• Aucun résultat trouvé

ELECTRON TRANSPORT IN HYDROGENATED AMORPHOUS SILICON SCHOTTKY BARRIERS AND DEEP LOCALIZED STATES KINETICS

N/A
N/A
Protected

Academic year: 2021

Partager "ELECTRON TRANSPORT IN HYDROGENATED AMORPHOUS SILICON SCHOTTKY BARRIERS AND DEEP LOCALIZED STATES KINETICS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220718

https://hal.archives-ouvertes.fr/jpa-00220718

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ELECTRON TRANSPORT IN HYDROGENATED AMORPHOUS SILICON SCHOTTKY BARRIERS

AND DEEP LOCALIZED STATES KINETICS

S. Deleonibus, D. Jousse

To cite this version:

S. Deleonibus, D. Jousse. ELECTRON TRANSPORT IN HYDROGENATED AMORPHOUS SILI-

CON SCHOTTKY BARRIERS AND DEEP LOCALIZED STATES KINETICS. Journal de Physique

Colloques, 1981, 42 (C4), pp.C4-487-C4-490. �10.1051/jphyscol:19814103�. �jpa-00220718�

(2)

CoZZoque C4, supptdment au nolO, Tome 42, octobre 1981

ELECTRON TRANSPORT I N HYDROGENATED AMORPHOUS S I L I C O N

S. Deleonibus and D. Jousse (b)

*

Laboratoire de Physique des Composants d Semiconducteurs, ERA CNRS 659, ENSER, 23 rue des Martyrs, 38031 GrenobZe, France

*

G q o de Energia Institute de Fisica, Universidade EstaduaZ de Ccmzpinas, Campi- nas, Brazi

A b s t r a c t : We present a method f o r a n a l y s i n g t r a n s p o r t i n Schottky,diodes on hydrogenated amorphous s i l i c o n (aSiH). Experimental r e s u l t s show a c o r r e l a t i o n between t h e r e d u c t i o n o f c a r r i e r c o l l e c t i o n v e l o c i t y , the r e d u c t i o n o f b a r r i e r h e i g h t f o r reduced space-charge r e g i o n s . I n t h e same way, t h e k i n e t i c s o f

"midgap" l o c a l i z e d s t a t e s i s slowered as b u l k s t a t e s l o c a t e d near t h e Pt-aSiH c o n t a c t c o n t r i b u t e t o capacitance.

I n t r o d u c t i o n .

-

It i s o f t e n assumed t h a t t r a n s p o r t i n b c h o t t k y diodes on amorphous m a t e r i a l s 3s l i m i t e d by a d i f f u s i o n process i n t h e space-charge region. The mean reason p u t foward i s an account f o r t h e low c a r r i e r m o b i l i t y i n these types o f m a t e r i a l s . Nevertheless, t h e thermionic theory has o f t e n been supposed t o h o l d t o measure t h e d e n s i t y o f s t a t e s (D.O.S.) i n t h e gap o f hydrogenated amorphous s i l i c o n

(aSiH) by the C(V) technique [ l ] ,C21, C31. I n o r d e r t o a v o i d t h e doubt about t r a n s p o r t , several authors C41, i51, C61 c a r r y o u t capacitance measurements a t zero b i a s versus frequency and ( o r ) temperature.

In

t h i s paper, we p r e s e n t a method o f analysing r e s u l t s o f current-v01 tage I ( V )

,

zero bias low frequency capacitance C(w) c h a r a c t e r i s t i c s versus temperature which must l e a d t o a b e t t e r understanding o f t h e a c t u a l n a t u r e o f extended s t a t e e l e c t r o n t r a n s p o r t through Schottky b a r r i e r s on aSiH. We p u t i n evidence t h e i n f l u e n c e o f t h e extension o f the space-charge r e g i o n on t h e c o l l e c t i o n v e l o c i t y o f c a r r i e r s a t t h e metal-aSiH i n t e r f a c e . An analogous treatment i s used f o r t h e a n a l y s i s o f t h e k i n e t i c s o f l o c a l i z e d s t a t e s around t h e Fermi l e v e l w i t h e x p e r i m e n t a l l y determined parameters d e r i v e d from C(w) measurements.

The samples i n v e s t i g a t e d were o b t a i n e d by glow discharge decomposition o f s i l a n e a t t h r e e s u b s t r a t e temperatures : 350, 400 and 450°C. The back c o n t a c t i s a 0 . 1 ~ ~ t h i c k n' l a y e r (PH3/SiH,,=5%) deposited on a t a n t a l um-alumina s u b s t r a t e . The Schottky c o n t a c t i s obtained by s p u t t e r i n g a 50R-100R t h i c k P t l a y e r on t o p o f t h e i n t r i n s i c ( ~ l p m t h i c k ) aSiH. The diodes achieved on the 400°C m a t e r i a l e x h i b i t more than 2% power e f f i c i e n c y C51.

E l e c t r i c a l c h a r a c t e r i z a t i o n .

-

Current-voltage I ( V ) c h a r a c t e r i s t i c s are performed i n t h e range o f temperature C-9O0C, +18O0C;

.

C51, C71

.

They f i r s t behave exponen- t i a l l y ( f i g . 2 ) f o r forward b i a s lower than the b u i l t - i n p o t e n t i a l Vso ( f i g . 1 ) f o l l o w i n g t h e r e l a t i o n :

(a) Work supported by COMES

(b) On leave from L a b o r a t o i r e de Physique des Composants

a

Semiconducteurs ERA CYRS 659.

*

Samples achieved by 6. BOURDON, CRCGE ilarcoussis, France

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19814103

(3)

JOURNAL DE PHYSIQUE

I ( V ) = where 10 = 1 0 0 exp(- '@B) ( 2 ) i d e a l i t y f a c t o r o f t h F d i o d e .

b4-L

O w t

Fig.1 : Band diagram o f s c h o t t k y diode

on aSiH

i

g i v e

*)

-

1J ( 1 )

the b a r r i e r h e i g h t +B ( f i g - l )

I )

F d i o d e s on m a t e r i a l s

,

B i s the

p-repared a t : a)350°C, b ) 400°C, c ) 450°C A t h i g h e r voltage, we o b t a i n a l i n e a r dependence o f c u r r e n t w i t h voltage. The s l o - pe o f t h e c h a r a c t e r i s t i c s allows us t o determine a mean value o f t h e b u l k conductance GB o f t h e m a t e r i a l . I t s a c t i v a t i o n energy w i l l g i v e t h e mean e l e c t r o n quasi-Fermi l e v e l d i s t a n c e (Ec-EF) from t h e conduction band (Fig.1). Thus we have :

GB

-

UB S w i t h ag = a. exp

[-

C$]!

where ag i s the mean b u l k c o n d u c t i v i t y , S i s t h e surface o f the P t contact, t t h e thickness o f the i n t r i n s i c aSiH l a y e r , a, i s given by : GO = q Ncii ( 3 )

Nc being the e f f e c t i v e d e n s i t y o f s t a t e s a t Ec. I.I t h e e l e c t r o n n o b i l i t y , q t h e e l e c t r o n charge.

I n t h e same range o f temperature we perform low-frequency C(w) measurements ClHz, lOHzl (see f i g . 3 ) f o r 1Hz capacitance). For temperatures h i g h e r than Tresp the capacitance s t a r t s t o r i s e : t h e s t a t e s around t h e Fermi l e v e l a t t h e n e u t r a l b u l k boundary-W ( f i g . l ) begin t o respond t o t h e modulation.

I n t h e same way, when the capacitance s a t u r a t e s a t a temperature T s a t the b u l k s t a t e s around EF near t h e Pt-aSiti i n t e r f a c e c o n t r i b u t e t o capacitance ( n e g l e c t i n g the response o f surface s t a t e s ) . The s a t u r a t i o n value o f low frequency capacitance ( t y p i - c a l l y 1Hz f i g . 3 ) C s a t allows us t o deduce t h e D.O.S. around t h e midgap i n the case

o f a u n i f o r m d i s t r i b u t i o n N : N =

-

(Table I).

Thus, the e q u i l i b r i u m value o f the space-charge w i d t h w i l l be' : W = L g ( ) (Table I )

The e l e c t r i c a l p o t e n t i a l V(x) having an exponentialshape : V(x) = Vs0 exp

- $

LD being t h e Debye l e n g t h associated t o t h e u n i f o r m 3.O.S. around t h e midgap : 'U

Lo,

=(&l

~ a b i e 1

L

Results ( e l e c t r i c a l c h a r a c t e r i z a t i o n )

- , .

I~-+,,

= tic us exp(*) exp

W (pm) 0.28 0.67 0.115 E -E

" ( 0 ~ ) 9' ( e v ; " ( e ~ ) C ~ ( e v ) " ~ ~ (V) 6 10 a D

N

E l e c t r o n c o l l e c t i o n v e l o c i t y .

-

I n a general way, the dark f r e e e l e c t r o n c u r r e n t I , , m f r a m r t o t h e metal can be e x p e s s e d by :

( ~ m - ~ e V - l ) 1x1Ol6 2 . 5 ~ 1 0 "

350

,

400 450

1.72 1.79 1.71

(n-lcm-':

1 . 3 ~ 1 0 ~ ~ 5 ~ 1 0 ' ~ 3 x 1 0 2

1.9x102 0 . 8 1

1.02 0.72

[ ~ c m - 2 ) 1 . 1 ~ 1 0 ' 1.54Y.3x105

2.7x104 1.2

1.16 0.62

0.66 0.5P

0.13 0.36 0.30

(4)

us = !JFS = vds where Fs i s t h e f i e l d a t the i n t e r f a c e given by :

F = ( 5 ) (Table 11).

D I f t h e thermionic t h e o r y h01 ds, then us i s t h e metal c o l l e c t i o n v e l o c i t y and w i l l have t h e thermal v e l o c i t y v t h as a maxinun value C81.

Thus, we w i l l have according t o r e l a t i o n ( 2 ) : 1 0 0 = q NCuS

.

( 5 ) . From r e l a t i o n s (3) and (5) we deduce : IOQ

- -

.-A US

Thus from r e l a t i o n ( 4 ) : 1 0 0 u 00 11

.

m = & .

The r a t i o uS/vds can then be evaluated from e x p e r i m e n t a l l y d e r i v e d parameters (Table 11).

Dynamic behaviour o f midgap s t a t e s .

-

When t h e s t a t e s l o c a t e d a t W s t a r t c o n t r i b u t i n ~ t o capacitance t h e i r response time ~ r i s given by S.R.11 s t a t i s t i c s : ~ s ~

E -EF

Tresp = to^ exP

+ k .

Where T O F = 1

.

( 6 ) .

When t h e capaciBSnEe s a t u r a t e s we expectFa;fh;%E:l::~~s~ocated a t a d i s t a n c e q @ ~ from the conduction band t o c o n t r i b u t e p l a i n l y t o capacitance C51 w i t h a response

~ Q B

time : T s a t = TGB exp .-.- where 1

~ T s a t '@B.= *@B Vth2 N EC S ( 7 ) .

I n ( 6 ) and (7) : OF an6 are t h e electronmc capture cr~ss)::cttons o f t h e s t a t e s around t h e Fermi l e v e l r e s p e c t i v e l y a t W and a t the i n t e r f a c e , v t h l and vth2 a r e t h e thermal v e l o c i t i e s a t Tresp and Tsat

,

!{(Ec) i s the d e n s i t y o f s t a t e s a t Ec.

We thus consider t h a t t h e b u l k s t a t e s a t t h e d i s t a n c e @B d o n ' t n e c e s s a r i l l y obey t h e same k i n e t i c s as t h e s t a t e s a t (Ec-EF) even i f t h e energy d i f f e r e n c e qVs0 i s small as i t i s t h e case f o r 350°C and 450°C samples (Table I ) .

For a ~ i v e n w o r k i ? ~ frequency vw must have a response temperature and a s a t u r a t i o n tenperature and : v

'

= Tresp = 'sat (see f i g . 3 f o r 1Hz capacitance).

I n p r a c t i c e , we observe a l i n e a r 6ependence o f Log v as a f u n c t i o n o f (Tres ) - l

( f i s . 4 ) . I n f i g u r e 4 t h e a c t i v a t i o n energy given e x p e r i m e n t a l l y i s ( E ~ - E F ) : t R a t shows a p o s t e r i o r i t h a t t h e b u l k Fermi l e v e l determined from t h e l i n e a r p a r t o f I ( V ) c h a r a c t e r i s t i c s i s c o r r e c t . From t h e pre-exponential f a c t o r o f t h e curves i n f i g . 4 we can determine Q F (Table 11).

For a given m a t e r i a l , i f t h e response k i n e t i c s o f t h e s t a t e s around EF were t h e same a t W and a t t h e i n t e r f a c e then t h e q u a n t i t y AT = (Ts

-

Tresp) should be p r o p o r t i o n a l t o Vs0 accor"ing t o S.R.H s t a t i s t i c s . For s m ? f values o f VSo, AT i s t o o l a r g e (Table 11). For t h e sane samples, t h e

rea at

d i f f e r e n c e between T Q F and

T Q @ B shows t h a t t h e k i n e t i c s i s slowered as t h e b u l k s t a t e s a t @B c o n t r i b u t e t o capacitance i n m a t e r i a l s w i t h a t h i n space-charge r e g i o n .

I n the sane way, t h e r a t i o uS/vds gets s m a l l e r (Table 11) and the b a r r i e r h e i ~ h t @B decreases as W decreases.

Possible i n t e r p r e t a t i o n .

-

We are i n r i g h t t o imagine t h a t t h e s t a t i c and dynamic b e h a v i o u r y diode have t h e same o r i g i n . The p o s s i b i l i t y o f c a r r i e r c o l l e c t i o n by i n t e r m e d i a t e t r a p p i n g i n l o c a l i z e d b a n d - t a i l s t a t e s i n t h e space- charge r e g i o n must n o t be excluded. Thus, the r a t i o us/vds decreases as W decreases.

(5)

JOURNAL DE PHYSIQUE

- l o o

1

o

IOO T(oE)

: C versus T f o r m a t e r i a l s d e f i n e d i n f i g . 2 a t 1 Hz.

V ( l!:)

102

-

10

1

F i g u r e 4 : Log v versus (Tresp) - l

C l a s s i c a l l y , we would have expected the c o n t r a r y i f t r a n s p o r t were d i f f u s i o n l i m i t e d . As a m a t t e r of f a c t , t h e e f f e c t i s nore pronounced as t h e band-bending a t the

Pt-aSiH c o n t a c t i s more i m p o r t a n t : (case o f 350 and 450°C m a t e r i a l s ) : us i s s m a l l e r than vds by a f a c t o r o f 10'.

The dynamic behaviour f o l l o w s t h e s t a t i c behaviour. (Table 11). The communication between deep s t a t e s a t i n t e r f a c e and the conduction band i s probably e s t a b l i s h e d v i a i n t e r m e d i a t e t r a p p i n g o f t h e e l e c t r o n s i n b a n d - t a i l s t a t e s . Thus ro$a can be h i g h e r than r o ~ by a f a c t o r o f 102.

Conclusion.

-

We have presented a method o f a n a l y s i s o f I ( V ) , C(w) c h a r a c t e r i s t i c s versus temperature t h a t can l e a d t o a b e t t e r understanding o f t r a n s p o r t i n Pt-aSiH Schottky diodes as w e l l as t h e k i n e t i c s o f deep l o c a l i z e d gap s t a t e s i n aSiH. We have proposed a p o s s i b l e i n t e r p r e t a t i o n f o r the r e d u c t i o n o f c o l l e c t i o n v e l o c i t y of extended s t a t e s e l e c t r o n s a t t h e metal-aSiH Schottky c o n t a c t . T h i s phenomena i s accompanied by an enhancement o f thermal r e l e a s e time o f t h e deep b u l k s t a t e s a t t h e surface Fermi l e v e l and a r e d u c t i o n of t h e b a r r i e r h e i g h t . That r e f l e c t s a l s o the i n d i r e c t i n f l u e n c e o f t h e D.O.S. around t h e midgap on t h e entended s t a t e s e l e c t r o n t r a n s p o r t .

References

C11 A.J. S n e l l , K.D. Mackenzie, P.G. Le Conber and W.E. Spear J

.

don Cryst. S o l i d s 35 & 36 (1980).

C21 P. V i k t o r o v i t c h , D. Jousse, P,. Chenevas-Paule and L. Vieux-Rochas Rev. Phys

.

Appl

.

- 14 (1579).

C31 P. V i k t o r o v i t c h and D. Jousse

J. igon Cryst. Solids, 35 S 35 (1980).

C41 J . S e i c h l e r , W. Fuhs, H. Flell and H.M. Kelsch J. ilon Cryst. S o l i d s , 35 36 (1980).

C S 1 R. Basset, D. Jousse, S. Deleonibus, F. Ducatel and 6. Eourdon

Proceedings o f 3 r d E.C. P h o t o v o l t a i c S o l a r Energy Conference, Cannes (1980).

C61 P. V i k t o r o v i t c h , G. Moddel, Appl. Phys.

3

( 9 ) (Sept. 1980).

C71 S. Deleonibus, D. Jousse, R. Basset, Presented a t ESSDERC'80 York (Ga) C81 S.M. Sze, Physics o f Semiconductor devices, Wiley, !.dew-York (1969).

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to