• Aucun résultat trouvé

TWO DIMENSIONAL ELECTRON LOCALIZATION

N/A
N/A
Protected

Academic year: 2021

Partager "TWO DIMENSIONAL ELECTRON LOCALIZATION"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00220706

https://hal.archives-ouvertes.fr/jpa-00220706

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TWO DIMENSIONAL ELECTRON LOCALIZATION

M. Pepper

To cite this version:

M. Pepper. TWO DIMENSIONAL ELECTRON LOCALIZATION. Journal de Physique Colloques,

1981, 42 (C4), pp.C4-17-C4-25. �10.1051/jphyscol:1981402�. �jpa-00220706�

(2)

TWO D I M E N S I O N A L ELECTRON L O C A L I Z A T I O N M. Pepper*

Cavendish Laboratory, Cambridge, U. K.

Abstract.- This paper gives a s h o r t review o f r e c e n t experimental work on weak l o c a l i z a t i o n i n s i l i c o n i n v e r s i o n l a y e r s . I t i s shown t h a t both t h i s e f f e c t and e f f e c t s a r i s i n g from t h e e l e c t r o n - e l e c t r o n i n t e r a c t i o n a r e present. These mechanisms can be d i s t i n g u i s h e d by t h e i r response t o a magnetic f i e l d , which enables a c o n f i r m a t i o n o f t h e p r i n c i p a l t h e o r e t i c a l p r e d i c t i o n s . The l o c a l i z a t i o n i s c u t o f f by a magnetic f i e l d which leads t o the r e t u r n o f m e t a l l i c conduction, and, i t i s suggested, a minimum m e t a l l i c conductance.

I n t r o d u c t i o n . - Two types o f two dimensional system have been o f use i n l o c a l i z a t i o n studies, these a r e t h i n metal f i l m s ( 1 ) and the i n v e r s i o n , o r accumulation, l a y e r a t a semiconductor surface ( 2 ) . The p r i n c i p a l d i f f e r e n c e between these systems i s t h a t t h e c a r r i e r c o n c e n t r a t i o n i n t h e metals (gated s t r u c t u r e s ) can be a l t e r e d by o n l y a small p r o p o r t i o n . On t h e o t h e r hand t h e semiconductor systems possess a lower c a r r i e r c o n c e n t r a t i o n ( a maximum o f about 2 . 1 0 ~ ~ e - c m - ~ ) b u t t h i s can be decreased c o n t i n u o u s l y t o a n e g l i g i b l y small value.

A considerable amount o f work has been performed on t h e n a t u r e o f l o c a l i z a t i o n i n s i l i c o n i n v e r s i o n l a y e r s (2, 3, 4). The main p o i n t s which have been e s t a b l i s h e d a r e as follo\vs.

1. A m o b i l i t y edge, Ec, separates extended s t a t e s from l o c a l i z e d s t a t e s i n t h e two dimensional band t a i 1. M o d i f i c a t i o n s t o t h e concept o f t h e 2D m o b i l i t y edge w i l l be discussed l a t e r .

2. The temperature dependence o f t h e conductance, a, i s i n agreement w i t h M o t t ' s p r e d i c t i o n t h a t , when s t a t e s o f t h e Fermi energy are l o c a l i z e d , conduction i s by e x c i t a t i o n t o , Ec, passing i n t o v a r i a b l e range hopping ( a = exp

-

( T , / T ) ~ / ~ as t h e temperature i s reduced.

3. When t h e Fermi energy, EF, i s a t Ec t h e conductance i s n o t l e s s than

2

0.1 e2/4i, ( 3 . 1 V 5 n-I), t h e minimum m e t a l l i c conductance, although values g r e a t e r than t h i s have been obtained. M e t a l l i c conduction a t values o f a below omi f o r a p a r t i c u l a r specimen are n o t found. T h i s increase i n t h e value o f omin has geen discussed i n terms o f an increase i n the l e n g t h o f t h e p o t e n t i a l f l u c t u a t i o n s ( 2 ) . 4. The l o c a t i o n o f Ec increases as t h e l o c a l i z e d s t a t e s a r e occupied, implying, t h a t , as i n the semiconductor i m p u r i t y band, b o t h d i s o r d e r and t h e e l e c t r o n - e l e c t r o n i n t e r a c t i o n a r e r e s p o n s i b l e f o r t h e l o c a l i z a t i o n .

R e c e n t l y , t h e o r e t i c a l arguments have been advanced suggesting t h a t a l l s t a t e s a r e l o c a l i z e d i n t v ~ o dimensions (Abrahams e t a l . (5),Gorkov e t a l . (6),

Houghton e t a l . ( 7 ) , Haydock (8), Kaveh and H o t t ( 9 ) . On these arguments t h e m o b i l i t y edge i s a l o c a l i z a t i o n edge s e p a r a t i n g two d i f f e r e n t types o f l o c a l i z e d s t a t e s . These suggestions, and the experiments which t h e y s t i m u l a t e d , w i l l now

"On leave from Plessey Research, Caswell, Towcester, Northants, U.K.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981402

(3)

JOURNAL DE PHYSIQUE

be discussed.

Weak l o c a l i z a t i o n and i n t e r a c t i o n e f f e c t s i n 2D.

-

Abrahams and co-workers ( 5 ) f i r s t suggested t h a t a l l s t a t e s i n 2D a r e l o c a l i z e d w i t h t h e m o b i l i t y edge being a l o c a l i z a t i o n edae seoaratina s t r o n ~ l v

- "

and weaklv l o c a l i z e d s t a t e s . Thev f i n d t h a t the conductance-of a' 2D sysEem i s

( t h i s formula was subsequently obtained elsewhere (6, 3 ) ) . oQ i s the normal conduct- ance, ne2r/m, and t h e l o g a r i t h m i c term a r i s e s from t h e l o c a l i z a t i o n . A t zero Kelvin, L i s t h e specimen l e n g t h , b u t a t f i n i t e temperatures L i s t h e i n e l a s t i c d i f f u s i o n l e n g t h ( ~ ~ , $ ) 3 , LIN and L a r e t h e i n e l a s t i c and e l a s t i c mean f r e e paths r e s p e c t i v e l y . The p r e - l o g a r i t h m i c term i s s t r i c t l y v a l i d f o r small changes, a i s a constant pos- sessing values 1 o r

3

deprnding on t h e s t r e n g t h o f s p i n f l i p s c a t t e r i n g . As

" v a r i e s as T P / ~ where LTN v a r i e s as TP t h e temperature dependence o f t h e change o f u , 6 0 , i s

60 =

-

const. Ln T

Kaveh and M o t t have suggested t h a t a t zero K e l v i n t h e l o c a l i z a t i o n edge separates exponential band t a i l s t a t e s from s t a t e s which a r e power law l o c a l i z e d ,

$ % l / r e x p ( i k . r ) . A l t e r n a t i v e forms o f l o c a l i z a t i o n have been proposed by Pichard and SZriiia (10) and Kaydock (8). However, a t f i n i t e temperatures i t i s suggested t h a t t h e power law l o c a l i z a t i o n i s converted i n t o exponential l o c a l i z a - t i o n and here t h e decay l e n g t h i s t h e i n e l a s t i c d i f f u s i o n l e n g t h .

Recently Hodges (11) has explored t h e connection between these quantum treatments and t h e e a r l i e r , c l a s s i c a l , theorem o f Polya (12) t h a t t r u e two dimen- s i o n a l d i f f u s i o n does n o t occur.

Another t h e o r y which p r e d i c t s the same temperature dependence has been pro- posed by A l t s h u l e r , 'ronov and Lee (13) and i s based on t h e t h r e e dimensional work o f A l t s h u l e r and Aronov (14). Here, i n t e r f e r e n c e between e l a s t i c s c a t t e r i n g and t h e e l e c t r o n - e l e c t r o n i n t e r a c t i o n leads t o a s i n g u l a r i t y i n the d e n s i t y o f s t a t e s a t EF. This r e s u l t s i n a c o r r e c t i o n t o t h e conductance given by

Where the f a c t o r F a r i s e s from e l e c t r o n screening and tends t o zero o n l y a t t h e h i g h e s t values o f c a r r i e r concentration, n. F o r low values o f n i t i s approximately given by,

where K i s t h e 2D screening l e n g t h .

Kaveh and M o t t (18) have obtained t h e r e s u l t o f A l t s h u l e r e t a l . by a non- diagrammatic technique. They p o i n t o u t t h a t the two c o r r e c t i o n s should add, t h e l o c a l i z a t i o n a f f e c t i n g the d i f f u s i v i t y and t h e i n t e r a c t i o n a f f e c t i n g t h e d e n s i t y o f s t a t e s . From t h e temperature dependence o f conductance i t i s o n l y p o s s i b l e t o separate t h e l o c a l i z a t i o n and i n t e r a c t i o n mechanisms i f F and t h e i n e l a s t i c s c a t t e r - i n g mechanism a r e known p r e c i s e l y . However, t h e magneto-resistance and Hal 1 e f f e c t o f f e r a more p r e c i s e method o f d i s t i n g u i s h i n g between t h e two (16, 17).

Logarithmic c o r r e c t i o n s , magneto-resistance and H a l l e f f e c t . -

a) Magneto-resi stance

I n t h e presence o f a magnetic f i e l d , B, t h e c y c l o t r o n length, LC, becomes a l e n g t h s c a l e a f f e c t i n g the conductance. The a p p r o p r i a t e c o r r e c t i o n i s

e2 4 e B ~

6 0

C$(3

+ fi/4eB.rI,,D) + L n

(-)I.

( 3 )

(4)

where L D t h e new l e n g t h scale i s given by

This approximation agrees w e l l w i t h equation 3 except when LC >> L where i t f a i l s t o capture t h e B2 dependence o f t h e conductance c o r r e c t i o n .

Thus, as B increases LD becomes s v a l l e r and a negative magneto-resistance i s found. Even i f o t h e r mechanisms dominate t h e temperature dependence o f

resistance, t h e negative magneto-resistance w i l l be found i f t h e o t h e r s c a t t e r i n g processes a r e n o t s e n s i t i v e t o small values o f 6.

Recently i t has been suggested by Lee and Ramakrishnan ( P r i v a t e communication, t o be published) t h a t a magnetic f i e l d a f f e c t s t h e i n t e r a c t i o n mechanism when

ggB >> kT, t h e f a c t o r 2

-

2F being t u r n e d i n t o 2

-

F. This increased t h e magnitude

o f t h e l o g a r i t h m i c c o r r e c t i o n p a r t i c u l a r l y a t low values o f n. As t h e l o c a l i z a t i o n i s a f f e c t e d through o r b i t a l motion, t h e n e g a t i v e magneto-resistance w i l l be

dependent on t h e component o f B normal t o t h e plane o f conduction (19). On t h e o t h e r hand, t h e enhancement o f t h e i n t e r a c t i o n c o r r e c t i o n i s a s p i n e f f e c t and so i s o n l y dependent on t h e magnitude o f B, n o t the d i r e c t i o n .

b) H a l l e f f e c t

I n a s i m i l a r manner t h e H a l l constant, R R = uxy/02x) o f f e r s a means o f d i s t i n g u i s h i n g between t h e two regimes. Futuybllka((~0) showea i n t h e l o c a l i z a t i o n case the c o r r e c t i o n i n ox i s t w i c e t h a t of u

,,

thus t h e r e i s no c o r r e c t i o n i n RH. However, A l t s h u l e r e$ a l . (13) suggest t t a t f o r t h e i n t e r a c t i o n regime t h e r e i s no change i n axy o n l y a,,, consequently the change i n RH i s r e l a t e d t o t h e change i n r e s i s t a n c e R by

O r , a1 t e r n a t i v e l y , f o r l o c a l i z a t i o n t h e Hal 1 m o b i l i t y , UH, decreases l o g a r i t h m i c a l l y w i t h decreasing temperature, whereas i n t h e i n t e r a c t i o n regime p~ increases w i t h the l o g a r i t h m o f decreasing temperature.

Experimental i n v e s t i g a t i o n s . - The f i r s t observation o f t h e l o g a r i t h m i c c o r r e c t i o n was by Dolan and Osheroff (1) who i n v e s t i g a t e d t r a n s p o r t i n t h i n metal f i l m s . Bishop, Tsui and Dynes (21) showed t h a t t h e c o r r e c t i o n was present i n i n v e r s i o n l a y e r s , t h i s being the e x p l a n a t i o n o f t h e weak temperature dependence i n t h e m e t a l l i c regime present i n e a r l i e r work b u t n o t i n v e s t i g a t e d , i.e. Adkins, P o l l i t t and Pepper (22) F i g u r e 3. As mentioned p r e v i o u s l y , i n t h e absence o f d e f i n i t e knowledge o f t h e i n e l a s t i c s c a t t e r i n g mechanism and t h e value o f F, conductance measurements cannot d i s t i n g u i s h between t h e l o g a l i z a t i o n and i n t e r a c t i o n regimes.

However, i t was shown by Uren, Davies and Pepper (23) t h a t a combination o f measurements as a f u n c t i o n o f e l e c t r i c and magnetic f i e l d s c o u l d d i s t i n g u i s h between t h e mechanisms, and t h a t b o t h were present. T h i s work and t h a t o f these authors w i t h Kaveh w i l l now be discussed.

Anderson e t a l . (24) i n i t i a l l y p o i n t e d o u t t h a t as t h e e l e c t r o n temperature Te v a r i e d w i t h e l e c t r i c f i e l d , F, as Fx, i n f o r m a t i o n on t h e electron-phonon c o u p l i n g can be obtained by a combination o f e l e c t r i c f i e l d and temperature. T h i s t o p i c w i l l n o t be discussed here b u t t h e measurement o f t h e l o g a r i t h m i c c o r r e c t i o n as a f u n c t i o n o f e l e c t r i c f i e l d i s . a v e r y convenient experimental technique. F i g u r e 1 shows t h e l o g a r i t h m i c g r a d i e n t found by Uren, Davies and Pepper as a f u n c t i o n o f m a g n e t i c f i e l d , B. Here t h e g r a d i e n t i s expressed as t h e change o f conductance p e r decade change o f e l e c t r i c f i e l d (due t o two l e n g t h scales being i m p o r t a n t i n t h e presence o f a

(5)

JOURNAL DE PHYSIQUE

Figure 1. The "Quasi-Loaarithmic" slope i s plotted against maonetic f i e l d ,

B ,

(Tesla). The slope i s the r e s i s t a n c e chanoe per decade change i n e l e c t r i c f i e l d with the l a t t i c e a t - 85 mK, L was 19 nm. The c i r c u l a r and square points a r i s e from localization and interactions respectively, from Uren, Davies and P e ~ n e r (23).

magnetic f i e l d (equations

4

and

5 )

the dependence of

80

on e l e c t r i c f i e l d i s

"quasi-logarithmic"). I t i s seen t h a t the gradient i n i t i a l l y decreases

w i t h

increasing B and then increases, f i n a l l y staying f a i r l y constant. The magneto- resistance in the two regimes showed d i f f e r e n t behaviour, being negative when the gradient decreased with

B

and positive when i t increased with

B.

I t thus appeared t h a t the magnetic f i e l d was distinguishing between the two mechanisms. This i n t e r p r e t a t i o n was enhanced by the f a c t t h a t the second ( i n t e r a c t i o n ) mechanism was l e s s s t a b l e against increasing e l e c t r i c f i e l d , enabling extraction of the gradients f o r the two processes a t a p a r t i c u l a r value of magnetic f i e l d . From analysis of the dependence on electron temperature i t appeared as i f the condition f o r the magnetic f i e l d enhancement of the interaction process was gfiB

> kTe,

where g i s the g value and

6

i s the Bohr magneton. Uren, Davies and Pepper present r e s u l t s i l l u s t r a t i n g the decreased s t a b i l i t y of the interaction mechanism against an increase i n temperature.

Confirmation t h a t the magnetic f i e l d produced the interaction regime was pro- vided by measurements of the Hall e f f e c t . The r a t i o

BRH/RY =

2d9/? was found i n t h e interaction (second) regime, t h i s r e s u l t was obtained by Bishop, Tsui and Dynes, (25) although they did not separate the two mechanisms. The gradual increase in the r a t i o towards

2

as ~ F L increases i s shown i n Figure 2. These r e s u l t s on the r o l e of interactions were f o r values of c a r r i e r concentration such t h a t F was

s

0.85.

However, the magnitude of t h e pre-logarithmic f a c t o r was considerably greater than

(2-2F) and was consistent with 2-F, in agreement with the recent suggestion of Lee

and Ramakrishnan. Confirmation t h a t t h e magnetic enhancement of the interaction

regime i s a spin e f f e c t , and not related t o o r b i t a l motion, was provided by Davies,

Uren and Pepper

( 2 6 ) .

These authors found l i t t l e dependence in the magnitude of the

interaction correction on t h e direction of the magnetic f i e l d .

(6)

specimen r e s i s t a n c e i s shown a t t h e top. The c i r c u l a r p o i n t s were taken u s i n g a sample w i t h L = 360 nm, t h e closed c i r c l e s and open c i r c l e s are w i t h e l e c t r o n temperature determined by e l e c t r i c f i e l d and ambient temperature r e s p e c t i v e l y . The crosses were obtained w i t h t h e specimen used f o r F i g u r e 1, from Uren, Davies and Pepper (23).

The work o f Davies e t a l . a l s o showed t h a t i t was p o s s i b l e t o o b t a i n m e t a l l i c behaviour a t 50 mK by completely s e p a r a t i n g t h e i n t e r a c t i o n and l o c a l i z a t i o n c o r r e c - t i o n s . This was achieved by u s i n g specimens w i t h a l o n g e r e l a s t i c mean f r e e p a t h than Uren e t a1

.

The dependence o f r e s i s t a n c e on e l e c t r i c f i e l d f o r v a r i o u s values o f magnetic f i e l d i s i l l u s t r a t e d i n F i g u r e 3. I t i s seen t h a t t h e magnetic f i e l d i n i t i a l l y reduces and then e l i m i n a t e s t h e l o g a r i t h m i c c o r r e c t i o n , and m e t a l l i c behaviour i s found f o r values o f e l e c t r o n temperature down t o 50 mK. ( A t h i g h values o f e l e c t r o n teaoerature, a 1 K, t h e r e s i s t a n c e again increases w i t h i n c r e a s - i n g e l e c t r i c f i e l d . This i s due t o a change i n screening w i t h e l e c t r o n temperature and has no relevance t o t h i s work.) F u r t h e r increase i n B r e s u l t s i n a ~ o s i t i v e magneto-resistance and t h e r e t u r n o f t h e l o g a r i t h m i c c o r r e c t i o n , although here i t i s due t o i n t e r a c t i o n s r a t h e r than l o c a l i z a t i o n . The complete s e p a r a t i o n o f t h e

mechanisms a r i s e s from t h e increased e l a s t i c mean f r e e path L and a correspondingly enhanced d i f f u s i o n l e n g t h L.

A

s m a l l e r value o f 6 i s r e q u i r e d f o r t h e c y c l o t r o n l e n g t h LC t o become considerably s m a l l e r than L, so causing t h e disappearance o f t h e l o g a r i t h m i c dependence on e l e c t r o n temperature b e f o r e B i s s u f f i c i e n t l y h i g h t o induce the i n t e r a c t i o n mechanism. However, t h e n e g a t i v e r e s i s t a n c e i s s t i l l obtained, t h i s o n l y disappears when LC i s near 1. The g r e a t e r s t a b i l i t y o f t h e l o c a l i z a t i o n mechanism i s apparent as a n e q a t i v e magneto-resistance i s observed when t h e e l e c t r i c f i e l d i s increased s u f f i c i e n t l y t o erase t h e i n t e r a c t i o n c o r r e c t i o n .

Another m a n i f e s t a t i o n o f t h e decreased l o c a l i z a t i o n l e n q t h s c a l e i s t h a t , as t h e magnetic f i e l d increases, a h i q h e r v a l u e o f e l e c t r i c f i e l d i s r e q u i r e d t o induce t h e l o g a r i t h m i c behaviour. I n c r e a s i n g B, hence decreasing LC, n e c e s s i t a t e s a s m a l l e r v a l u e o f L, and g r e a t e r v a l u e o f e l e c t r i c f i e l d , f o r t h i s t o determine t h e l e n g t h scale.

Kaveh e t a l . (18) have shown t h a t t h e l o g a r i t h m i c c o r r e c t i o n i s determined by t h e s h o r t e s t l e n g t h a v a i l a b l e , regardless o f i t s o r i g i n . The l e n g t h can be t h e c y c l o t r o n l e n g t h o r the i n e l a s t i c length, depending on t h e values o f magnetic f i e l d and e l e c t r o n temperature as i s shown i n F i g u r e 4.

(7)

JOURNAL DE PHYSIQUE

F i g u r e 3. Sheet r e s i s t a n c e i s n l o t t e d a o a i n s t t h e l o q a r i t h m o f e l e c t r i c f i e l d L = 360 nm, l a t t i c e temperature = 50 mK, c a r r i e r c o n c e n t r a t i o n = 3.8 x 1011 cW2. The values o f magnetic f i e l d i n Tesla a r e A = 0, B = 0.008, C = 0.021,

D

= 0.047, E = 0.074, F = 0.1,

G

= 0.15, H = 0.26,

I

= 0.32, 3 = 0.52, from Davies, Uren and Pepper (26).

E x t r a c t i o n o f t h e i n e l a s t i c l e n q t h from t h e magneto-resistance has allole~ed in v e s t i - g a t i o n o f t h e temperature dependence o f t h e i n e l a s t i c s c a t t e r i n g r a t e (27, 28). It has been found t h a t t h e T2 law i s m o d i f i e d by t h e e l a s t i c s c a t t e r i n g and a compon- e n t v a r y i n g w i t h a lower power o f temperature i s a l s o present, F i g u r e 5. This i s i n q u a l i t a t i v e agreement w i t h t h e o r e t i c a l c o n s i d e r a t i o n s suqgesting a T component due t o t h e b l u r r i n g o f e l e c t r o n momentum when

~ F L

i s near one.

F i n a l l y , v e r y r e c e n t l y Poole, Pepper and Glew (29) have i n v e s t i g a t e d t h e s i t u a t i o n where t h e screening f a c t o r F i s near 0.5, and both i n t e r a c t i o n and l o c a l i - z a t i o n effects are present i n t h e absence o f a magnetic f i e l d . The l o c a l i z a t i o n i s suppressed by t h e a p n l i c a t i o n of a magnetic f i e l d , and w h i l s t t h e r e s i s t a n c e

decreases w i t h B t h e H a l l constant does n o t vary

-

i n accordance w i t h t h e suqgestion of Fukuyama (20). However, when t h e l o c a l i z a t i o n i s suppressed, a l o g a r i t h m i c c o r - r e c t i o n i s s t i l l found as a f u n c t i o n o f temperature. T h i s i s due t o t h e i n t e r a c t i o n mechanism and now t h e H a l l r a t i o o f 2 i s found. These r e s u l t s c o n f i r m t h e sugges- t i o n o f Kaveh and Flott (8, 15) t h a t t h e i n t e r a c t i o n and l o c a l i z a t i o n c o r r e c t i o n s a r e a d d i t i v e .

(8)

i n e l a s t i c l e n g t h determined by e l e c t r o n h e a t i n q and l a t t i c e h e a t i n g r e s p e c t i v e l y . The dashed l i n e i l l u s t r a t e s t h e r e s u l t s exnected i f t h e l e n g t h was determined by t h e energy change o f t h e e l e c t r o n acquired from t h e f i e l d d u r i n g a d i s t a n c e

1,

a s i t u a t i o n which was n o t achieved; from Kaveh, Uren, Davies and Pepper, (18).

Conclusion.- Good agreement now e x i s t s between experiment and t h e p r e d i c t i o n s o f t h e l o c a l i z a t i o n and i n t e r a c t i o n t h e o r i e s . By t h e a p p l i c a t i o n o f a magnetic f i e l d , o r a combination o f magnetic and e l e c t r i c f i e l d s , t h e two mechanisms can be

separated and c l e a r l y d i s t i n g u i s h e d by t h e behaviour o f t h e H a l l e f f e c t and

magneto-resistance. I t i s p o s s i b l e t o o b t a i n m e t a l l i c behaviour a t temoeratures as low as 50

mK,

althouqh i t i s n o t c l e a r i f t h i s s i t u a t i o n i s maintained down t o absolute zero. E v e n t u a l l y kT becomes s m a l l e r than q$R and t h e i n t e r a c t i o n correc- t i o n w i l l become anparent. Holvever, i f t h i s mechanism i s o n l y a ~ e r t u r b a t i o n m e t a l l i c behaviour w i l l be obtained a t 0 K and t h e minimum m e t a l l i c conductance w i l l be observed. The r o l e o f the magnetic f i e l d i n r e s t o r i n g m e t a l l i c c o n d i t i o n w i l l r e s u l t i n a f i e l d induced m e t a l - i n s u l a t o r t r a n s i t i o n .

I n t h e presence o f i n t e n s e maanetic f i e l d s these mechanisms w i l l n o t have s i g n i f i c a n c e f o r t h e quantized H a l l r e s i s t a n c e (30), here oxX i s n e g l i g i b l y small and ox i s u n a f f e c t e d by i n t e r a c t i o n s . However, as t h e Fermi energy i s passed throu& t h e Landau l e v e l s a whole s e r i e s o f metal i n s u l a t o r t r a n s i t i o n s w i l l be obtained. As described i n e a r l i e r work (31) t h e c y c l o t r o n o r b i t w i l l d e l o c a l i z e e l e c t r o n s when t h e l e n g t h scale o f t h e p o t e n t i a l f l u c t u a t i o n s i s long.

Acknowledgements.- The work reviewed here was performed i n c o l l a b o r a t i o n w i t h W.A. Davies, M. Kaveh, D.A. Poole and M.J. Uren and w i l l be f u l l y described

elsewhere. Throughout t h i s work we have enjoyed many discussions w i t h

Professor S i r Nevi11 Mott. T h i s work was supported by t h e Science Research Council and, i n p a r t , by t h e European Research O f f i c e o f t h e U.S. Army.

References

1. DOLAN, D.J., OSHEROFF,

B.D.,

Phys. 9ev. L e t t . 43 (1979) 721.

2. MOTT, N.F., PEPPER, M., PQLLITT, S., WALLIS,

RT.,

ADYINS,

C.J.,

P ~ o c . 9.

Soc. A345 (1975) 169.

3. PEPPER, K P r o c . 9 . Soc. A353 (1977) 225.

4. HATTSTEIN, A., FOULER, A . B . 7 u r f a c e Science 73 (1978) 19.

-

(9)

JOURNAL DE PHYSIQUE

F i g u r e 5. (+,,T)-l i s p l o t t e d a g a i n s t T, T i s t h e e l e c t r o n - e l e c t r o n s c a t t e r i n g time and T i s t h e temperature. ?fie presence o f a component v a r y i n g a t a lower power than 2 i s s i g n i f i e d , from Uren, Davies Kaveh and Pepper (22).

ABRAHAMS, E., ANDERSON, P.M., LICCIARDELLO, D.C., RAMKRISHNAN, T.V., Phys. Rev. L e t t . 42 (1979) 673.

GORKOV, L.P., LARKINFA.H., KHMELNITZKII, El., J.E.T.P. L e t t . 30 (1979) 299.

HOUGHTON, A., JERICKI, A., KENWAY, R.D., PRIJISKEN, A.M.M., PhE. Rev. L e t t . 45 (1980) 394.

HAmCK, T.V., P h i l . rlag. B43 (1981 ) 203.

KAVEH, M., MOTT, N.F., J. P F s . C14 (1981) L177.

PICHARD, J.L., SARMA, G . , J. P h y s T C E (1381) L127 a l s o J. Phys. C. i n t h e press.

HODGES, C.H., J. Phys. C14 (1980) L247.

POLYA, G., Math. Ann. 8 4 7 9 2 1 ) 149.

ALTSHULER, B.L., ARONOV; A.G., LEE, P.A., Phys. Rev. L e t t . 44 (1980) 1288.

ALTSHIJLER, B.L., AROFIOV, A.G., Sol i d S t a t e Comn. 30 (1979) n5. KAVEH, H., FlOTT, N.F., J. Phys. C14 (1981) L183.

-

ALTSHULER, B.L., KHMELNITZKII, D.,ARKIN, A.I., LEE, P.A., Phys. Rev. B g (1980) 5142.

.

HIKAMI, S., LARKIN, A.I., NAGAOKA, Y., Prog. Theor. Phys. 63 (1380) 707.

KAVEH, H., UREN, M.J., DAVIES, R.A., PEPPER, tl., J. Phys. m 4

-

(1981) 413.

(10)

BISHOP, D.J., TSUI, D.C., DYNES, RX., Phys. Rev. L e t t . 44 (1980) 1153.

ADKINS, C.J., POLLITT, S., PEPPER, M., J. Physique 37 C 4 7 9 7 6 ) 343.

UREN, M.J., DAVIES, R.A., PEPPER, M., J. Phys. C13 7J980) 1985.

ANDERSON, P.W., ABRAHAMS, E., RAMAKRISHNAN, T . V . 7 h y s . Rev. L e t t . 44 (1979) 1288.

BISHUP, D.J., TSUI, D.C., DYNES, R.C., Phys. Rev. L e t t .

46

(1981) 360.

DAVIES, R.A., UREN, M.J., PEPPER, M., J. Phys. C. i n t h e press.

UREN, M.J., DAVIES, R.A., KAVEH, M., Pepper, M., J. Phys. C14 (1981) L395.

KAWAGUCHI, Y., KAWAJI, S., J. Phys. Soc. Japan 48 (1980) 6 9 K POOLE, D.A., PEPPER, M., GLEW, R.J., J. Phys. C F t o be published.

von KLITZING, K., DORDA, G., PEPPER, M., Phys. Rev. L e t t .

-

45 (1980) 494.

PEPPER, M., P h i l . Mag. B z (1978) 83.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to