourouxA,RamaugéM,CourtinF,etal.

MAPkinaseactivationbyfluoxetineanditsrelationtogeneexpressionin culturedratastrocytes.JMolNeurosci2004;24:207–16.

[113]ChungC.Newperspectivesonglutamatereceptorantagonistsas antidepres-sants.ArchPharmRes2012;35:573–7.

[114]MaengS,ZarateJrCA,DuJ,SchloesserRJ,McCammonJ,ChenG,etal. Cel-lularmechanismsunderlyingtheantidepressanteffectsofketamine:roleof alpha-amino-3-hydroxy-5-methylisoxazole-4-propionicacidreceptors.Biol Psychiatry2008;63:349–52.

[115]ZarateJrCA,MathewsD,IbrahimL,ChavesJF,MarquardtC,UkohI,etal.A ran-domizedtrialofalow-trappingnonselectiveN-methyl-d-aspartatechannel blockerinmajordepression.BiolPsychiatry2013;74:257–64.

Figure

Fig. 2. The effect of combined administration of l -AAA, dl -AAA and imipramine (IMI) on the total duration of immobility in the FST in rats
Fig. 6. The effect of l -AAA and imipramine (IMI) administration on the GFAP level in the rat PFC
Fig. 7. The effect of l -AAA and MTEP administration on the GFAP level in the rat PFC
Fig. 8. Microphotographs of coronal sections of the rat brain mPFC. (A, B, C and D) Cresyl violet staining
+3

Références

Documents relatifs

elles est respectée et jouit d'une grande liberté. C'est elle qui choisit son époux, elle dispose de ses biens. Souvent cultivée el musicienne, elle est seule éducafrice de

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

However, the load-lock door with pivot offset from sealing surface introduces more sliding between the O-ring seal and the sealing surface compared to the four-bar linkage

Va chercher un carnet avec une couverture noire dans sa boite à couture, elle l’ouvre, attrape le docteur Landru et la docteure Fahrenheit par le bras et leur montre des schémas

Mais notre capitaine souffrant d’une forte fièvre, nous ne pûmes quitter le cap avant la fin du mois de mars.. Nous repartîmes alors et notre voyage se déroula

[r]

A) An amperometric trace of resting glutamate determination from a 12-15 month FSL rat. Resting glutamate levels were calculated from a 300 second baseline average, prior to burst