• Aucun résultat trouvé

COMPUTER SIMULATION OF THE STRUCTURE OF bcc/hcp AND bcc/9R MARTENSITE INTERFACES

N/A
N/A
Protected

Academic year: 2021

Partager "COMPUTER SIMULATION OF THE STRUCTURE OF bcc/hcp AND bcc/9R MARTENSITE INTERFACES"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00222135

https://hal.archives-ouvertes.fr/jpa-00222135

Submitted on 1 Jan 1982

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

COMPUTER SIMULATION OF THE STRUCTURE OF bcc/hcp AND bcc/9R MARTENSITE

INTERFACES

G. Barcelo, A. Crocker

To cite this version:

G. Barcelo, A. Crocker. COMPUTER SIMULATION OF THE STRUCTURE OF bcc/hcp AND

bcc/9R MARTENSITE INTERFACES. Journal de Physique Colloques, 1982, 43 (C4), pp.C4-179-

C4-184. �10.1051/jphyscol:1982421�. �jpa-00222135�

(2)

JOURNAL DE PHYSIQUE

CoZZoque C4, suppZ6ment au n o 22, Tome 43, d6cembre 1982 page C4-179

COMPUTER SIMULATION OF THE STRUCTURE OF bcc/hcp AND b c c / 9 R MARTENSITE.

INTERFACES

G.N. ~ a r c e l o * and A. G. Crocker

Department o f Physics, U n i v e r s i t y o f Surrey, GuiZdford, Surrey GU2 5 X H , EngZand

(Accepted 9 August 1982)

Abstract.- The s t r u c t u r e s o f two i n t e r f a c e s o f m a r t e n s i t i c transformations i n Cu Zn based a l l o y s have been i n v e s t i g a t e d using computer s i m u l a t i o n techniques.

A new i n t e r a t o m i c p o t e n t i a l has been developed which i s assumed t o represent a l l i n t e r a c t i o n s between atoms i n t h e parent bcc phase and t h e product hcp and 9R phases. Stable r e l a x e d s t r u c t u r e s o f bcc/hcp and bcc/9R i n t e r f a c e s have been found. I n b o t h cases t h e i n t e r f a c e migrates i n t o t h e bcc phase d u r i n g t h e r e l a x a t i o n process. The boundary i n the bcc/hcp computer model i s broad i n v o l v i n g about 6 (110) bcc planes o f atoms, whereas t h a t i n t h e bcc/9R model i s s i m p l e r i n v o l v i n g o n l y 3 planes. This suggests t h a t t h e 9R product s t r u c t u r e m i g h t be p r e f e r r e d i n p r a c t i c e .

I n t r o d u c t i o n . - The growth o f a r n a r t e n s i t i c phase i s c o n t r o l l e d i n p a r t by t h e atomic s t r u c t u r e o f i t s i n t e r f a c e w i t h the p a r e n t m a t e r i a l . U n f o r t u n a t e l y i t i s v e r y d i f f i c u l t t o o b t a i n d i r e c t experimental data on t h e s t r u c t u r e s o f i n t e r f a c e s and t r a d i t i o n a l t h e o r e t i c a l models are based on continuum o r phenomenological approaches which provide o n l y macroscopic i n f o r m a t i o n . However computer s i m u l a t i o n u s i n g i n t e r - atomic p o t e n t i a l s has, i n r e c e n t years, become a w e l l - e s t a b l i s h e d method o f i n v e s t i - g a t i n g t h e s t r u c t u r e s , energies and i n t e r a c t i o n s o f c r y s t a l d e f e c t s ( 1 ) . I n p a r t i - c u l a r i t has been w i d e l y used t o study t h e p r o p e r t i e s o f g r a i n boundaries. The e x p e r t i s e gained i n t h i s work now makes i t f e a s i b l e t o s t a r t t o examine t h e equi- l i b r i u m s t r u c t u r e s o f interphase boundaries i n c l u d i n g m a r t e n s i t e i n t e r f a c e s .

The authors are p a r t i c u l a r l y i n t e r e s t e d i n t h e f a s c i n a t i n g range o f phenomena associated w i t h t h e m a r t e n s i t i c transformations which occur i n Cu Zn and Cu Zn based a l l o y s ( 2 ) . I g n o r i n g t h e e f f e c t s o f ordering, t h e p a r e n t phase i s body centred cubic and the product has a f a u l t e d hexagonal c l o s e packed s t r u c t u r e , known as 9R, i n which t h e s t a c k i n g o f close packed planes f o l l o w s t h e sequence ABCBCACAB. However by applying a p p r o p r i a t e stresses t o t h e product phase t h e f a u l t s may r e a d i l y be removed t o generate a p e r f e c t hcp s t r u c t u r e ( 3 ) . I t has been deduced t h a t t h e 9R and hcp s t r u c t u r e s have s i m i l a r energies. This suggests t h a t t h e i n t e r f a c e might p l a y an important r o l e i n t h e choice o f t h e s t r u c t u r e o f t h e product phase. I n order t o i n v e s t i g a t e t h i s proposal t h e bcc/hcp and bcc/9R transformations a r e being i n v e s t - i g a t e d using t h e computer s i m u l a t i o n method. A new i n t e r a t o m i c p o t e n t i a l has been developed t o perform t h i s work and p r e l i m i n a r y r e s u l t s on t h e s t r u c t u r e s o f t h e two i n t e r f a c e s have been obtained.

The P o t e n t i a l . - An e q u i l i b r i u m e m p i r i c a l two-body, i n t e r a t o m i c p o t e n t i a l $ ( r ) was s p e c i a l l y developed f o r t h i s p r o j e c t and i s shown i n F i g . 1. I t c o n s i s t s of e i g h t piece-wise continuous cubic polynomials, o r s p l i n e s , $ i ( r ) and terminates a t zero slope a t t h i r d nearest neighbour d i s t a n c e o f t h e bcc s t r u c t u r e . I t i s g i v e n by

where

For r

<

r,, $ ( r ) i s represented by t h e Born-Mayer p o t e n t i a l $,(r) = A exp(- B r ) .

"on leave from : centrb Atomico Bariloche, comisi6n Nacional de ~ n e r g i a ~ t b m i c a S.C. d e Bariloche-R.N. (8400) Republica ~ r g e n t i n a

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1982421

(3)

JOURNAL DE PHYSIQUE

The s p l i n e s are l i n k e d smoothly together, w i t h $ ( r ) and i t s f i r s t and second d e r i v a - t i v e s continuous a t t h e knot p o s i t i o n s r. which are i n d i c a t e d i n F i g . 1. The c o e f f i c i e n t s A.

.

were matched, u s i n g exp$essions given by Johnson ( 4 ) and M i l l e r ( 5 ) t o t h e l a t t i c e l d a r meter a,, t h e e l a s t i c constants c,,, c

,

c,, and the vacancy formation energy Eev o f t h e h i g h temperature bcc phase.

A:

t h e computer s i m u l a t i o n method r e s u l t s i n c r y s t a l s a t e a u i l i brium a t absolute zero temperature, t h e values o f ao, c,,, c,,, c and E F ~ adopted were chosen f o r a Cu -48%Zn a l l o y f o r which t h e Ms temperature i s

8.

I n p a r t i c u l a r a was taken t o be 2.9464 ( 6 ) , c,

,

c,,, c were extrapolased from r e s u l t s from a !ange o f a l l o y s and taken t o be 0.j604, 0.6746 and 0.5162 eV A-3 r e s p e c t i v e l y (7-11) and i n a s i m i l a r way EF was deduced t o be 0.58 eV (12-18). The above e l a s t i c constants were r e s o l v e d i n r o e l e c t r o n i c and i o n i c c o n t r i b u t i o n s using a procedure developed by Fuchs (19). The i o n i c components, t o which t h e p o t e n t i a l i s i n f a c t f i t t e d , were found t o be c = 0.4805 eV f i - j and c,, = c,, = 0.4202 eV so t h a t t h e Cauchy pressure i s :At-o. The constants o f t h e Born-Mayer p o t e n t i a l were taken t o be A = 13, and B = 5. The o n l y way i n which t h e p r o p e r t i e s o f t h e product s t r u c t u r e s were i n t r o d u c e d i n t o t h e p o t e n t i a l was by ensuring t h a t the energies per atom were i d e n t i c a l f o r t h e bcc s t r u c t u r e and an hcp s t r u c t u r e o f i d e a l a x i a l r a t i o .

I n t h e a p p l i c a t i o n s t o be described i n t h i s paper i t was assumed t h a t t h e above p o t e n t i a l i s v a l i d f o r t h e parent bcc phase and t h e product hcp and 9R phases. I n a d d i t i o n t h e nearest neighbour d i s t a n c e i n t h e c l o s e packed planes of t h e product phases was taken t o be t h e same as i n the p a r e n t s t r u c t u r e . I t i s t o be noted t h a t t h i s s i n g l e p o t e n t i a l was used f o r t h e i n t e r a c t i o n s between a l l atoms i n t h e a l l o y , no d i s t i n c t i o n being made between Cu-Cu, Cu-Zn, Zn-Zn and o t h e r bonds. This meant t h a t o r d e r i n g o f t h e atomic species c o u l d n o t be accounted f o r , so t h a t f o r example t h e product phase had the 9R disordered r a t h e r than t h e 18R ordered s t r u c t u r e . The Model.- Computer s i m u l a t i o n of t h e s t r u c t u r e s o f t h e i n t e r f a c e s were c a r r i e d o u t using a model c r y s t a l c o n t a i n i n g 240 atoms. I n i t i a l l y a model r e p r e ~ e n t i n g t h e parent bcc phase was constructed i n t h e form o f a r e c t a n g u l a r block w i t h (111 ), (1T2) and (110) faces. t h e r e were 3 (111) planes, 24 ( I f ? ) planes and 20 (110) planes which were l a b e l l e d -9 t o 10. P e r i o d i c boundary c o n d i t i o n s were used f o r t h e (111) and

(172) faces b u t t h e (110) faces were f i x e d . The i n t e r f a c e was assumed t o be p a r a l l e l t o (110) and the boundary c o n d i t i o n s i m p l i e d t h a t these planes were e f f e c t i v e l y o f i n f i n i t e e x t e n t . An a p p r o p r i a t e number o f a d d i t i o n a l f i x e d (110) planes were added t o t h e model so t h a t t h e boundary atoms o f t h e computational c e l l i n t e r a c t e d w i t h a f u l l quota o f neighbours.

S i n g l e c r y s t a l s o f t h e product hcp and 9R-structures were generated from t h e bcc model by transforming (110) planes i n t o (1011) planes o f hcp and t h e correspond- i n g ( 1

i

5 ) p l a n e s of 9R (20). T h i s was achieved by d i s p l a c i n g t h e (110) planes p a r a l l e l t o themselves i n t h e [ l i p ] d i r e c t i o n , by a p p l y i n g a uniform s t r a i n i n the

[TI01 d i r e c t i o n , and f i n a l l y by s h u f f l i n g atoms i n the [1101 and [IT11 d i r e c t i o n s . However, because a small model w i t h p e r i o d i c boundary c o n d i t i o n s was used i t was necessary t o use i n t e r p l a n a r spacings o f 0.838a f o r hcp and 0.811a f o r 9R, i n order t o match the f o u r c e l l s i n t h e bcc (110) plane w i t h t h r e e hcp and two 9R c e l l s as shown i n F i g . 2. For i d e a l s t r u c t u r e s the spacing o f these planes would be 0.817a.

The models o f the i n t e r f a c e s were generated by transforming (110) planes 1 t o 10 o f t h e p a r e n t bcc model. Because o f t h e way i n which t h e a x i a l r a t i o s o f t h e product phases were selected, t h e two i n t e r f a c e s were coherent.

The models o f t h e t h r e e s i n g l e c r y s t a l s and the two i n t e r f a c e s were r e l a x e d using l a t t i c e handling techniques known as DEVIL o r i q i n a l l y developed a t AERE, Harwell and described p r e v i o u s l y (21). An IBM 360/195 computer was used.

Results.- A l l f i v e models s t u d i e d i n t h i s i n v e s t i g a t i o n , the bcc, hcp and 9R s i n g l e m s and t h e bcc/hcp and bcc/9R i n t e r f a c e s r e l a x e d t o s t a b l e e q u i l i b r i u m

s t r u c t u r e s . The energies o i t h e f i v e r e l a x e d s t r u c t u r e s were t h e same t o w i t h i n 4 per cent, i n d i c a t i n g t h a t , d e s p i t e t h e necessary m o d i f i c a t i o n s t o t h e s t r u c t u r e s o f t h e product phases, the s i n g l e p o t e n t i a l t h a t was used gave a s a t i s f a c t o r y represent- a t i o n o f t h e t h r e e phases near t h e i r t r a n s f o r m a t i o n temperatures. However a t t h i s stage i t i s n o t meaningful t o quote i n t e r f a c i a l energies. This i s p a r t l y because t h e

(4)

r I I I I I I

0.05

- -

@(r) 0.00. K4

b2id

-0.05

-

- 2

[iol

21

(b)

-0.10

-

[iio]

1 I I I I

1.0 1 . 2 1 . 4

r/a (c)

F i g . 1

.-

E m p i r i c a l i n t e r a t o m i c F i g . 2.- P r o j e c t e d atomic p o t e n t i a l $ ( r ) i n eV f o r Cu Zn a l l o y s . s t r u c t u r e s o f (a) t h e (110) bcc The l o c a t i o n s o f knots K i between plane, ( b ) t h e (1011) hcp plane, s p l i n e s a r e i n d i c a t e d on t h e r / a a x i s , and ( c ) t h e (175) 9R plane, which a being t h e nearest neighbour distance. a r e used i n t h e computer models.

The n o t a t i o n l P , 6H

,

4H3 i s explained i n t h e t e x t .

F i g . 4.- P r o j e c t e d atomic arrangements o f planes

-

3 t o

+

1 of t h e bcc/9R i n t e r f a c e .

(5)

C4-182 JOURNAL DE PHYSIQUE

p o t e n t i a l i s non-equilibrium f o r t h e hcp and 9R product s t r u c t u r e s so t h a t volume dependent c o n t r i b u t i o n s t o t h e energy must be considered. Also d u r i n g t h e r e l a x a t i o n pvocess t h e i n t e r f a c e s tended t o m i g r a t e towards t h e bcc phase. This was a very encouraging aspect o f t h e r e s u l t s , r e v e a l i n g t o some e x t e n t t h e g l i s s i l e nature o f the boundaries. However i t meant t h a t t h e p r o p o r t i o n s o f parent and product phase remaining i n t h e model was r a t h e r i l l - d e f i n e d , so t h a t t h e r e l a t i v e c o n t r i b u t i o n s t o t h e t o t a l energy o f t h e two phases and o f t h e i n t e r f a c e between them was u n c e r t a i n .

The r e s u l t s t h a t were obtained on t h e s t r u c t u r e o f t h e i n t e r f a c e s a r e much more r e l i a b l e . They a r e however complex, so t h a t o n l y a s i m p l i f i e d p r e s e n t a t i o n o f t h e wealth o f i n f o r m a t i o n contained i n t h e atomic co-ordinates provided by t h e computer s i m u l a t i o n can be attempted. I n p a r t i c u l a r o n l y t h e l o c a t i o n s o f t h e atoms i n t h e (110) bcc planes and t h e p r o j e c t e d l o c a t i o n s i n t h e corresponding hcp and 9R planes w i l l be shown. I n p r a c t i c e t h e hcp and 9R nlanes a r e o f course f a r from f l a t and i n a d d i t i o n planes a r e t r a n s l a t e d r e l a t i v e t o each o t h e r d u r i n g the r e l a x a t i o n process.

The d e t a i l s o f these displacements w i l l be g i v e n elsewhere.

The s t r u c t u r e o f t h e i n t e r f a c e between the bcc and hcp phases i s i l l u s t r a t e d i n Fig. 3. I n t h i s case d u r i n g t h e r e l a x a t i o n t h e i n t e r f a c e migrated i n t o t h e bcc phase and became d i f f u s e . Thus plane

+

1, t h e f i r s t plane o f t h e hcp phase i n t h e i n i t i a l s t r u c t u r e , remained e s s e n t i a l l y unchanged b u t planes 0 t o

-

5 o f t h e bcc phase were d i s t o r t e d appreciably t o take up i n t e r m e d i a t e s t r u c t u r e s . Plane

-

6 was c l o s e t o t h e o r i g i n a l bcc s t r u c t u r e . Hence i n F i g . 3 p r o j e c t i o n s o f planes 1 t o

-

6 a r e shown.

It i s convenient t o describe t h e change o f s t r u c t u r e across t h e i n t e r f a c e i n terms o f t h e pseudo two-dimensional polygonal c e l l s shown i n t h e diagrams. The p e r f e c t hcp s t r u c t u r e o f Fig. 2(b) has s i x hexagonal c e l l s each o f which has t h e area o f two u n i t c e l l s , I t may thus be represented by 6H2. Plane

+

1 has t h e same s t r u c t u r e . Plane 0 has f o u r o f these hexagons and f o u r parallelograms o f u n i t area. I t i s thus represented by 4H2

+

4P1. Plane

-

1 has t h e same s t r u c t u r e b u t the polygons a r e more d i s t o r t e d . The s t r u c t u r e o f plane

-

2 i s more complex being 3H,

+

4P1

+

lP, where P, i n d i c a t e s a p a r a l l e l o g r a m w i t h t w i c e t h e area o f P,. S i m i l a r l y plane

-

3 i s

c h a r a c t e r i s e d by lH, + 1H3

+

l P 1

+

2P3 and plane

-

4 by IH,

+

lP,

+

lPg. F i n a l l y t h e s t r u c t u r e o f plane

-

5 although s t i l l d i s t o r t e d can be represented most s a t i s f a c t o r i l y by a s e t of l i n e s r a t h e r than by polygons. These l i n e s may be considered t o be

i n f i n i t e l y l o n g parallelograms so t h a t the s t r u c t u r e i s d e f i n e d by lPm. To be c o n s i s t - e n t w i t h the o t h e r planes however t h e t o t a l number o f u n i t c e l l s described by t h e n o t a t i o n should be 12 so t h a t s t r i c t l y 12n-lP ( n + m) i s a more accurate n o t a t i o n f o r plane

-

5 and indeed t h e bcc s t r u c t u r e o f ~ i ~ ! 2 ( a ) .

The s t r u c t u r e of t h e i n t e r f a c e between the bcc and 99 phases i s shown i n F i g . 4.

Again t h e boundary has migrated i n t o t h e bcc phase b u t t h e i n t e r f a c e i s narrower than f o r t h e bcc/hcp case. The s t r u c t u r e s o f planes

+

1 t o

-

3 a r e shown i n t h e f i g u r e and using t h e above n o t a t i o n can be represented by 4H3, 4H,

+

4P1, 2H2

+

2P1

+

2P,,

2H

+

2P1 t 2P3, lP, r e s p e c t i v e l y . Note t h a t i n t h i s case t h e number o f polygonal c e f l s i s even I n each case r e f l e c t i n g t h e f a c t t h a t two 9R c e l l s are matched t o f o u r bcc c e l l s . A model o f one-half o f t h i s s i z e matching cne 9R c e l l t o two bcc c e l l s c o u l d c l e a r l y have been used r e s u l t i n g i n a t o t a l o f 6 r a t h e r than 12 u n i t c e l l s i n each o f t h e diagrams. However t h e l a r g e r model provides a u s e f u l check on t h e r e l a x - a t i o n procedure and as shown i n F i g . 4, the l e f t and r i g h t - h a n d sides o f t h e model d i d i n f a c t r e l a x i d e n t i c a l l y .

I n t h e s i m u l a t i o n s o f both t h e bcc/hcp and bcc/9R i n t e r f a c e s l a r g e displacements o f atoms occurred. These displacements c o u l d have been i n d i c a t e d i n F i g s . 3 and 4 b u t would have complicated t h e diagrams. However t h e i r e x t e n t can be appreciated by r e a l i s i n g t h a t i n t h e unrelaxed models planes n

<

0 had t h e bcc s t r u c t u r e of F i g . 2(a).

I n a d d i t i o n t h e r e l a x a t i o n s tended t o d i s p l a c e t h e (110) bcc planes and t h e correspond- i n g hcp and 9R planes p a r a l l e l t o themselves. This r e s u l t e d i n an i n - p l a n e t r a n s l a t - i o n o f t h e i n t e r f a c e , b u t as t h e boundaries are spread over several planes t h e d e t a i l s a r e complex and w i l l n o t be described here.

Conclusions

( 1 ) I t has been demonstrated t h a t t h e DEVIL s u i t e o f computer programs can be used successfully t o i n v e s t i g a t e t h e s t r u c t u r e of complex interphase boundaries.

(6)

Fig. 3.- Projected atomic arrangements of planes

-

6 to 1 of the bcc/hcp interface.

(7)

C4-184 JOURNAL DE PHYSIQUE

(2) A new e m p i r i c a l i n t e r a t o m i c p o t e n t i a l has been developed f o r copper-zinc based a l l o y s which can be used s a t i s f a c t o r i l y t o describe t h e h i g h temperature bcc phase and t h e m a r t e n s i t i c hcp and 9R phases.

(3) By a l l o w i n g s l i g h t d i s t o r t i o n s o f t h e hcp and 9R product s t r u c t u r e s q u i t e small b u t r e a l i s t i c computer models w i t h p e r i o d i c boundaries have been generated of t h e bcc/hcp and bcc/9R i n t e r f a c e s .

( 4 ) The r e l a x e d s t r u c t u r e s o f s i n g l e c r y s t a l s o f bcc, hcp and 9R and o f bcc/hcp and bcc/9R b i c r y s t a l s a r e a l l s t a b l e .

(5) The r e l a x e d energies o f t h e f i v e models were s i m i l a r , i n d i c a t i n g t h a t mutual transformations a r e l i k e l y and t h a t i n t e r f a c i a l energies a r e small.

( 6 ) Both t h e bcc/hcp and bcc/9R i n t e r f a c e s migrated d u r i n g t h e r e l a x a t i o n process i n t o t h e bcc phase, i n d i c a t i n g t h a t t h e boundaries a r e g l i s s i l e .

(7) The i n t e r f a c e i n t h e bcc/hcp model i s broad, i n v o l v i n g about 6 sheets of atoms, whereas t h a t i n t h e bcc/9R model i s s i m p l e r i n v o l v i n g o n l y 3 sheets. This suggests t h a t t h e 9R t r a n s f o r m a t i o n m i g h t be p r e f e r r e d .

( 8 ) The present r e s u l t s are considered t o be encouraging and i t i s proposed t o extend t h e p r o j e c t by u s i n g improved p o t e n t i a l s and l a r g e r models. A f u l l account of t h e work i s being published.

The authors acknowledge h e l p provided by J. I. Akhter and I.Q. Malik, K. M i l l e r and M. Balanzat.

References

1. LEE J. K., e d i t o r , I n t e r a t o m i c P o t e n t i a l s and C r y s t a l l i n e Defects (AIME, Warrendale) 1981.

2. PERKINS J., e d i t o r , Shape Memory E f f e c t s i n A l l o y s (Plenum, Mew York) 1975.

3. BARCELO G. and AHLERS M., S c r i p t a Met. 16 (1982) 1.

4. JOHNSON R.A., Phys. Rev. 134A (1964) 6 3 m . 5. MILLER K., J. Phys. F 11 m 1 ) 1175.

6. PEARSON W.B., A Handbox o f L a t t i c e Spacings and S t r u c t u r e s o f Metals (Pergamon, Oxford) 1958.

7. LAZARUS D., Phys. Rev. 76 (1949) 547.

8. McMANUS G.M., Phys. Rev7129 (1963) 2004.

9. NAKANISHI N., MURAKAMI ~.=d KACHI S., S c r i p t a Met. 5 (1971) 433.

10. YOUNG P.L. and BIENSTOCK A., J. Appl. Phys. 42 L (197T) 3008.

11. PRASETYO A., REYNAUD F. and WARLIMONT H., A c z Yet.

4

(1971 ) 1009.

12. LANG E. and SCHULLE W., Z. M e t a l l . 61 (1970) 867.

13. SCULTZ P. J., JACKMAN T.E., FABIEN

JY

WILLIAMS B.A. and MACKENZIE I .K., Can. J.

Phys. 56 (1978) 1077.

14. YACKENTE I.K., SCHULTZ P.J. and JACKMAN J.A., S o l i d S t a t e Comm. 33 (1980) 1011.

15. CLAREBOROUGH L. M.

,

HARGREAVES PI. E. and LORETTO H. M.

,

Proc. Roy. S z . (Lond. )

A257

(1960) 338.

16. FEDER R., NORWIK S. and ROSENBLATT D.B., J. Appl. Phys. 29 (1958) 984.

17. CHILDS B.G. and Le CLAIRE A.D., Acta Met.

2

(1954) 718.

-

18. DAMASK A.C., G. Appl. Phys. 27 (1956) 610.

19. FUCHS K., Proc. Roy. Soc. ( L G d . ) A153 (1936) 622.

20. AHLERS M., Z. M e t a l l . 65 (1974) 6 3 r

21. BRISTOWE P.D. and CROCER A.G., P h i l . Mag.

31

(1975) 503.

"This work was p a r t i a l l y supported by t h e Consejo Nacional de Investigaciones C i e n t i f i c a s y Tecnicas de l a Republics Argentina and by t h e Science and Engineering Research Council".

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to