• Aucun résultat trouvé

ATOMIC SPECTROSCOPY WITH OPTOGALVANIC DETECTION

N/A
N/A
Protected

Academic year: 2021

Partager "ATOMIC SPECTROSCOPY WITH OPTOGALVANIC DETECTION"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: jpa-00223265

https://hal.archives-ouvertes.fr/jpa-00223265

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ATOMIC SPECTROSCOPY WITH OPTOGALVANIC DETECTION

P. Camus

To cite this version:

P. Camus. ATOMIC SPECTROSCOPY WITH OPTOGALVANIC DETECTION. Journal de

Physique Colloques, 1983, 44 (C7), pp.C7-87-C7-106. �10.1051/jphyscol:1983708�. �jpa-00223265�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplement au n O 1 l , Tome 44, novernbre 1983 page C7-87

ATOMIC SPECTROSCOPY WITH OPTOGALVANIC D E T E C T I O N

Laboratoire Aim6 cottoni, CNRS II, Campus dlOrsay, BCtiment 505, 91405 Orsay Cedex, France

Resume

-

Ce p a p i e r p o r t e s u r l ' a p p l i c a t i o n de l ' e f f e t optogalvanique ( l e changement d'impedance, dans un gaz ou une vapeur metal l i q u e f a i b l e m e n t e x c i t e e e l e c t r i q u e m e n t , dir l ' a b s o r p t i o n d ' u n rayonnement lumineux) en s p e c t r o s c o p i e atomique. Ce changement d'impedance e s t aisement e n r e g i s t r e e t f o u r n i t un s i m p l e d e t e c t e u r non-optique pour mesurer l a m o d i f i c a t i o n des p o p u l a t i o n s des niveaux atomiques en presence du phenomene r a d i a t i f d ' a b - s o r p t i o n . Associee avec l a venue du l a s e r 5 c o l o r a n t s accordable, l a d e t e c - t i o n optogalvanique f o u r n i t un i n s t r u m e n t spectroscopique v a l a b l e pour e x p l o r e r l e s p r o p r i e t e s de l a s t r u c t u r e atomique p a r t i r de niveaux e x c i - t e s , p r i n c i p a l e m e n t pour l e s etudes des niveaux de Rydberg eleves.

L ' u t i l i s a t i o n de l a lampe

a

cathode creuse comme i n s t r u m e n t de p u l v e r i s a - t i o n pour c r e e r une vapeur atomique ouvre une l a r g e p e r s p e c t i v e

a

c e t t e methode pour e t u d i e r l e s elements r e f r a c t a i r e s .

A b s t r a c t

-

T h i s paper d e a l s w i t h t h e a p p l i c a t i o n o f t h e o p t o g a l v a n i c e f f e c t ( t h e e d a n c e change i n a f e e b l y e l e c t r i c a l l y e x c i t e d gas o r metal vapour due t o t h e a b s o r p t i o n o f an i r r a d i a t i n g l i g h t ) i n a t o m i c spectroscopy. T h i s impedance change i s e a s i l y r e c o r d e d and p r o v i d e s a s i m p l e n o n - o p t i c a l d e t e c t o r t o measure t h e m o d i f i c a t i o n o f t h e atomic l e v e l p o p u l a t i o n s under t h e r a d i a t i v e a b s o r p t i o n process. A s s o c i a t e d w i t h t h e advent o f t h e t u n a b l e dye l a s e r , t h e o p t o g a l v a n i c d e t e c t i o n p r o v i d e s a v a l u a b l e s p e c t r o s c o p i c t o o l t o i n v e s t i g a t e t h e a t o m i c s t r u c t u r e p r o p e r t i e s f r o m t h e e x c i t e d l e v e l s , m a i n l y f o r h i g h l y i n g Rydberg l e v e l s t u d i e s . Use o f t h e h o l l o w - cathode lamp as a s p u t t e r i n g d e v i c e t o generate atomic vapours, opens t h e f u t u r e t o t h i s method f o r s t u d y i n g r e f r a c t o r y elements.

I

-

INTRODUCTION

The o p t o g a l v a n i c e f f e c t (O.G.) a r i s e s when a r e s o n a n t o p t i c a l i n t e r a c t i o n w i t h t h e atomic o r m o l e c u l a r species i n a f e e b l y i o n i z e d plasma changes i t s e l e c t r i c a l impe- dance. T h i s change i n impedance i n response t o t h e a b s o r p t i o n o f t h e i r r a d i a t i n g l i g h t can be c o n v e n i e n t l y m o n i t o r e d w i t h and w i t h o u t i r r a d i a t i o n and l e a d s t o a v e r y s i m p l e and s e n s i t i v e n o n - o p t i c a l d e t e c t o r i n a b s o r p t i o n spectroscopy. The b a s i c p h y s i c s o f t h i s e f f e c t depends o f t h e p r o p e r t i e s o f t h e c o n s i d e r e d plasma b u t i t i s g e n e r a l l y due t o s i g n i f i c a n t p e r t u r b a t i o n s o f t h e steady s t a t e p o p u l a t i o n o f t h e e x c i t e d l e v e l s induced by a r e s o n a n t r a d i a t i v e a b s o r p t i o n process and r e l a t e d t o t h e i r charge c o l l i s i o n a l p r o d u c t i o n r a t e s .

Two v e r y d i f f e r e n t t y p e s o f l o w p r e s s u r e environments have been shown t o y i e l d O.G.

s i g n a l s . The e a r l i e s t r e p o r t o f t h e e f f e c t u t i l i z e d a t h e r m i o n i c diode e x h i b i t i n g space charge a m p l i f i c a t i o n i n a caesium vapour by FOOTE and MOHLER / l / . The second t y p e of low p r e s s u r e gas environment g i v i n g impedance changes i s a glow d i s c h a r g e of neon and has been used by PENNING /2/ t o observe an impedance i n c r e a s e i n a neon d i s c h a r g e when i t was i l l u m i n a t e d w i t h t h e l i g h t f r o m a second neon discharge. Since these two p i o n e e r works, t h e method u s i n g c o n v e n t i o n a l l i g h t sources has n o t been w i d e l y used e x c e p t f o r a l k a l i vapour s t u d i e s u s i n g t h e r m i o n i c d i o d e by POPESCU e t a l . / 3 / .

*~ssociB B 1'UniversitB de Paris-Sud

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983708

(3)

C7-88 JOURNAL DE PHYSIQUE

D e s p i t e t A e i r l o n g h i s t o r y n e i t h e r o f t h e methods assumed much importance u n t i l t h e advent o f t u n a b l e dye l a s e r d i s c o v e r y which has y i e l d t o t h e powerful l a s e r s p e c t r o s - copy. R e v i v a l o f t h e o p t o g a l v a n i c method i s due t o GREEN e t a l . /4/ which have shown t h a t t h e use o f a C.W. dye l a s e r c o u l d enable h i g h s e n s i t i v i t y i n an h o l l o w cathode discharge.

Since t h i s extended use o f l a s e r s i n 1976, t h e f a c t t h a t t h e f i e l d o f O.G. research and a p p l i c a t i o n s i s r a p i d l y expanding can be a p p r e c i a t e d by n o t i n g t h a t s e v e r a l r e v i e w a r t i c l e s have a l r e a d y been p u b l i s h e d r e c e n t l y / 5 t o 8/ and I w i l l r e f e r t h e l e c t u r e r t o them f o r h i s t o r i c a l b i b l i o g r a p h y . The aim o f t h e p r e s e n t a r t i c l e i s t o d e s c r i b e O.G. g e n e r a t i o n and r e c e n t a p p l i c a t i o n s i n a t o m i c spectroscopy f i e l d n o t covered i n d e t a i l i n t h e o t h e r r e v i e w a r t i c l e s mentionned above.

I 1

-

OPTOGALVANIC EFFECT I N LOW PRESSURE GAS OR METAL VAPOURS

The atomic a b s o r p t i o n o f photons w i l l be c o n s i d e r e d i n c o n n e c t i o n w i t h c o l l i s i o n a l processes i n gaser o r metal vapours. Since t h e development o f t h e c o n t i n u o u s o r p u l s e d t u n a b l e dye l a s e r s , l a r g e changes o f t h e e l e c t r i c a l p r o p e r t i e s o f low-pressure gas o r metal vapours can be r e s o n a n t l y enhanced by an i n t e n s e monochromatic l a s e r i r r a d i a t i o n . Recording o f these changes w h i l e scanning t h e l a s e r wavelength generates a p o w e r f u l n o n - o p t i c a l d e t e c t i o n method f o r s p e c t r o s c o p i c i n v e s t i g a t i o n s o f species i n t h e plasma. Such o p t o g a l v a n i c spectroscopy shows s i m i l a r c h a r a c t e r i s t i c s w i t h f l u o r e s c e n c e l a s e r spectroscopy b u t has a decided advantage when an e x c i t e d atom has a g r e a t e r p r o b a b i l i t y t o i o n i z e t h a n t o decay by spontaneous emission.

I t i s p a r t i c u l a r l y t r u e f o r m e t a s t a b l e l e v e l s and na Rydberg l e v e l s ( t h e i r r a d i a - t i v e l i f e t i m e s i n c r e a s e as n 3 ) .

The s i m p l e e x p e r i m e n t a l set-up o f a dye l a s e r o p t o g a l v a n i c spectrometer (DYELoGS) i s i l l u s t r a t e d on F i g . 1.

DISCHARGE TUBE

BEAM

/k bo

CHOPPER

LLA U C H A R T

I

U+ 1 I 1

RECORDER

1

POWER

S l l P P l V CAPACITDR

1

AMP. IN

I

REFERENCE

l

F i g . 1 : Experimental arrangement f o r O.G. spectroscopy (DYELOGS)

The apparatus i s c o n t a i n i n g a t u n a b l e dye l a s e r , a weakly e x c i t e d plasma i n a c e l l and a l o c k - i n a m p l i f i e r t o measure t h e impedance changes o f t h e i r r a d i a t e d plasma.

Fig.' 2 shows t h e v a r i o u s gas d i s c h a r g e plasmas which have been used f o r l o w p r e s s u r e gas o r metal vapours s t u d i e s : t h e r m i o n i c d i o d e ( h o t cathode f i l a m e n t ) , h o l l o w - cathode ( c o l d cathode) o r R.F. d i s c h a r g e ( e l e c t r o d e l e s s t u b e ) .

(4)

I

THERMOlONlC D I O D E IN THE SPACE CHARGE REGIME

HOLLOW -CATHODE

+ 1 ANODE^

EATHODE

F i g . 2 : V a r i o u s gas d i s c h a r g e plasmas f o r O.G.

spectroscopy

R.F DISCHARGE WITH INDUCTIVE COUPLING

R . F POWER SUPPLY

11.1

-

Space a m p l i f i c a t i o n method u s i n g t h e r m i o n i c d i o d e

T h i s new o p t o g a l v a n i c spectroscopy has been demonstrated w i t h s p a c e - c h a r g e c o n t r o l l e d a l k a l i vapour d i o d e s f i l l e d w i t h l o w p r e s s u r e vapours o f caesium, r u b i d i u m a n d p o t a s - sium u s i n g c o n v e n t i o n a l monochromatic l i g h t source by POPESCU e t a l . /3/. Since t h e development o f t u n a b l e dye l a s e r s , t h e p o t e n t i a l o f t h e space charge a m p l i f i c a t i o n method was i n c r e a s e d u s i n g two-photon o r two-step e x c i t a t i o n s .

I n t h e e a r l i e s t r e p o r t / l / e l e c t r o n i c a l l y e x c i t e d CS atoms were f o u n d t o f o r m mole- c u l a r i o n s by t h e mechanism o f a s s o c i a t i v e i o n i z a t i o n :

C S * + C S + CS: + e-

m o l e c u l a r a s s o c i a t i o n f o l l o w e d by d i s s o c i a t i v e a t t a c h m e n t : CS* + CS + CS; + CS+ + cs-

o r d i r e c t p h o t o i o n i z a t i o n :

CS + 3hv + CS+ + e-

The appearence o f i o n s i n t h e i n t e r e l e c t r o d e s p a c i n g i s d e t e c t e d b y a v a r i a t i o n o f t h e p o t e n t i a l b a r r i e r formed by t h e l o w k i n e t i c energy e l e c t r o n s w i t h subsequent i n c r e a s e i n t h e e m i s s i o n c u r r e n t due t o t h e n e u t r a l i z a t i o n o f t h e e l e c t r o n space charge c l o u d . S i n c e an i n d i v i d u a l i o n remains u n n e u t r a l i z e d f o r a t i m e i n t e r v a l seve- r a l o r d e r s o f magnitude l a r g e r t h a n f o r an e l e c t r o n , i t r e l e a s e s I D 5 t o 106 e l e c t r o n s a c c o u n t i n g f o r t h e extreme s e n s i t i v i t y o f t h e method /g/. Due t o t h e f a c t t h a t a l a r g e s a t u r a t i o n e m i s s i o n o c c u r s f r o m a l o w t e m p e r a t u r e e m i t t e r covered by an a l k a l i l a y e r , space c h a r g e ~ w o r k i n g c o n d i t i o n s a r e reached f o r v e r y l o w p o l a r i s a t i o n v01 t a g e of t h e cathode ( S 100 mV) and thermal e l e c t r o n s e m i t t e d have l e s s than 0.1 eV k i n e t i c energy.

The p o t e n t i a l breakdown o f t h e gas i s n o t reached a t these l o w p o l a r i z a t i o n v o l t a g e and p o p u l a t i o n s o f t h e a t o m i c l e v e l s a r e v e r y c l o s e d t o these g i v e n by t h e Boltzmann t h e r m a l e q u i l i b r i u m .

(5)

C7-90 JOURNAL DE PHYSIQUE

I n t h e s e c o n d i t i o n s , o n l y t h e t r a n s i t i o n s f r o m t h e ground l e v e l can be observed.

A b i a s f i e l d o f a b o u t 2V on t h e a l k a l i - v a p o u r d i o d e produces a l o w power d i s c h a r g e ( g l o w i l l u m i n a t i o n o f t h e gas) which a l l o w s t h e h e a t i n g o f e l e c t r o n gas i n t h e p l a s - ma and g i v e a s i g n i f i c a n t p o p u l a t i o n o f t h e l o w l y i n g e x c i t e d atomic s t a t e s .

D i f f u s e , sharp and fundamental s e r i e s were s i m p l y recorded as v o l t a g e changes a c r o s s t h e d i s c h a r g e /10/.

F i g . 3 : Space charge a m p l i f i c a t i o n

F i g . 3 shows t h e p r i n c i p a l Rydberg s e r i e s of Rb and CS r e c o r d e d by t h e Romanian p i o n e e r i n g group / 3 / .

Noise l i m i t a t i o n s a r e e s s e n t i a l l y due t o thermal f l u c t u a t i o n o f t h e e l e c t r o n emis- s i v i t y o f t h e h o t c a t h o d e o r f r o m t h e h e a t i n g system needed t o m a i n t a i n t h e gazeous phase o f t h e s t u d i e d atom.

To a r e s o n a n t l i g h t p u l s e (10-8s) corresponds a f a s t i n c r e a s e i n t h e c u r r e n t o f t h e d i o d e f o l l o w e d by a s l o w l e r decrease as shown on F i g . 4.

F i g . 4 : Diode p u l s e . P o l a r i z a t i o n voltage, 300 mV, v e r t i c a l , lOmV/division, h o r i z o n t a l , 5 m s e c / d i v i s i o n /11/

T h i s d e c r e a s i n g s i g n a l i s analyzed as t h e sum o f two e x p o n e n t i a l c u r v e s w i t h two d i f f e r e n t t i m e decays. The f i r s t p a r t , w i t h a t i m e c o n s t a n t T , S l W 3 s would be g i v e n by t h e d i r e c t c a p t u r e o f n e g a t i v e charges by t h e anode and p o s i t i v e charges by t h e f i l a m e n t . The second p a r t , w i t h a l o n g e r t i m e c o n s t a n t -C, 2 1 W 2 s would g i v e evidence o f imprisonment o f p o s i t i v e i o n s i n t h e space charge /11/.

F o r t h e a l k a l i n e - e a r t h elements, space charge a m p l i f i c a t i o n method has been e x t e n s i - v e l y used a t I.B.M. b y WYNNE e t a l . /12/. As most o f t h e a l k a l i n e - e a r t h vapours r e a c t w i t h t h e windows, i t i s necessary t o p r e v e n t them a g a i n chemical r e a c t i o n s by u s i n g a b u f f e r gas.

A c y l i n d r i c a l h e a t - p i p e c e l l i s t h e n used t o c o n t a i n t h e gazeous phase o f t h e m e t a l and forms t h e anode o f t h e c y l i n d r i c a l t h e r m i o n i c diode. To p r e v e n t c o r r o s i o n pheno- mena o r chemical r e a c t i o n s a11 t h e p a r t s c o n t a i n i n g t h e sample a r e made o f s t a i n l e s s

(6)

s t e e l . The i n n e r w a l l s o f the p i p e a r e covered by l a y e r s o f f i n e mesh screen t o i n s u r e r e c y c l i n g o f t h e m a t t e r i n t h e l i q u i d phase from b o t h sides c o o l e r extremi- t i e s by c a p i l l a r y a c t i o n .

When the heat-pipe working c o n d i t i o n s /13, 1 4 1 are s a t i s f i e d , t h i s c e l l presents two advantages from c l a s s i c a l absorption c e l l :

-

one i s t h a t i t minimizes t h e pressure e f f e c t s on t h e h i g h l y i n g Rydberg s t a t e s by c o l l i s i o n s w i t h t h e buffer-gas atoms ;

-

t h e second i s t h a t i t s t a b i l i z e s i n time and keep u n i f o r m on i t s u s e f u l l e n g t h t h e thermoelectronic emission o f the f i l a m e n t by keeping i t temperature s t r i c t l y cons- t a n t (any f l u c t u a t i o n o f t h e h e a t i n g power o f t h e oven producing o n l y an increased o r decreased l e n g t h o f t h e vapour column i n the heat-pipe working c o n d i t i o n s ) .

Fig. 5 : Two-photon spectrum o f Ba I : h i g h members o f t h e 6sns 'S, and Gsnd

'D,

s e r i e s

m S m 05

,

m R

I I I I I I I I I 1 I I I I I 1 1 1 1 1 1 1 1 1 1 1 6snd ' j D Z 5s

U L U

-L-JLL-

6sns ' S ,

F i g . 5 shows t h e two-photon spectrum from the ground l e v e l 6s' 'So o f Ba recorded w i t h a thermionic heat-pipe diode /11/.

11.2

-

Optogalvanic e f f e c t w i t h d.c. discharges

The continuous regime o f an e l e c t r i c discharge i s determined by t h e constant c u r r e n t I and t h e constant v o l t a g e drop V maintened between t h e electrodes. These two values g i v e a working p o i n t o f the s t a t i c c u r r e n t - v o l t a g e c h a r a c t e r i s t i c o f t h e e l e c t r i c a l discharge. I n f a c t , the continuous regime traduces t h e dynamic e q u i l i - brium o f t h e e l e c t r i c discharge i n the plasma and t h e s u s t a i n i n g d.c. power supply.

Such s t a t i c c h a r a c t e r i s t i c curve o f a d.c. discharge i n a c y l i n d r i c a l p i p e i s given on Fig. 6.

S t a t i c c h a r a c t e r i s t i c o f a d.c. discharge i n a c y l i n d r i c a l p i p e

(7)

C7-92 JOURNAL DE PHYSIQUE

The f i r s t p a r t o f t h e curve OD t r a d u c e s t h e regime where t h e c o n d u c t i o n i s c o n t r o l e d by t h e p r i m a r y mechanism of spontaneous c r e a t i o n o f e l e c t r o n - i o n p a i r s i n t h e plasma.

I o n i z a t i o n i s produced by t h e c o l l e c t i v e a c t i o n o f t h e e l e c t r i c f i e l d , cosmic r a y s o r any o t h e r i o n i z a t i o n process. F l o w i n g o f charges i s t r a d u c i n g t h e c u r r e n t obser- ved : e l e c t r o n s toward t h e anode, p o s i t i v e i o n s t o t h e cathode. As f a r as t h e poten- t i a l i s growing up, t h e k i n e t i c energy o f t h e charged p a r t i c u l e s i s increased. I n t h e r e g i o n AB, a l l t h e charged p a r t i c u l e s a r e c o l l e c t e d by t h e e l e c t r o d e s which i s c h a r a c t e r i z i n g t h e s a t u r a t i o n regime. A t B, t h e k i n e t i c energy o f t h e e l e c t r o n s i s enough t o i o n i z e by impact t h e n e u t r a l p a r t i c l e s . Along t h e curve C, t h e e l e c t r o n secondary emission i s produced by c o l l i d i n g charged p a r t i c u l e s w i t h t h e e l e c t r o d e s . Around D, t h e v o l t a g e d r o p between t h e e l e c t r o d e s has reached t h e breakdown p o t e n t i a l

o f t h e d i s c h a r g e and we have a glow i l l u m i n a t i o n o f t h e plasma which c h a r a c t e - k z e s t h e d i s r u p t i v e regime.

I n t h i s case, t h e steady s t a t e regime r e s u l t s f r o m t h e s t a b i l i z a t i o n o f numerous coupled phenomena, m a i n l y as r a d i a t i v e and e l e c t r o n impact processes i n v o l v i n g atoms o r molecules p r e s e n t i n t h e discharge. Then, t h e plasma i s composed o f f r e e e l e c - t r o n s , n e u t r a l o r i o n i z e d elements w i t h e n e r g i e s spread o v e r a l l t h e p o s s i b l e e x c i t e d t a t e s . When t h e steady s t a t e regime i s obtained, t h e p o p u l a t i o n d e n s i t y i s s t a t i o n - n a r y o v e r a l l t h e l e n g t h o f t h e d i s c h a r g e which i s l e a d i n g t o a t o t a l r a t e o f c r e a t e d i o n s and t o a c o n s t a n t charge d e n s i t y . Then t h e plasma p r e s e n t s an i n t e r n a l c o n s t a n t impedance Z f i x e d by t h e experimental c o n d i t i o n s :

-

n a t u r e o f t h e gas ( l e v e l diagram, pressure, temperature)

-

geometry o f t h e d i s c h a r g e c e l l

-

e l e c t r i c power energy d i s s i p a t e d i n t h e c i r c u i t f e e d i n g t h e discharge.

The secondary emission a t t h e cathode i s more i m p o r t a n t a t t h e b e g i n n i n g o f t h e d i s r u p t i v e regime than i n t h e abnormal mode where i o n i z i n g c o l l i s i o n s were respon- s a b l e f o r t h e l a r g e enhancement o f t h e charges. I n t h e d i s r u p t i v e regime, t h e p o s i - t i v e column i s t h e p r i n c i p a l l i g h t source o f t h e glow discharge, t h e e l e c t r i c f i e l d i s q u i t e u n i f o r m w i t h no space charge e f f e c t . The dynamic e q u i l i b r i u m i s then d e s c r i - bed by t h e S c h o t t k y model.

I l l u m i n a t i o n o f a glow d i s c h a r g e (d.c. d i s c h a r g e o r c o o l e d hollow-cathode) w i t h a l a s e r i r r a d i a t i o n c o r r e s p o n d i n g t o an atomic t r a n s i t i o n p e r t u r b s t h e steady s t a t e p o p u l a t i o n o f t h e l e v e l s . I n g e n e r a l , t h e c o l l i s i o n a l i o n i z a t i o n r a t e s f r o m d i f f e r e n t l e v e l s ( l o w energy m e t a s t a b l e l e v e l o r Rydberg ones) a r e u n i q u a l , so t h e i o n i z a t i o n balance o f t h e d i s c h a r g e i s d e s t r o y e d and an a n o t h e r e q u i l i b r i u m corresponding t o a d i f f e r e n t s t a t i c c u r r e n t - v o l t a g e p o i n t i s set-up, i n presence o f t h e l a s e r i r r a d i a - t i o n .

Three processes will make i m p o r t a n t c o n t r i b u t i o n s t o i o n i z a t i o n as shown i n Ne by SMYTH and SCHENCK /15/ :

-

e l e c t r o n impact i o n i z a t i o n Ne

+

e- + ~ e + + 2e-

-

e l e c t r o n impact m e t a s t a b l e Ne* + e- + ~ e ' + 2e-

-

metastable-metastable Ne* + Ne* + ~ e + + Ne + e-

-

a s s o c i a t i v e i o n i z a t i o n Ne** + Ne + ~ e+ le-

G e n e r a l l y , t h e d i s c h a r g e i n metal vapour a r e s u s t a i n e d b y a f o r e i g n gas, so chemioni- z a t i o n i s a l s o p o s s i b l e when an e x c i t e d atom o f one species c o l l i d e s w i t h a ground s t a t e atom o f a second species h a v i n g an i o n i z a t i o n p o t e n t i a l l e s s t h a n t h e e x c i t a - t i o n energy o f t h e f i r s t . The second atom i s i o n i z e d when t h e f i r s t i s r e t u r n e d t o t h e ground s t a t e .

When t h e o p t i c a l e x c i t a t i o n i s modulated a t l o w frequency ( 5 1 KHz) by measuring t h e change o f c u r r e n t , t e n s i o n o r impedance between t h e two s t a t i c p o i n t s ( w i t h and w i t h o u t l a s e r i r r a d i a t i o n ) , we a r e making an 0.G. d e t e c t i o n o f t h e o p t i c a l resonance w i t h t h e species i n t h e discharge.

(8)

A t an oven temperature around 190°C and a caesium vapour p r e s s u r e about 50 mTorr, a s t a b l e d i s c h a r g e has been o p e r a t e d a t 20 mA, 400 V by BRIDGES /16/ and F i g . 7a shows a t y p i c a l o s c i l l o s c o p e t r a c e o f t h e a.c. component o f t h e d i s c h a r g e v o l t a g e w i t h

F i g . 7a : Waveform o f t h e cesium d i s c h a r g e v o l t a g e w i t h

50 V l D I V t h e chopped dye l a s e r

i n p u t tuned t o t h e 6010

4

a b s o r p t i o n

a l m o s t 150 V peak t o peak v a r i a t i o n a t t h e 1 KHz chopping f r e q u e n c y . So mentionned by BRIDGES t h e rounded c o r n e r s do n o t a r i s e f r o m RC t i m e c o n s t a n t i n t h e e l e c t r o n i c s b u t a r e d i s c h a r g e t r a n s i e n t phenomenon c o r r e l a t e d t o t h e e s t a b l i s h m e n t o f t h e steady s t a t e regime w i t h and w i t h o u t l a s e r i r r a d i a t i o n . A t d i f f e r e n t d i s c h a r g e c u r r e n t s were a l s o observed n e g a t i v e and p o s i t i v e s i g n a l s i n a glow d i s c h a r g e o f neon /16/.

I f t h e dye l a s e r i s pumped by a p u l s e d l a s e r : n i t r o g e n , excirner l a s e r s o r neodymium Y.A.G. l a s e r ( Q 10-'s) w i t h r e p e t i t i o n r a t e s r a n g i n g f r o m 5 t o 50

Hz,

t r a n s i e n t o p t o g a l v a n i c s i g n a l s a r e observed and temporal f e a t u r e s o f t h e s i g n a l s g i v e evidence o f t h e d i f f e r e n t 5 r e t u r n s o f t h e p e r t u r b e d d i s c h a r g e t o i t s i n i t i a l e q u i l i b r i u m b e f o r e i n t e r a c t i n g w i t h t h e l a s e r l i g h t /17/.

EREZ e t a l . /18/ have shown t h a t e x c i t a t i o n o f atoms w i t h i n t h e d i s c h a r g e t o a h i g h e r l e v e l enhances t h e i o n i z a t i o n i n d u c i n g t h e n a v o l t a g e drop ( F i g . 7b) w h i l e e x c i t a t i o n f r o m a m e t a s t a b l e l e v e l s s t a r t s by a n e g a t i v e p a r t due t o t h e enhanced i o n i z a t i o n f o l l o w e d by a p o s i t i v e and s l o w l e r r e t u r n . T h i s r e t u r n shown on F i g . 7c i s determined by t h e t i m e r e q u i r e d t o r e f i n d t h e steady s t a t e m e t a s t a b l e l e v e l p o p u l a t i o n and i s i n t h e o r d e r o f 5 vs. We s h o u l d remember t h a t i n t h e same c o n d i t i o n o f p u l s e d l a s e r e x c i t a t i o n t h e answer o f t h e space charge t h e r m i o n i c d i o d e i s 1 000 t i m e s l a r g e r .

Fig. 7b : OGE s i g n a l o f uranium F i g . 7c : OGE s i g n a l o f neon a t

a t 591.54 nm 558.19 nm.

E x c i t a t i o n f r o m t h e m e t a s t a b l e l e v e l 134043 cm-'

(9)

C?-94 JOURNAL DE PHYSIQUE

The t i m e d e l a y T f o r t h e t y p e o f d i s c h a r g e t u b e u s u a l l y used i s l i m i t e d b y t h e p a r a - s i t e i n d u c t a n c e L o f t h e plasma and t h e dynamic r e s i s t o r R : T = L X R-'.

I n t h e goal t o r e a c h t h e r e a l l i m i t where r i s r e f l e c t i n g t h e mechanisms o f t h e p h o t o e m i s s i o n and p h o t o i o n i z a t i o n , i t i s necessary t o m i n i a t u r i z e t h e d i s c h a r g e tube.

I n f o r t u n a t e l y , as p r e d i c t e d by EYTAN and KOPEIKA /19/ t h e p a r a s i t e c a p a c i t o r i s a c t i n g i n t h e o p p o s i t e d i r e c t i o n t o i n c r e a s e t h e t i m e d e l a y T = RC.

F o r t h e v e r y small s i g n a l s , t h e s e n s i t i v i t y o f t h e d e t e c t i o n i s l i m i t e d by t h e n o i s e which c h a r a c t e r i z e s t h e regime o f t h e glow d i s c h a r g e i t s e l f . I n t h e subnormal regime, c o n d u c t i o n i s r e s u l t i n g f r o m t h e secondary e m i s s i o n b y t h e p o s i t i v e i o n bombardement on t h e cathode, and f o r a gas p r e s s u r e P a t t h e t e m p e r a t u r e T, t h i s regime i s c h a r a c t e r i z e d by a n o i s e spectrum /20/ w i t h an average f r e q u e n c y fi centered a t :

- i PO

T 1

f . = --- -

l b To P

w i t h

u i

: i o n m o b i l i t y

PO = 1 T o r r To = 273OK

b : average d i s t a n c e between t h e e l e c t r o d e s

c

= average v a l u e o f t h e c o n t i n u o u s e l e c t r i c f i e l d between t h e e l e c t r o d e s .

I n t h e abnormal regime, a m p l i f i c a t i o n o f t h e charges i s due t o cascade i o n i z i n g c o l - l i s i o n s and t h e hazardous f l u c t u a t i o n s o f t h e a r r i v a l r a t e o f t h e e l e c t r o n s a t t h e anode determine t h e observed n o i s e s i m i l a r t o a thermal n o i s e . KOPEIKA /21/ g i v e s t h e f o r m u l a f o r produced a m p l i t u d e f l u c t u a t i o n s o f t h e p o t e n t i a l a t t h e e l e c t r o d e s

w i t h B : bandwidth o f d e t e c t o r which i s used t o measure t h e n o i s e V, R, : e q u i v a l e n t r e s i s t o r o f t h e t u b e

= kTe : average k i n e t i c energy of t h e e l e c t r o n s f o r e l e c t r o n i c t e m p e r a t u r e Te

Pdc : average e l e c t r i c power d i s s i p a t e d i n t h e t u b e N : t o t a l number o f f r e e e l e c t r o n s

V : e l a s t i c c o l l i s i o n frequency.

KOPEIKA and ROSEMBAUM /20/ mentioned t h a t i t was b e t t e r t o work i n t h e subnormal regime t h a n i n t h e abnormal regime f o r i n c r e a s e t h e s e n s i t i v i t y o f t h e o p t i c a l t r a n - s i t i o n O.G. d e t e c t i o n .

Gas d i s c h a r g e s a r e o f t e n c o n s i d e r e d t o be e l e c t r i c a l l y n o i s y d e v i c e s and i n many cases t h i s i s t r u e because o f t h e s p u t t e r i n g problems. However, p r o p e r l y designed d i s c h a r g e o r commercial h o l l o w cathodes have been o p e r a t e d w i t h a c u r r e n t n e a r t h e Shot n o i s e l i m i t .

W i t h n i c k e l e l e c t r o d e s , an h e a t p i p e d i s c h a r g e c e l l /22/ shown on F i g . 8 has been used f o r two-step p u l s e d o p t o g a l v a n i c spectroscopy i n Ba /23/ and has g i v e n a p o s i - t i v e column o f b a r i u m vapour w i t h a v e r y l o w n o i s e l e v e l .

I n d.c. d i s c h a r g e s o r h o l l o w - c a t h o d e lamps t h e e l e c t r o n t e m p e r a t u r e i s i n t h e o r d e r o f 3 0 eV and most o f t h e i n t e r m e d i a t e l e v e l s o f t h e atom a r e populated. So; i t i s v e r y i n t e r e s t i n g i n t h e s e cases t o do a b s o r p t i o n spectroscopy f r o m e x c i t e d l e v e l s .

(10)

F i g . 8 : P r o d u c t i o n and e x c i t a t i o n by an e l e c t r i c d i s c h a r g e o f a h e a t - p i p e b a r i u m vapor

ELECTRIC WINDOW

7 oooooo FURNACE

--- - - - -

---

p

-

- - - -

-

f---

-. ,,.-

- - p

- -

He

I

2~ T H ~

11.3

-

O p t o g a l v a n i c spectroscopy w i t h r.f. d i s c h a r g e s

I

O p t o g a l v a n i c spectroscopy w i t h r.f. d i s c h a r g e has one advantage o v e r O.G. s p e c t r o s - copy w i t h d.c. d i s c h a r g e : t h e n o i s e caused by e l e c t r o d e s p u t t e r i n g can be avoided.

Besides a l o w p r e s s u r e r.f. d i s c h a r g e plasma i s h i g h l y homogeneous and has a r e l a t i - v e l y h i g h e l e c t r o n temperature. It i s a l s o a p p l i c a b l e f o r s t u d i e s o f s p e c i e s which a r e r e a c t i v e t o metal e l e c t r o d e s i n t h e d i s c h a r g e t u b e . T h i s method has been proposed as o p t i c a l impedance spectroscopy by STANCIULESCU e t a l . /24/ and used f o r m o l e c u l a r spectroscopy by SUZUKI 1251.

oooooo

I t c o u l d be expected t h a t , a t l e a s t i n t h e l i m i t o f v e r y s m a l l s i g n a l s , t h e f r a c - t i o n a l change o f t h e impedance nZ/Z observed i n t h e S.C.A. method and i n t h e d.c.

d i s c h a r g e becomes AZ/(Z-R) which much l a r g e r e f f e c t r e s u l t i n g f r o m t h e n e g a t i v e r e s i s t o r - R w h i c h c h a r a c t e r i z e s t h e c o u p l i n g o f t h e microwave o s c i l l a t o r w i t h t h e medium and l o w e r s t h e t o t a l impedance o f t h e system.

T N i

i : ELECTRODES

TEMPERATURE A I

I

I 'EQUILIBRIUM LIQUID-GAS LIMIT OF PHASE GAS-SOLID

NO EQUILIBRIUM

I

, L ~ m

10 20 30 4 0

There a r e t h r e e d e t e c t i o n schemes f o r t h e o p t o g a l v a n i c e f f e c t i n t h e r.f. d i s c h a r g e :

-

m o n i t o r i n g t h e r e f l e c t e d r.f. f i e l d i n t h e o s c i l l a t o r power u n i t /24/

-

p i c k - u p c o i l o f t h e r.f. c u r r e n t /25/.

The d i s c h a r g e p l a y s t h e p a r t of a t r a n s m i t t i n g antenna and t h e c i r c u i t , t h e r e c e i v i n g antenna as shown on F i g . 9a.

-

two e l e c t r o d e s measuring t h e f l u c t u a t i o n s o f t h e c u r r e n t /26/ as shown on F i g . 9b.

R . F TRANSMITTER

I

R.F TRANSMITTER

&

F i g . 9a F i g . 9b

(11)

C7-96 4OURNAL DE PHYSIQUE

The l a s t d e v i c e a l l o w s LABASTIE e t a l . /26/ t o e x t r a p o l a t e t h e l i n e w i d t h observed a t z e r o d i s c h a r g e i n t e n s i t y f o r m i n i m i z i n g i n t h e i r measurements t h e s h i f t and broade- n i n g w i t h p r e s s u r e o f t h e a b s o r p t i o n l i n e s .

A l l t h e s e experiments u s i n g r.f. d i s c h a r g e have been made u s i n g chopped C.W. dye l a s e r s .

A t y p i c a l o p t o g a l v a n i c spectrum o f argon has been observed i n a d i s c h a r g e t u b e o f 30 mm 0.0. a t a p r e s s u r e o f 0.4 T o r r a 10 Watt-13.56 MHz r.f. power u n i t /25/.

A l l a t o m i c l i n e s l i s t e d i n t h e l i t t e r a t u r e i n t h e r e g i o n 580-630 nm has been o b s e r - ved as shown on F i g . 10.

F i g . 10 : O p t o g a l v a n i c spectrum o f A r d i s c h a r g e

f i O S Torr

* l o w

-

q-

630 620 610 660 590 500 (nn WAVELENGTH

"

v-

.p

$

-C."

S e n s i t i v i t y o f t h e r.f. o p t o g a l v a n i c spectroscopy i s l i m i t e d b y t h e d i s c h a r g e n o i s e as shown by SUZUKI /25/. Noise spectrum on F i g . 11 shows a r e g i o n above 5 KHz where t h e m o d u l a t i o n i s s u i t a b l e f o r m i n i m i z i n g it.

F i g . 11 : N o i s e power spectrum o f d i s c h a r g e i n a r g o n t a k e n w i t h a bandwi t h o f 8 Hz

(12)

11.4

-

Advantages and disadvantages of O.G. d e t e c t i o n

The mean advantages of t h e O.G. d e t e c t i o n r e s u l t from t h e f a c t t h a t i t i s a non- o p t i c a l d e t e c t i o n of an o p t i c a l t r a n s i t i o n :

- ~ I I s o l i d e angle d e t e c t i o n ,

-

no background from s c a t t e r e d e x c i t a t i o n l a s e r l i g h t ,

-

high s e n s i t i v i t y meanly f o r t h e S.C.A. method because of t h e l a r g e a m p l i f i c a t i o n f a c t o r ,

- use in l a r g e wavelength s c a l e ,

-

slow t r a n s i e n t s i g n a l with pulsed l a s e r e x c i t a t i o n .

The p r i n c i p a l disadvantages a r e due t o t h e discharge i t s e l f :

-

low noise l e v e l l i m i t e d by t h e s p u t t e r i n g in t h e hollow-cathode lamps,

-

s e n s i t i v i t y t o r . f . n o i s e s ,

-

time delay l i m i t e d by t h e c i r c u i t feeding t h e d i s c h a r g e ,

-

non l i n e a r i t y of t h e O.G. signal depending of t h e p o s i t i o n of t h e l a s e r beam in t h e plasma between t h e e l e c t r o d e s and from t h e discharge c o n d i t i o n s .

I11

-

OPTOGALVANIC SPECTROSCOPY WITH ATOMS

The very s i m p l i c i t y of t h e O.G. d e t e c t i o n i s one of t h e most a t t r a c t i v e a s p e c t s of i t use i n l a s e r spectroscopy. Optogalvanic d e t e c t i o n provides a convenient means of mea- suring an o p t i c a l resonance without r e q u i r i n g any conventional o p t i c a l d e t e c t o r . The space charge a m p l i f i c a t i o n method has been prooved t o be extremely s e n s i t i v e f o r high Rydberg l e v e l s t u d i e s because t h e r a d i a t i v e l i f e t i m e of these l e v e l s i n c r e a s e s a s n3 (n i s t h e p r i n c i p a l quantum number) p r o h i b i t i n g t h e f l u o r e s c e n t d e t e c t i o n method. B u t a g r e a t advantage i n O.G. spectroscopy proceeds from t h e use of glow discharges and r . f . discharges where t h e e l e c t r o n temperature i s s u f f i c i e n t l y high t o c r e a t e s i g n i - f i c a n t populations in t h e e x c i t e d s t a t e s of t h e discharge medium ( t h i s i s s p e c i a l l y t r u e f o r t h e metastable o n e s ) . This method opens a l a r g e f i e l d of i n v e s t i g a t i o n s in l a s e r absorption spectroscopy f o r thermally vapourized elements from e x c i t e d l e v e l s i n a c e s s i b l e by d i r e c t r a d i a t i v e t r a n s i t i o n (metastable l e v e l ) o r r e q u i r i n g vacuum u l t r a v i o l e t r a d i a t i o n ( r a r e gas s t u d i e s ) , but a l s o f o r r e f r a c t o r y elements by using t h e hollow-cathode lamps which a r e r e a d i l y a p p l i c a b l e set-up f o r t h e i r s p u t t e r i n g /27/. The high s e n s i t i v i t y of t h e method /7/ i s a l s o used in t r a c e element a n a l y s i s in flames.

The p r i n c i p a l l i m i t a t i o n s of t h e method a r e due t o t h e gas pressure and t h e i n t e n s i t y of t h e c u r r e n t needed t o o p e r a t e a q u i e t regime of t h e discharge i t s e l f which a r e responsable f o r t h e pressure and t h e Stark broadening of t h e l i n e s meanly f o r t h e high lying Rydberg l e v e l s .

I11 . l

-

Doppler l imited O.G. spectroscopy

Laser O.G. spectroscopy r e q u i r e s tunable dye l a s e r s which can be C.W. o r pulsed. In t h e v i s i b l e wavelength region (near I.R. t o 480 nm) most of t h e experiments have been performed i n i t i a l l y using broad-band operated C . W . dye l a s e r s pumped by ion l a s e r s . In t h e s h o r t v i s i b l e wavelength region ( u n t i l 380 nm) pulsed dye l a s e r s o f f e r t h e advantage of l e s s expensive c o s t , wider t u n a b i l i t y , high peak power and e a s i e r frequency mixing o r doubling in c r i s t a l s . Multiphotons and m u l t i s t e p e x c i t a - t i o n s can be e a s i l y performed t o reach high-lying l e v e l s and increased t h e s e n s i t i v i - t y of t h e O.G. d e t e c t i o n because of t h e i r e a s i e r i o n i z a t i o n .

(13)

C7-98 JOURNAL DE PHYSIQUE

I n g e n e r a l , l a s e r l i n e w i d t h s (1.5 t o 3 GHz) a r e i n t h e o r d e r o f t h e D o p p l e r w i d t h much l a r g e r t h a n t h e p r e s s u r e o r S t a r k broadening o f t h e l i n e s . These s t u d i e s a r e s u i t a b l e f o r wavelength c a l i b r a t i o n and t e r m a n a l y s i s o f t h e a t o m i c s p e c t r a .

Table I g i v e s t h e p r e s e n t s t a t u s o f elements where O.G. e f f e c t has been observed and t h e c o r r e s p o n d i n g r e f e r e n c e s can b e e a s i l e r f o u n d i n t h e b i b l i o g r a p h y a t t h e end o f t h e p r o c e e d i n g book.

R.F.

*

0 . c . DISCHARGE

H . C A DIODE

Table I : P r e s e n t s t a t u s o f elements where O.G. e f f e c t has been observed

Three s p e c t r a r e c o r d e d i n t h e l a b o r a t o r y and reproduced on F i g . 12a, b and c summa- r i z e t h e s e p r o p e r t i e s o f t h e D o p p l e r O.G. spectroscopy.

111.2

-

Doppler f r e e O.G. spectroscopy

S i n c e t h e a v a i l a b i l i t y o f monomode t u n a b l e dye l a s e r s , v a r i o u s o p t i c a l e x c i t a t i o n t e c h n i q u e s have been used i n f l u o r e s c e n c e spectroscopy as quantum b e a t s , l e v e l c r o s - s i n g , two-photon and s a t u r a t e d a b s o r p t i o n spectroscopy t o e l i m i n a t e t h e D o p p l e r b r o a - dening.

111.2.1

-

Two-photon a b s o r p t i o n spectroscopy

The use o f two-photon a b s o r p t i o n (one photon from each o f two c o u n t e r p r o p a g a t i n g beams) t o e l i m i n a t e D o p p l e r b r o a d e n i n g o f s p e c t r a l l i n e s was suggested by VASILENKO e t a l . /30/ and CAGNAC e t a l . /31/.

I t i s r e a d i l y seen, f r o m t h e r e f e r e n c e frame o f any atom (moving w i t h a v e l o c i t y vx i n t h e d i r e c t i o n o f t h e l a s e r s beams) t h a t t h e photon f r e q u e n c i e s absorbed f r o m t h e two c o u n t e r - p r o p a g a t i n g l i g h t beams a r e U ( I + ( v x / c ) ) and ( l - ( v x / c ) ) , t h e i r sum b e i n g ZU, independant o f atomic motions a t t h e f i r s t o r d e r o f a p p r o x i m a t i o n . Thus a b s o r p t i o n o f two photons by one atom, one f r o m each o f t h e opposed l i g h t beams l e a d s t o t h e o b s e r v a t i o n o f D o p p l e r - f r e e s p e c t r a l l i n e s . I t s h o u l d be p o i n t e d o u t t h a t i n t h i s case a l l t h e atoms o f t h e d i f f e r e n t group v e l o c i t i e s a r e c o n t r i b u t i n g t o t h e

(14)

F i g . 12a : Two-step o p t o g a l v a n i c spectrum o f barium. ( a ) Fabry-Perot f r i n g e s

~ a = 1 . 3 1 4 6 7 ( 8 ) cm-'; ( b ) Spectrum o f Ba w i t h 5d6s 3D,-5d6p 3F: : 7280.3

a

f o r t h e f i r s t - s t e p t r a n s i t i o n i n t h e v i c i n i t y of t h e 5d7d 'D, and 3 ~ , ; ( C ) Same spectrum w i t h o n l y t h e second-step l a s e r /28/

F i g . 12b : Two-step o p t o g a l v a n i c spectrum o f k r y p t o n f r o m t h e 5s13/21, m e t a s t a b l e s t a t e . ( a ) K r I spectrum, o b t a i n e d w i t h t h e 2p, i n t e r m e d i a t e l e v e l , i n t h e range 680.88-680.58 nm ; (b) Fabry-Perot f r i n g e s ( t h e d r i f t i s due t o an a c c i d e n t a l temperature change o f t h e photomul t i p 1 i e r ) . ( c ) M o l e c u l a r i o d i n e a b s o r p t i o n spectrum 1291

F i g . 12c : Two-photon spectrum i n europium u s i n g a d i o d e w o r k i n g i n t h e space charge regime showing .a two-photon e l e c t r i c dipo- l a r t r a n s i t i o n and a one- photon e l e c t r i c quadru- p o l a r t r a n s i t i o n

(CAMUS

P.,

DAMASCHINI R.

and WYART J.F., unpubl i- shed m a t e r i a l

,

1981 )

"-.J&

TWO-PHOTON D E RESONANCE ONE PHOTON 0 E RESCNbNCE

4t1 6 9 - 4 1 7 ( 8 ~ b 7 3 'sov2 4t76r2 8 7 , 2 - 4 1 7 ~ 8 ~ 1 566s 80912

(15)

C7-100 JOURNAL DE PHYSIQUE

s i g n a l . Two-photon a b s o r p t i o n has been used i n O.G. spectroscopy w i t h t h e space charge a m p l i f i c a t i o n method i n r u b i d i u m b y

HARVEY

and STOICHEFF /32/ t o show t h e S t a r k b r o a d e n i n g and s p l i t t i n g o f t h e Rydberg l i n e s ( n 2 40) g i v i n g a s t r o n g l i m i t a - t i o n t o t h e t h e r m i o n i c d e t e c t o r . They used an e l e c t r o s t a t i c a l l y s h i e l d e d d e t e c t o r and observed sharp, f i e l d - f r e e components even a t n = 85. R e s u l t s a r e shown on F i g . 13a and 13b

Rb 5s -47d

TWO

-

PHOTON TRANSITION STARK SPLITTING E.0.5 V/cm

l

F i g . : 13a : Spectrum o f t h e 5s-47d t r a n s i t i o n i n Rb showing t h e S t a r k s p l i t t i n g a t a f i e l d o f 0.5 V/cm i n t h e t h e r m i o n i c d e t e c t o r

I l l I J

0 I 2 3 4

FREQUENCY (GHz)

F i g . 13b : Spectrum o f t h e 5s-75d t r a n s i t i o n i n Rb showing t h e sharp, f i e l d - f r e e components observed w i t h t h e e l e c t r o s t a t i c a l l y s h i e l d e d t h e r m i o n i c d e t e c t o r

(16)

Very few experiments where performed a t h i g h r e s o l u t i o n using pulsed l a s e r l i g h t on account f o r t h e d i f f i c u l t i e s encounted t o g e t a monomode intense tunable pulsed dye l a s e r . Using a Hansch h i g h r e s o l u t i o n apparatus, t h e Zeeman s t r u c t u r e o f t h e 6s54d 'D, Rydberg l e v e l has been observed i n barium u s i n g a thermionic diode and a l i n e a r l y p o l a r i z e d l a s e r l i g h t perpendicular t o a magnetic f i e l d B o f 0.125 T . The zeeman s p l i t t i n g reproduced on t h e F i g . 14 shows c l e a r l y t h e paramagnetic s h i f t E p r o p o r t i o n a l t o B and t h e diamagnetic s h i f t A p r o p o r t i o n a l t o B,.

F i g . 14 : Two-photon Doppler-free spectrum o f barium : Zeeman spl i t t i n g o f 6s54d 'D, Pydberg l eve1 (P. CAMUS and C. MORILLON, unpublished m a t e r i a l , 1979)

Since t h i s time, narrow-band C.W. r i n g dye l a s e r was a p p l i e d i n combination w i t h space-charge l i m i t e d thermionic diode f o r powerful h i g h r e s o l u t i o n spectroscopy and r e p o r t s w i l l be given a t t h i s conference on magnetic and e l e c t r i c f i e l d s t u d i e s f o r h i g h Rydberg s t a t e s (n

*

150) i n rubidium by GAY e t a l . /34/ and i s o t o p i c s h i f t s and h y p e r f i n e s p l i t t i n g s i n calcium by BEIGANG e t a l . /35/.

Two-photon optogalvanic spectroscopy (T.O.G.S.) has a l s o been done i n a helium-neon discharge tube by GOLDSMITH e t a l . /36/. They have placed t h e He-Ne discharge i n s i d e t h e C.W. l a s e r c a v i t y t o take advantage o f t h e h i g h c i r c u l a t i n g power and have observed t h i r t e e n two-photon neon t r a n s i t i o n s i n t h e tunning range o f Rhodamine 6G.

They performed t h e f i r s t Doppler-free observation o f two-photon t r a n s i t i o n s o r i g i n a - t i n g from energy l e v e l s o t h e r than ground o r metastable l e v e l s . Doppler-free obser- v a t i o n has a l s o been done i n helium f o r t h e 2 3~

-

5 3~ and 2 3S

-

5

3 D

two- photon t r a n s i t i o n s by GOLDSMITH and SMITH /37/.

But t h e more spectacular Doppler-free spectroscopy o f atoms i n e x c i t e d s t a t e s has been demonstrated i n an helium d.c. discharge u s i n g a technique c a l l e d intermodula- t e d optogalvanic spectroscopy (I.M.O.G.S.) by LAWLER e t a l . /38/ which i s d e r i v e d from t h e very s e n s i t i v e s a t u r a t i o n spectroscopy.

111.2.2

-

S a t u r a t i o n spectroscopy

I n t h e intermodulated optogalvanic spectroscopy, the o u t p u t o f a s i n g l e mode dye l a s e r i s s p l i t i n t o two beams o f equal i n t e n s i t y and sent through a p o s i t i v e column discharge i n opposite d i r e c t i o n s as shown on F i g . 15.

One beam i s chopped a t a frequency f, and the o t h e r a t frequency f,. They a r e amplitude modulated. I n general, because o f t h e Doppler s h i f t , t h e two beams w i l l i n t e r a c t w i t h d i f f e r e n t v e l o c i t y classes of atoms and no atom w i l l see b o t h beams and t h e r e s u l t i s a Doppler-broadened p a i r o f optogalvanic s i g n a l s modulated a t the frequencies f, and f,

.

(17)

JOURNAL DE PHYSIQUE

Fig. 15 : Experimental apparatus f o r intermodulated optogalvanic spectroscopy

However, i f the l a s e r i s tuned t o the c e n t r e o f t h e t r a n s i t i o n , t h e two beams w i l l i n t e r a c t w i t h t h e same group o f atoms, those t h a t have no v e l o c i t y along the beam a x i s and consequently f o r t h i s c l a s s o f atoms o n l y , no Doppler s h i f t i s observed.

The s a t u r a t i o n o f t h e t r a n s i t i o n caused by t h e two beams a c t i n g on t h e same group o f atoms produce Doppler-free s i g n a l s modulated a t the frequencies f, + f, and f,

-

f,. The l o c k - i n a m p l i f i e r , w i t h a reference pick-up a t fl + f, g i v e s t h e Doppler-free s i g n a l modulated a t f, + f2.

Fig. 16 shows t h e 2 3P

-

3 3D 3He l i n e a t 587.5 nm recorded w i t h I.M.O.G.S. by LAWLER e t a l . /38/.

F i g . 16 : Intermodulated optogalvanic spectrum o f p a r t o f t h e 3He 2 3 ~ - 3 3 ~ t r a n s i t i o n a t 587.5 nm

L . I ' I L ' ' ' ' I ' I ' I v l

0 1 2 8 4 5 6 7 8

LASER FREOUENCY DETUNING ( G H Z ) Y

-

I.M.O.G.S. has been used f o r r e f r a c t o r y m a t e r i a l s e x c i t e d i n a hollow-cathode lamp f o r molybdenum by SIEGEL e t a l . /39/ b u t t h e recorded Doppler-free spectrum shows sharp peaks Doppler-free on t o p o f broad pedestals when a background gas pressure i n t h e order o f 0.1 T o r r o r g r e a t e r i s used. These pedestals a r e a t t r i b u t e d t o velocity-changing r e l a x a t i o n c o l l i s i o n s which tend t o r e d i s t r i b u t e t h e p o p u l a t i o n o f t h e ground o r metastable l e v e l atoms over t h e o r i g i n a l Maxwel l i a n d i s t r i b u t i o n andereduce the v e l o c i t y s e l e c t i o n o f t h e s a t u r a t i n g beams broadening consequently t h e Doppl e r - f r e e spectrum. This problem has been b e a u t i f u l l y overcome by t h e method o f p o l a r i z a t i o n - i n t e r m o d u l a t e d - e x c i t a t i o n (POLINEX) developed by HANSCH e t a l . /40/.

I n POLINEX t h e p o l a r i s a t i o n o f one o r both o f t h e beams i s modulated r a t h e r than t h e i n t e n s i t y o f t h e beams i n 1.P.I.D.G.S.. I n t h i s way, POLINEX u t i l i z e s t h e normally unwanted process o f c o l l i s i o n a l d e p o l a r i z a t i o n . By modulating the p o l a r i z a t i o n r a t h e r than t h e i n t e n s i t y , t h e detected Doppler-free s i g n a l s then a r i s e from l i g h t - induced atomic o r i e n t a t i o n w i t h t h e r e s u l t t h a t atoms which have s u f f e r e d v e l o c i t y -

(18)

changing c o l l i s i o n s w i l l no l o n g e r c o n t r i b u t e a signal i f t h e i r o r i e n t a t i o n a r e des- troyed. POLIXEX can take advantage o f t h e s e l e c t i o n r u l e s f o r t h e absorption of p o l a r i z e d l i g h t t o y i e l d i n f o r m a t i o n on t h e angular momenta o f t h e p a r t i c i p a t i n g energy l e v e l S, as w e l l as on t h e r e l a x a t i o n o f l ight-induced a1 ignnent. This has been demonstrated f o r neon where second o r d e r pumping e f f e c t induces a modulated d e p l e t i o n o f t h e metastable Zp5 5s l e v e l /41/.

The intermodulated s i g n a l does n o t have t o be detected on a s t r o n g l y modulated background, i f t h e t o t a l e x c i t a t i o n r a t e i s observed because n e i t h e r beam alone can produce a mo- d u l a t e d s i g n a l i n an i s o t r o p i c mediun;. The experiment can be s i m p l i f i e d as shown on F i g . 17, because t h e intermodulated s i g n a l S

a r e observed w i t h a good s e l e c t i v i t y even i f o n l y one o f the beams i s modulated.

MODULATOR

I

Fig. 18a, b, c and d show comparisons b e t -

AMPLIFIER ween d.c. and r.f. optogalvanic POLINEX and

T-- I intermodulated fluorescence records on neon

A M P : ~ ~ E R l i n e s made by HANSCH e t a1

.

/40/.

F i g . 17 : Setup f o r Doppler-free ON^

POLINEX spectroscopy o f he1 ium

2 0 ~ e

a

2 2

Ne ( C )

- l

L A S E R T U N I N G ( G H z )

'ON*

L l I I I I I I I ~ I I I ~ I I I

0 I 2 3 4

LASER DETUNING [ ~ n r ]

LASER TUNING ( G H z l

F i g . 18a,b : ( a ) Doppler-free POLINEX spectrum o f t h e Ne ls,-2p, t r a n s i t i o n . ( b ) Same spec- trum recorded by the i n t e r - modulated fluorescence method

F i g . 18c,d : Doppler-free spectrum o f t h e Ne 2p,-Is, t r a n s i t i o n a t 585.2 nm, recorded by

( c ) intermodulated r.f.

optogalvanic detection, ( d ) intermodul ated f lu o - rescence d e t e c t i o n

I t can be seen on Fig. 18a t h a t t h e O.G. POLINEX r e c o r d i s f r e e o f the broad pedes- t a l s which appear on t h e intermodulated fluorescence record o f t h e same neon l i n e . I n t h i s case, because o f the q u i e t regime o f t h e discharge, we should n o t i c e t h e comparable s i g n a l t o n o i s e r a t i o o f t h e O.G. and fluorescence spectra.

(19)

C7-104 JOURNAL D€ PHYSIQUE

Doppl e r - f r e e optogal vanic spectroscopy (I .M.O.G.S. ) as a l s o been used f o r Zeeman e f f e c t s t u d i e s i n Ne and Ca by BEVERINI e t a l . /42/.

111.2.3

-

Level c r o s s i n g spectroscopy

Optogalvanic spectroscopy has a l s o been extended t o the d e t e c t i o n o f l e v e l c r o s s i n g phenomena, s i m i l a r t o t h e Hanle e f f e c t , by HANNAFORD and SERIES i n Z r I /43/ and l e a d the authors t o measurements o f Land6 g - f a c t o r s /44/. They have a l s o measured u s i n g the same l e v e l - c r o s s i n g optogalvanic spectroscopy h y p e r f i n e s t r u c t u r e s i n Y I /45/.

I V

-

CONCLUSION

I n t h e e a r l y days o f optogalvanic spectroscopy a l l t h e spectra observedwereDoppler- l i m i t e d because o f t h e l a c k o f monomode tunable dye l a s e r s . I n t h e r e c e n t years s i n c e t h e i r discovery, power f u l l and s o p h i s t i c a t e d techniques o f Doppler-free l a s e r spectroscopy are j u s t beginning t o be a p p l i e d and adapted t o optogalvanic d e t e c t i o n as i t w i l l be demonstrated by t h e f o l l o w i n g r e p o r t s presented a t t h i s colloquium.

The l a r g e increase i n t h e q u a l i t y o f t h e s i g n a l t o n o i s e r a t i o can be p o i n t e d o u t i n Fig. 19 which reproduces the h y p e r f i n e s t r u c t u r e of t h e 591.5 nm U I l i n e r e c o r - ded i n 1979 by KELLER e t a l . /46/ and the same l i n e recorded by GAGNE e t a l . /47/

and presented a t t h i s colloquium.

The l a r g e number o f atomic resonances o f r e f r a c t o r y elements t h a t hollow-cathode lamps render accessible, combined w i t h t h i s new wave o f h i g h r e s o l u t i o n techniques make optogalvanic spectroscopy one o f t h e most important t o o l s t o i n v e s t i g a t e t h e i n t e r a c t i o n o f l a s e r r a d i a t i o n w i t h l i g h t gas media.

"5985

X l00

Fig, 19 : O.G. h y p e r f i n e s t r u c t u r e o f 591.5 nm U 1 l i n e i n H.C. lamp

X I0

?

? f l 1

a b < d h

KELLER R.A., EEIGLEWN R. J r and ZALENSKI G.F., 1979 /46/

---p

G 01 0 2 0 3

, . 3 t 2 5

-

> E 20

151jbbcK

-

l0 D E F G H

5 0

-IJ - l I )

0 5 10 GAGNE

J.M.,

DEMERS Y., PIANAROSA P.,

v (GHZ) 1: DREZE C., t h i s colloquium /47/

(20)

REFERENCES

FOOTE P.D. and MOHLER F.L., Phys. Rev.

6

(1925) 195.

PENFIING F.M., Physica

5

(1928) 137.

BADAREU E., POPESCU I., GHITA C. and MUSA G., Rev. Roum. Phys.

10

(1965) 785.

GREEN R.B., KELLER R.A., LUTHER G.G., SCHENCK P.K. and TRAVIS J.C., Appl

.

Phys. L e t t

2

(1976) 727.

POPESCU D., BOBULESCU R.C., STANCIULESCU C., SURMEIAN A., CEAUSESCU N., POPESCU 1.1. and COLLINS C.B., Rev. Roum. Phys.

25

(1980) 771.

GOLDSMITH J.E.!-l. and LAWLER J.E., Contemp. Phys. - 22 (1981) 235.

TRAVIS J.C. and De VOE J.R., Lasers i n Chemical A n a l y s i s , Chap. 5, 1981.

FERGUSON A.I., P h i l . Trans. R. Soc. Lond. A

307

(1982) 645.

MARR G.V. and WHERRETT S.R., J. Phys. B

5

(1972) 1735.

POPESCU D., PASCU M.L., COLLINS C.B., JOHNSON B.W. and POPESCU I., Phys. Rev. (1973) 1666.

AYMAR M., CAFIUS P., DIEULIN M. and MORILLON C., Phys. Rev.

5

(1978) 2173.

ESHERICK P. and bfYNNE J., Comments Atom. Mol. Phys. - 7 (1977) 43.

EASTMAN G.Y., S c i . Amer. 218 (1968) 38.

VIDAL C.R. and COOPER J., Appl

.

Phys. - 40 (1969) 3370.

SMYTH K.C. and SCHENCK P.K., Chem. Phys. L e t t .

55

(1978) 466.

BRIDGES W.B., J . Opt. Soc. Am.

68

(1978) 352.

MIRON E., SMILANSKI I . , LIRAN J., LAVI S. and EREZ G., IEEE J. QuantumElectron.

QE-15 (1979) 194.

EREZ G., LAVI S. and MIRON E., IEEE J . Quantum E l e c t r o n .

QE-15

(1979) 1328.

EYTAN G. and KOPEIKA N.S., IEEE Trans. Plasma S c i . PS

5

(1978) 261.

KOPEIKA N.S. and ROSENBAUM J., IEEE Trans. Plasma Sci. PS

4

(1976) 51.

KOPEIKA N.S., IEEE Trans. Plasma Sci. PS

5

(1977) 139.

CAFIUS P., J. Phys. B : A t . Hol. Phys. 7 (1974) 1154.

CAMUS P., DIEULIN M. and llORILLON C., J. Physique L e t t .

40

(1979) 513.

STANCIULESCU C., BOBULESCU R., SURMEIAN A., POPESCU D., POPESCU I. I. and COLLINS C.B., Appl

.

Phys. L e t t e r s

37

(1980) 888.

SUZUKI T., O p t i c s Commun.

38

(1981) 364.

LABASTIE P., BIRABEN F. and GIACOBINO E., J. Phys. B

15

(1982) 2595.

HANNAFORD P-, Contemp. Phys., t o be pub1 i s h e d (1983).

CAMUS P., DIEULIN M. and EL HIMDY A., Phys. Rev. A26 (1982) 379.

DELSART C., KELLER J.C. and THOMAS C., J . Phys. B : A t . Mol

.

Fhys. - 14 (1981) 3355.

VASILENKO L.S., CHEBOTAEV V.P. and SHISHAEV A.V., JETP L e t t .

-

12 (1970) 113.

CAGNAC B., GRYNBERG G. and BIRABEN F., J . Physique

2

(1973) 845.

HARVEY K.C. and STOICHEFF B.P., Phys. Rev. L e t t .

38

(1977) 537.

STOICHEFF B.P., HARVEY K.C. and KATO Y., C o l l . I n t e r n a t i o n a u x du C.N.R.S. n 0 2 7 3 E d i t i o n s du C.N.R.S. (1977) 307.

GAY J.C., DELANDE D. and BIRABEN F., J. Phys. B: At. I l o l . Phys. 13 (1980) L729.

BEIGANG R., LUCKE and TIMMERMANN, Phys. Rev. A27 (1983) 587.

GOLDSMITH J.E.M., FERGUSSON A.I., LAWLER J.E. and SCHAWLOW A.L., O p t i c s L e t t .

4

(1979) 230.

(21)

C7-106 JOURNAL DE PHYSIQUE

GOLDSMITH J.E.M. and SMITH A.V., O p t i c s commun.

32

(1980) 403.

LAWLER J.E., FERGUSON A.I., GOLDSMITH J.E.M., JACKSON D.J. and SCHAWLOW A.L., Phys. Rev. L e t t .

42

(1979) 1046.

SIEGEL A., LAI?LER J.E., COUILLAUD B. and HANSCH T.L.'., Phys. Rev. A g ( 1 9 8 1 ) 2457.

HANSCH T.W., LYONS D.R., SCHAWLOW A.L., SIEGEL A., WANG Z.Y. and YAN G.Y., O p t i c s . Commun. - 38 (1981) 47.

JULIEN L. and PINARD M., J. Phys. B : At. Mol. Phys.

15

(1982) 2881.

BEVERINI N., GALL1 M., INGUSCIO M., STRUMIA F. and BIONDUCCI G., O p t i c s Commun.

43

(1982) 261.

HANNAFORD P. and SERIES G.W., J. Phys. B : A t . Plol

.

Phys.

14

(1981 ) L661 HAMNAFORD P. and SERIES G.W., O p t i c s Commun.

5

(1981) 427.

HANNAFORD P. and SERIES G.W., Phys. Rev. L e t t .

9

(1982) 1326.

KELLER R.A., ENGLEMAN R. J r and ZALEWSKI G.F., J. Opt. Soc. Am. - 69 (1979) 738.

GAGNE J.M., DEMERS Y., PIANAROSA P., DREZE C., t h i s colloquium.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to