• Aucun résultat trouvé

CORE LEVEL PHOTOEMISSION IN SOLIDS

N/A
N/A
Protected

Academic year: 2021

Partager "CORE LEVEL PHOTOEMISSION IN SOLIDS"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: jpa-00227268

https://hal.archives-ouvertes.fr/jpa-00227268

Submitted on 1 Jan 1987

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CORE LEVEL PHOTOEMISSION IN SOLIDS

A. Kotani

To cite this version:

A. Kotani. CORE LEVEL PHOTOEMISSION IN SOLIDS. Journal de Physique Colloques, 1987, 48

(C9), pp.C9-869-C9-877. �10.1051/jphyscol:19879156�. �jpa-00227268�

(2)

Tome 48, dbcembre

CORE LEVEL PHOTOEMISSION IN SOLIDS

A . KOTANI

Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan

A b s t r a c t

-

Many body e f f e c t s i n c o r e l e v e l p h o t o e m i s s i o n a r e d i s c u s s e d f o r r a r e e a r t h systems, e s p e c i a l l y f o r La and Ce compounds b o t h i n m e t a l l i c and i n s u l a t i n g forms. The 3d c o r e photoemission spectrum o f t h e s e m a t e r i a l s i s analyzed by u s i n g t h e i m p u r i t y Anderson model i n c o r p o r a t e d w i t h a c o r e h o l e p o t e n t i a l t o t h e 4 f s t a t e . I m p o r t a n t i n f o r m a t i o n s on t h e m e t a l l i c mixed valency, as w e l l as on t h e i n s u l a t i n g covalency, a r e d e r i v e d f r o m t h e a n a l y s i s . The r e l a t i o n s h i p o f s p e c t r a between t h e 3d c o r e photoemission and t h e 2p c o r e p h o t o a b s o r p t i o n i s discussed.

I

-

INTRODUCTION

I n t h e f i n a l s t a t e o f c o r e l e v e l photoemission, a c o r e h o l e i s l e f t behind. W i t h i n t h e Hartree-Fock approximation, t h e Koopmans theorem h o l d s , so t h a t t h e c o r e l e v e l photoemission spectrum i s d e s c r i b e d by d i s c r e t e l i n e s whose b i n d i n g energy corresponds t o t h e Hartree-Fock energy e i g e n v a l u e E o f c o r e e l e c t r o n s . H i s t o r i c a l l y , t h e c o r e l e v e l photoemi s s i o n i n s o l i d s hasCbeen developed f r o m t h e e x p e r i m e n t a l d e t e r m i n a t i o n o f E i n v a r i o u s systems. Since t h e v a l u e o f E i n s o l i d s i s n o t v e r y d i f f e r e n t f r o m t h e gorcesponding f r e e atom value, which i s c h a g a c t e r i s t i c i n each element, t h e c o r e l e v e l photoemission i s u s e f u l as a t o o l o f e l e m e n t a r y a n a l y s i s . Furthermore, a small d e v i a t i o n o f E from i t s f r e e atom value, i.e. t h e chemical s h i f t , p r o v i d e s us w i t h t h e i n f o r m a t i & on t h e chemical bonding o f o u t e r e l e c t r o n s .

However, t h e Koopmans theorem does n o t g e n e r a l l y h o l d because o f t h e many body e f f e c t beyond t h e Hartree-Fock approximation. When a c o r e h o l e i s c r e a t e d i n t h e f i n a l s t a t e o f photoemission, o u t e r e l e c t r o n s ( i . e . v a l e n c e e l e c t r o n s ) a r e p o l a r i z e d b y t h e c o r e h o l e p o t e n t i a l and screen t h e c o r e h o l e charge. T h i s corresponds t o t h e r e d i s t r i b u t i o n o r r e l a x a t i o n of o u t e r e l e c t r o n s t a t e s , and t h e dynamics o f many body response o f o u t e r e l e c t r o n s t o t h e c o r e h o l e a r e s e n s i t i v e l y r e f l e c t e d i n t h e s t r u c t u r e o f photoemission spectrum. Owing t o t h e r e c e n t p r o g r e s s i n e x p e r i m e n t a l technique, t h e many body e f f e c t i n t h e p h o t o e m i s s i o n spectrum can be observed w i t h s u f f i c i e n t accuracy as an asymmetry o f s p e c t r a l shape and as a s a t e l l i t e s t r u c t u r e . Furthermore, i t has been w e l l r e c o g n i z e d t h a t t h e c o r e l e v e l photoemission i s one o f t h e most p o w e r f u l t o o l s i n t h e s t u d y o f many body e f f e c t s o f o u t e r e l e c t r o n s / I / . A well-known example, which demonstrates t h e importance o f t h e many body e f f e c t o f o u t e r e l e c t r o n s , i s t h e s i n g u l a r i t y i n c o r e l e v e l p h o t o e m i s s i o n spectrum o f s i m p l e metals. I n t h e f i n a l s t a t e o f c o r e photoemission i n s i m p l e metals, c o n d u c t i o n e l e c t r o n s screen t h e c o r e h o l e charge, and t h i s many body response o f c o n d u c t i o n e l e c t r o n s g i v e s r i s e t o an asymmetric photoemission l i n e shape d i v e r g i n g a t t h e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19879156

(3)

C9-870 JOURNAL DE PHYSIQUE

t h r e s h o l d , due t o t h e s o - c a l l e d o r t h o g o n a l i t y c a t a s t r o p h e /2,3/. More i n t e r e s t i n g i s t h e r e c e n t development i n t h e s t u d y o f many body e f f e c t s i n magnetic m a t e r i a l s , which c o n t a i n i n c o m p l e t e l y f i l l e d d o r f e l e c t r o n s /I/. The r e l a x a t i o n o f d o r f e l e c t r o n o r b i t a l on t h e c o r e h o l e s i t e causes t h e s p l i t t i n g o f c o r e photoemission spectrum, and we can o b t a i n v e r y i m p o r t a n t i n f o r m a t i o n on t h e d o r f e l e c t r o n s t a t e f r o m t h e a n a l y s i s o f photoemission spectrum. I n t h e p r e s e n t paper, we r e v i e w t h e development i n t h e o r e t i c a l s t u d y o f c o r e l e v e l p h o t o e m i s s i o n o f r a r e e a r t h compounds, e s p e c i a l l y La and Ce compounds b o t h i n m e t a l l i c and i n s u l a t i n g forms.

I 1

-

La and Ce METALS AND THEIR INTERMETALLIC COMPOUNDS

I n t h e 3d c o r e p h o t o e m i s s i o n spectrum (3d-XPS) o f La m e t a l /4,5/, as shown i n t h e i n s e t o f F i g . 1 /5/, a weak s a t e l l i t e peak i s observed on t h e l o w e r b i n d i n g e n e r g y s i d e o f t h e main peak. The energy s e p a r a t i o n between t h e s a t e l l i t e and t h e main peak i s about 3.4 eV. The i n t e n s i t y o f t h e s a t e l l i t e becomes v e r y l a r g e i n some i n t e r m e t a l l i c La compounds, f o r i n s t a n c e i n LaPd /5/. The mechanism o f t h i s s a t e l l i t e was f i r s t p o i n t e d o u t b y Toyozawa and t d e p r e s e n t a u t h o r more t h a n t e n y e a r s ago /6,7,8/. As a model s i m u l a t i n g t h e La m e t a l , l e t us c o n s i d e r a system which c o n s i s t s o f a c o n d u c t i o n band, w e l l - l o c a l i z e d 4 f s t a t e s and c o r e s t a t e s , as shown i n F i g . 1. We t a k e account o f a h y b r i d i z a t i o n V between 4 f and c o n d u c t i o n e l e c t r o n s . I n t h e i n i t i a l s t a t e o f photoemission, t h e 4 f l e v e l E~~ i s w e l l above t h e Fermi l e v e l E so t h a t we have no 4 f e l e c t r o n occupied i n t h e 4 f l e v e l , c o r r e s p o n d i n g t o 4 f 0 ground s t a t e o f La. However, i n t h e f i n a l s t a t e o f photoemission, t h e 4 f l e v e l on t h e c o r e h o l e s i t e i s p u l l e d down below EF due t o t h e a t t r a c t i v e p o t e n t i a l o f t h e c o r e h o l e . Then, we expect t o have two c l a s s e s o f f i n a l s t a t e s , c o r r e s p o n d i n g t o two d i f f e r e n t c o n f i g u r a t i o n s o f 4 f s t a t e . I n one c l a s s , a c o n d u c t i o n e l e c t r o n near jumps i n t o t h e 4 f l e v e l t h r o u g h t h e h y b r i d i z a t i o n V (see

F

F i g . I ) , w h i l e i n t h e o t h e c l a s s l t h e 4 f l e v e l i s s t i l l empty even a f t e r b e i n g p u l l e d down below E ~ . The f o r m e r ( 4 f c o n f i g u r a t i ~ n ) ~ g i v e s r i s e t o t h e s a t e l l i t e peak o f t h e photoemission spectrum, w h i l e t h e l a t t e r ( 4 f c o n f i g u r a t i o n ) t h e main peak. I n t h e former, t h e c o r e h o l e charge i s screened b y t h e 4 f e l e c t r o n , so t h i s f i n a l s t a t e i s c a l l e d t h e w e l l - s c r e e n e d s t a t e , w h i l e t h e l a t t e r f i n a l s t a t e i s denoted b y t h e p o o r l y - s c r e e n e d s t a t e . I n LaPd

,

t h e i n t e n s i t y o f t h e s a t e l l i t e becomes l a r g e r , s i n c e t h e e f f e c t o f h y b r i d i z a t i o g V becomes l a r g e r due t o t h e e x i s t e n c e o f Pd 4d c o n d u c t i o n band.

A v e r y s i m i l a r s a t e l l i t e s t r u c t u r e i s a l s o o b s e r v e d i n t h e system c o n t a i n i n g t r i v a l e n t Ce /5,9/, such as y-Ce and CeAl

,

and i t can be e x p l a i n e d b y e s s e n t i a l l y t h e same mechanism as above. I n t h e t r i v g l e n t Ce, one 4 f e l e c t r o n i s a l r e a d y o c c u p i e d i n t h e

F i g . 1

-

Model o f o u r system d e s c r i b i n g t h e c o r e photoemission process i n La m e t a l . -mental d a t a o f 3d-XPS i n La and LaPd3 a r e shown i n t h e i n s e t .

(4)

t r a n s f e r r e d f r o m t h e c o n d u ~ t i o n ~ b a n d i n t h e f i n a l s t a t e o f photoemission. Therefore, t h e s a f e l l i t e comes f r o m t h e 4 f w e l l - s c r e e n e d f i n a l s t a t e , w h i l e t h e main l i n e f r o m t h e 4 f p o o r l y - s c r e e n e d f i n a l s t a t e .

I 1 1

-

MIXED VALENCE Ce COMPOUNDS

The 3d-XPS o f mixed v a l e n c e Ce compounds e x h i b i t s three-peak s t r u c t u r e ( a p a r t f r o m t h e s p i n o r b i t s p l i t t i n g ) . As an example, t h e 3d-XPS o f CePd3 i s shown i n t h e i n s e t o f F i g . 2 /5/. I n t h e ground s t a t e o f mixed v a l e n c e systems, t h e 4 f l e v e l ~ ~ 0 i s l o c a t e d c l o s e t o t h e Fermi l e v e l E ~ , S O t h a t t h e 4 f s t a t e h y b r i d i z e s w i t h t h e c o b d u c t i o n Iband and t h e ground s t a t e i s a quantum-mechanically mixed s t a t e between 4 f and 4 f c o n f i g u r a t i o n s . The occurrence o f t h r e e peaks i n 3d-XPS i s understood, a t l e a s t q u a l i t a t i v e l y , f r o m theOmechanism o f t h e s a t e l l i t e i n La and t r i v a l e n t Ce:

When we t a k e account o f t h e f f component o f t h e mixgd v a l e n c e ground s t a t e , we expect t o have w e l l - s c r e e n e d 4 f and p o o r l y - s c j e e n e d 4 f f i n a l s t a t e s , as i n t h e case o f La. Bu5, when we t a k e account o f t h e 4 f component, we e x p e c t t o have w e l l - screened 4 f and p o o r l y - s c r e e n e d 4 f 1 f i n a l s t a t e s , as i n t h e case o f t r i v a l e n t Ce.

T h ~ r e f o r y , combieing t h e two cases, we expect t o have t h r e e d i f f e r e n t c o n f i g u r a t i o n s , 4 f

,

4 f and 4 f

,

i n t h e f i n a l s t a t e , and t h e y g i v e r i s e t o t h e t h r e e peaks i n 3d- XPS.

As found f r o m t h e above mechanism, t h e s t u c t u r e o f 3d-XPS depends s e n s i t i v e l y on t h e h y b r i d i z a t i o n between 4 f and c o n d u c t i o n e l e c t r o n s b o t h i n t h e i n i t i a l and f i n a l s t a t e o f photoemission. T h i s means t h a t we can o b t a i n i m p o r t a n t i n f o r m a t i o n on t h e 4 f e l e c t r o n s t a t e b y a n a l y z i n g q u a n t i t a t i v e l y 3d-XPS data. Such a q u a n t i t a t i v e t h e o r e t i c a l a n a l y s i s was f i r s t made by Gunnarsson and SchSnhammer

/ l o /

w i t h t h e use o f t h e i m p u r i t y Anderson model. The f o l l o w i n g argument i n t h i s s e c t i o n i s based m a i n l y on t h e i r t h e o r y , w i t h some m i n o r m o d i f i c a t i o n . To make t h e model e x p l i c i t , we d e s c r i b e t h e H a m i l t o n i a n f o r 4 f and c o n d u c t i o n e l e c t r o n s . The H a m i l t o n i a n i s g i v e n b y

i n t h e i n i t i a l s t a t e o f photoemission, w h i l e i t i s changed i n t o

H = Ho

-

Ufc p f v a f v

+

( 2 )

i n t h e f i n a l s t a t e . Here,

\

and

~~q

a r e e n e r g i e s o f t h e c o n d u c t i o n band and 4 f

F i g . 2

-

T h e o r e t i c a l and e x p e r i m e n t a l ( i n s e t ) r e s u l t s o f t h e 3d-XPS of CePd3.

(5)

C9-872 JOURNAL DE PHYSIQUE

l e v e l , r e s p e c t i v e l y and a+ and a$v a r e e l e c t r o n c r e a t i o n o p e r a t o r s i n t h e s e s t a t e s , where t h e {ndex k d k x o t e s t h e energy l e v e l o f c o n d u c t i o n e l e c t r o n s (k = 1 1.

N) and v s p e c i f i e s b o t h t h e s p i n and o r b i t a l degeneracy ( v = 1 Q Nf). I n t e r a c t i o n s V, Uff and -U r e p r e s e n t , r e s p e c t i v e l y , t h e h y b r i d i z a t i o n between 4 f and c o n d u c t i o n band s t a t e s , f f h e Coulomb i n t e r a c t i o n between 4 f e l e c t r o n s and t h e c o r e h o l e p o t e n t i a l . I t i s c o n v e n i e n t t o c a l c u l a t e t h e p h o t o e m i s s i o n spectrum b y u s i n g t h e l/Nf expansion method (N b e i n g t h e degeneracy o f 4 f l e v e l ) . I n d i a g o n a l i z i n g t h e H a m i l t o n i a n Ho o r H, i t f s t o be n o t e d t h a t t h e c o u p l i n g among t h e s t a t e s A, B and C o f F i g . 3 occurs w i t h i n t h e l o w e s t o r d e r o f l / N f , b u t t h e c o u p l i n g o f t h e s e s t a t e s w i t h t h e o t h e r ones, D, E, F, e t c . , occurs o n l y as a h i g h e r o r d e r c o r r e c t i o n w i t h r e s p e c t t o 1/N S i n c e t h e v a l u e N i s l a r g e (we u s u a l l y t a k e Nf = 14), t h e l o w e s t o r d e r a p p r o x i & t i o n p r o v i d e s us Z i t h s u f f i c i e n t l y r e 1 ia b l e r e s u l t s . Once we d i a g o n a l i z e Ho and H, t h e c o r e p h o t o e m i s s i o n spectrum i s c a l c u l a t e d b y

where l g > i s t h e ground s t a t e o f H w i t h energy E

, Ir>

' s a r e e i g e n s t a t e s o f H w i t h e n e r g i e s E I s , E i s t h e b i n d i n g en?rgy, and

r

r e p p e s e n t s t h e s p e c t r a l broadening due t o t h e l i f g t i m e

gf

t h e c o r e h o l e , as w e l l as t h e e x p e r i m e n t a l r e s o l u t i o n . I n F i g . 2, we show 3d-XPS o f CePd c a l c u l a t e d w i t h i n t h e l o w e s t o r d e r a p p r o x i m a t i o n o f l / N f expansion /11/. I n orde? t o reproduce t h e e x p e r i m e n t a l 3d-XPS, we used t h e f o l l o w i n g parameter values: V = 0.38, U = 8.3, U = 10.5, E O

-

cF = -2.0 and

r

= 1.6 i n

u n i t s o f eV. With t h e s e paramgfers, t h e a t g r a g e i f e l e l t r o n number nf i n t h e ground s t a t e i s e s t i m a t e d as nf = 0.86.

Gunnarsson and SchBnhammer /5,10/ performed s y s t e m a t i c a n a l y s i s o f 3d-XPS i n v a r i o u s Ce compounds, and r e v e a l e d t h a t t h e i n t e r m e t a l l i c Ce compounds w i t h Ni, Co,

.

Ru e t c . a r e i n t h e mixed v a l e n c e s t a t e ( w i t h f r a c t i o n a l v a l u e o f n ), a l t h o u g h t h e s e compounds were t r a d i t i o n a l l y c o n s i d e r e d t o be i n t h e t e t r a v a l e n t f t a t e ( w i t h nf = 0 ) .

F i g . 3

-

Schematic r e p r e s e n t a t i o n o f b a s i s s t a t e s used i n d i a g o n a l i z i n g t h e HamilTonian H o r H. The c o u p l i n g t h r o u g h V i s shown w i t h arrows. O n l y t h e s t a t e s A, 6 and C a r ? c o u p l e d w i t h i n t h e l o w e s t o r d e r o f l / N f expansion.

I V

-

INSULATING COMPOUNDS

Much i n t e r e s t has r e c e n t l y been t a k e n i n t h e i n s u l a t i n g Ce compounds CeOZ.. CeO was t r a d i t i o n a l l y c o n s i d e r e d t o be t e t r a v a l e n t , b u t t h e 3d-XPS o f Ce02 e x h i b ~ t s Zhree-

(6)

t o t h a t o f mixed v a l e n c e Ce i n t e r m e t a l l i c s . Even i n i n s u l a t i n g Ce compounds, i t can be shown t h a t i f t h e 4 f l e v e l E~ 0 i s l o c a t e d c l o s e t o t h e f i l l e d v a l e n c e band t h e ground s t a t e i s d e s c r i b e d by a m i x t u r e between 4 f and 4 f c o n f i g u r a t i o n s /14,15,16,17/. We can use H a m i l t o n i a n s ( 1 ) and ( 2 ) o n l y by r e g a r d i n g E as t h e f i l l e d v a l e n c e band o f oxygen 2p s t a t e s . I n t h i s case, V r e p r e s e n t s t h e c o v a l e n c y m i x i n g b e t w e ~ n 4 f anq v a l e n c e band s t a t e s . T h e r e f o r e , i f t h e ground s t a t e c o n t a i n s b o t h o f 4 f and 46 c o n f i g u r a t i o n f , i t i s p o s s i b l e t o have t h r e e d i f f e r e n t f i n a l c o n f i g u r a t i o n s , 4 f

,

4 f and 4 f

,

because a charge t r a n s f e r can o c c u r f r o m t h e valence band t o t h e 4 f s t a t e i n t h e f i n a l s t a t e . We show t h e c a l c u l a t e d 3d-XPS o f Ce02 i n F i g . 4 /11/, where t h e parameter v a l u e s a r e t a k e n as V = 0.76, U = 10.5,

= 12.4, cfO

-

E O= 1.6 and l. = 1.0 i n u n i t s o f eV /11,17/ ( € 0 b e i n g t h g c e n t e r o f

:fig

v a l e n c e band)! I n t h i s c a l c u l a t i o n H a m i l t o n i a n s ( 1 ) and Y2) a r e d i a g o n a l i i e d n u m e r i c a l l y f o r a f i n i t e system where ek i s t a k e n as

w i t h k = 1, 2;..N. The band w i d t h W i s chosen as 3.0 eV, and t h e v a l u e o f N i s t a k e n t o be s u f f i c i e n t l y l a r g e so t h a t t h e c a l c u l a t e d spectrum converges w e l l . From t h i s c a l c u l a t i o n t h e avera8e 4 f e l y c t r o n number i n t h e ground s t a t e o f CeO i s f o u n d t o be about 0.5, so t h a t 4 f and 4 f c o n f i g u r a t i o n s a r e f o u n d t o be mixed v g r y s t r o n g l y . Very r e c e n t l y , e x p e r i m e n t a l o b s e r v a t i o n o f 3d-XPS has been made f o r a n o t h e r

" n o m i n a l l y t e t r a v a l e n t " i n s u l a t i n g Ce compound CeF4 /18/. As shown i n t h e i n s e t o f F i g . 5, t h e 3d-XPS o f CeF has t h r e e peaks, whose energy spacings and r e l a t i v e i n t e n s i t i e s a r e somewhat d i f t e r e n t f r o m t h o s e o f CeO

.

T h e o r e t i c a l a n a l y s i s o f t h i s spectrum i s a l s o made by u s i n g t h e same model as ~ e 6 and b y somewhat m o d i f y i n g t h e parameter v a l u e s /19/. The r e s u l t i s shown i n F i g .

g,

where we used t h e parameters o f V = 0.76, Uff = 8.5, Ufc = 12.0, c f O - & O= 4.0, W = 3.0 and

r

= 1.0 i n u n i t s o f eV. The background spectrum B ( E ) i s a l s o Kaken i n t o account, as p l o t t e d w i t h t h e dashed curve, where i t i s assumed f o be g i v e n b y

B ( E ~ ) = c

f

E~ F ~ ~ ~ ( E ~ ' )

aB'

(5) w i t h a c o n s t a n t C as an a d j u s t a b l e parameter. The agreement between t h e c a l c u l a t e d and observed s p e c t r a i s s a t i s f a c t o r y .

The most e s s e n t i a l d i f f e r e n c e i n t h e e s t i m a t e d parameter values between CeFq and Ce O2 i s t h a t t h e v a l u e o f E O

-

E Oin CeF4 i s much l a r g e r t h a n t h a t i n CeO

,

c o r r e s p o n d i n g t o l a r g e r e l e c f r o n e g $ t i v i t y o f t h e f l u o r i n e i o n . Compared w i t h t i e

F i g . 4

-

T h e o r e t i c a l and e x p e r i m e n t a l ( i n s e t ) r e s u l t s o f t h e 3d-XPS of Ce02.

(7)

C9-874 JOURNAL DE PHYSIQUE

case o f CeO

,

t h e r e f o r e , t h e h y b r i d i z a t i o n between 4 f and v a l e n c e band s t a t e s i n t h e ground s t a g e o f CeF becomes s m a l l e r , and t h e average 4 f e l e c t r o n number n i s e s t i m a t e d t o be about 8.29, which i s c o n s i d e r a b l y s m a l l e r t h a n t h a t o f CeO

. of

t h e t h r e e peaks o f 3d-XPS bott) i n CeF4 and CeO t h e h i g h e s t b i n d i n g en8rgy peak corresponds m a i n l y t o t h e 4 f f i n a l s t a t e l w2;le2the m i d d l e and t h e l o w e s t b i n d i n g energy peaks a r e mixed s t a t e s between 4 f and 4 f f i n a l s t a t e s . The f r a c t i o n a l i n t e n s i t y o f t h e h i g h e s t b i n d i n g energy peak i s l a r g e r i n CeF t h a n i n Ce02, which i s caused b y t h e l a r g e r w e i g h t o f t h e 4 f c o n f i g u r a t i o n i n t h e g80und s t a t e .

I n t h i s way, t h e c o r e photoemission g i v e s t h e i n f o r m a t i o n on t h e c o v a l e n c y m i x i n g between d i f f e r e n t 4 f c o n f i g u r a t i o n s i n i n s u l a t i n g compounds. The mechanism o f t h e s a t e l l i t e i s e s s e n t i a l l y t h e same between i n s u l a t i n g and m e t a l l i c systems. The c h a r a c t e r i s t i c f e a t u r e i n m e t a l l i c systems i s t h e e x i s t e n c e o f e l e c t r o n h o l e p a i r e x c i t a t i o n s i n t h e c o n d u c t i o n band, as shown i n D, E, F, e t c . i n F i g . 3, i n c o n t r a s t t h a t t h e y a r e absent i n i n s u l a t i n g systems. However, t h e c o n t r i b u t i o n o f t h e s e s t a t e s w i t h e l e c t r o n h o l e p a i r s (D, E, F, e t c . ) t o t h e photoemission s p e c t r a i s much s m a l l e r t h a n t h o s e w i t h no e l e c t r o n h o l e p a i r (A, B, C), as mentioned b e f o r e . T h e r e f o r e , when we r e g a r d t h e f i l l e d v a l e n c e band i n i n s u l a t i n g systems as t h e c o n d u c t i o n band below cF i n m e t a l l i c systems, t h e f o r m a l t h e o r e t i c a l procedure i n c a l c u l a t i n g 3d-XPS i s e s s e n t i a l l y t h e same between i n s u l a t i n g and m e t a l l i c systems.

The d i f f e r e n c e i n t h e s p e c t r a l f e a t u r e s i n d i f f e r e n t systems comes o n l y f r o m t h e d i f f e r e n c e i n t h e parameter v a l u e s i n c l u d e d i n t h e model system. I n t h i s sense, we can say t h a t CeO and CeF4 aye a l s o i n t h e "mixed v a l e n c e " s t a t e , and we cannot d i s t i n g u i s h betwee$ t h e m e t a l l ~ c mixed v a l e n c y and t h e i n s u l a t i n g c o v a l e n c y f r o m c o r e photoemission data.

F i g . 5

-

T h e o r e t i c a l and e x p e r i m e n t a l ( i n s e t ) r e s u l t s o f t h e 3d-XPS o f CeF4.

V

-

RELATION BETWEEN 3d-XPS AND L2-XAS

I n t h e 2p c o r e p h o t o a b s o r p t i o n ( L -XAS) o f Ce compounds, a 2p e l e c t r o n i s e x c i t e d t o t h e Ce 5d c o n d u c t i o n band, a2 shown i n F i g . 6 f o r t h e case o f i n s u l a t i n g Ce compounds. Therefore, we have a c o r e h o l e l e f t b e h i n d i n t h e f i n a l s t a t e , and t h e c o r e h o l e p o t e n t i a l -U i s expected t o cause t h e f i n a l s t a t e i n t e r a c t i o n v e r y s i m i l a r t o t h a t o f 3 d - x p s f c A c c o r d i n g t o e x p e r i m e n t a l data, however, c h a r a c t e r i s t i c f e a t u r e s o f L3-XAS i n v a r i o u s Ce compounds a r e u s u a l l y d i f f e r e n t f r o m t h o s e o f 3d- XPS. The d i f f e r e n c e between 3d-XPS and L3-XAS i s observed most c l e a r l y i n i n s u l a t i n g Ce compounds CeO and CeF

.

The 3d-XPS o f t h e s e systems has t h r e e peaks as shown b e f o r e , whereas {he L - X A ~ has o n l y two peaks /13,18,20,21,22/. Experimental d a t a o f L -XAS i n CeF i s saown i n t h e i n s e t o f F i g . 7 /18/. The energy s e p a r a t i o n o f two peak2 i n L ~ - X A ? i s about 6 eV i n CeF4 and about 8 eV i n Ce02, whereas t h e energy

(8)

SeB2 (see i n s e t s o f F i g s . 4 and 5). T h i s r e s u l t suggests t h a t 44 c o n f i g u r a t i o n s i n f i n a l s t a t e s of 3d-XPS and L -XAS a r e d i f f e r e n t . As an o r i g i n o f t h i s d i f f e r e n c e , two p o s s i b l e mechanisms cad be c o n s i d e r e d : ( i ) A d i f f e r e n c e i n t h e c o r e h o l e p o t e n t i a l -U between 2p and 3d c o r e h o l e s . ( i i ) The e x i s t e n c e o f a p h o t o e x c i t e d 5d e l e c t r o n i n f 6 e f i n a l s t a t e o f L ~ - X A S .

Jo and t h e p r e s e n t a u t h o r /11,23/ c o n s i d e r e d t h a t t h e p o i n t ( i i ) i s e s s e n t i a l l y i m p o r t a n t , and proposed a mechanism b y which t h e 3d-XPS and L -XAS i n CeO a r e e x p l a i n e d c o n s i s t e n t l y . A s i m i l a r c a l c u l a t i o n has a l s o been mads f o r CeF /197. I n t h e s e c a l c u l a t i o n s , t h e i n t e r a c t i o n U between t h e p h o t o - e x c i t e d 5d e l e c t 9 o n and t h e 4f e l e c t r o n , as w e l l as t h e a t t r a c t i t $ p o t e n t i a l -U o f t h e c o r e h o l e a c t i n g on t h e 5d e l e c t r o n , a r e t a k e n i n t o account, as shown i n

FQG.

6. On t h e o t h e r hand, i t i s assumed t h a t t h e c o r e h o l e p o t e n t i a l -U a c t i n g on t h e 4 f e l e c t r o n i s t h e same f o r t h e 3d and 2p c o r e holes, w i t h d i s r e g a F S i n g t h e p o s s i b i l i t y ( i ) . The r o l e o f t h e p o t e n t i a l -U i s t o l o c a l i z e t h e 5d e l e c t r o n near t h e c o r e h o l e s i t e , and t h e n due t o t h e i n t d t i a c t i o n U t h e 4 f e l e c t r o n c o n f i g u r a t i o n s i n t h e f i n a l s t a t e o f L3-XAS become d i f f e r e n t fromff!hose o f 3d-XPS. As an example, we show i n F i g . 7 /19/ t h e r e s u l t o f L3-XAS o f CeF which i s c a l c u l a t e d b y u s i n g t h e parameter v a l u e s determined from t h e a n a l y 2 i s o f 3d-XPS and b y assuming t h e 5d band w i d t h o f 6.0 eV and

r

= 2.5 eV. The v a l u e s o f U and Udc a r e changed as parameters. I t i s f o u n d t h a t when we use U = 4.0 eV 686 U = 5.0 eV t h e c a l c u l a t e d L3-XAS ( t h e s o l i d c u r v e ) i s i n good a g r & $ m e n t j w i t h t h e e x g g r i m e n t a l r e s u l t b o t h i n t h e energy s e p a r a t i o n and t h e r e l a t i v e i n t e n s i t y o f two peaks ( b y t a k i n g account o f t h e background as shown w i t h t h e dashed c u r v e i n t h e i n s e t o f F i g . 7 ) . On t h e o t h e r hand, when we d i s r e g a r d t h e e f f e c t o f U and U as shown b y t h e dashed curve, t h e L3-XAS i s a s i m p l e c o n v o l u t i o n o f

5d-XPS

d $ i h t h e d e n s i t y o f s t a t e s o f 5d band, and t h e o b t a i n e d spectrum i s q u i t e d i f f e r e n t f r o m t h e e x p e r i m e n t a l r e s u l t . The importance o f U and

-U

was a l s o c o n f i r m e d i n t h e a n a l y s i s o f L3-XAS i n Ce02 /11,22,23/ a i d i n i n & l a t i n g La compounds, La2O3 and LaF3 /24/.

On t h e p o s s i b i l i t y o f ( i ) , a t h e o r e t i c a l c a l c u l a t i o n b y H e r b s t and W i l k i n s /25/

i n d i c a t e s t h a t U o f 3d c o r e h o l e i n Ce m e t a l i s l a r g e r t h a n t h a t o f t h e 2p c o r e h o l e by 1.3 eV, b 6 f no c a l c u l a t i o n has been made f o r i n s u l a t i n g systems. A c c o r d i n g t o r e c e n t 3p c o r e s p e c t r o s c o p i e s i n Leo2, i t i s c o n f i r m e d t h a t t h e p o i n t ( i ) i s l e s s

F i g . 6

-

Model o f L3-XAS i n CeF4.

--

(9)

C9-876 JOURNAL DE PHYSIQUE

i m p o r t a n t t h a n ( i i ) . The 3p-XAS of CeO observed b y K a i n d l e t a1

.

/26/ i s v e r y s i m i l a r t o L3-XAS, a l t h o u g h t h e s p e c t r a l a i d t h i s l a r g e r . Furthermore, t h e 3p-XPS, which has v e r y r e c e n t l y been observed b y B i a n c o n i e t a l . /27/, can a l s o be reproduced f a i r l y w e l l from t h e 3d-XPS by i n c r e a s i n g t h e s p e c t r a l w i d t h and by adding a .background c o n t r i b u t i o n . T h e r e f o r e , we can conclude t h a t t h e v a l u e o f U i s almost t h e same f o r 2p, 3p, and 3d c o r e h o l e s . The d i f f e r e n c e i n t h e experime&al s p e c t r a between 3 p - x ~ S and 3p-XAS can be e x p l a i n e d o n l y b y t h e e f f e c t o f U and -U A l t h o u g h t h e r e remains a p o s s i b i l i t y o f t h e d i f f e r e n c e i n U between

5$

and 3d

f8r

2p) c o r e h o l e s by about 1 eV due t o t h e e x p e r i m e n t a l u n c e r t a f k t y , t h e 1 eV d i f f e r e n c e i n Ufc i s t o o s m a l l t o e x p l a i n t h e d i f f e r e n c e between 3 d ( o r 3p)-XPS and 2 p ( o r 3p)- XAS

.

I n mixed v a l e n c e Ce i n t e r m e t a l l i c s , L -XAS has a l s o two peaks /13,20,21/, b u t t h e d i f f e r e n c e between 3d-XPS and L -XAS i$ n o t so remarkable as t h a t i n Ce02 and CeF4.

A p r e l i m i n a r y a n a l y s i s o f L

AS

i n CePd3 /11,28/ suggests t h e importance o f t h e e f f e c t o f U and -U b u t ghe v a l u e s o f U and U seem t o be much s m a l l e r t h a n t h o s e o f i n f i l a t i n g &'compounds. More d e t z f l e d i n d g s t i g a t i o n s w i l l be needed i n a n a l y z i n g L3-XAS o f m e t a l l i c mixed v a l e n c e compounds.

V I

-

CONCLUDING REMARKS

We have d i s c u s s e d many body e f f e c t s i n c o r e l e v e l photoemission i n s o l i d s c o n t a i n i n g i n c o m p l e t e l y f i l l e d 4f s t a t e s . I t i s shown t h a t t h e a n a l y s i s o f 3d-XPS w i t h t h e i m p u r i t y Anderson model p r o v i d e s us w i t h i m p o r t a n t i n f o r m a t i o n on t h e 4 f s t a t e . I n a d d i t i o n t o t h e m a t e r i a l s t r e a t e d i n t h i s paper, t h e o r e t i c a l and/or e x p e r i m e n t a l s t u d i e s have been made f o r Ce 03, Pro

,

Tb02 and so on /29,30/. I t i s t o be mentioned t h a t t h e i m p u r i t y ~ n 2 e r s o n mogel has a l s o been used s u c c e s s f u l l y i n t h e a n a l y s i s o f c o r e l e v e l photoemission o f t r a n s i t i o n m e t a l compounds /31/.

The a u t h o r would l i k e t o express h i s t h a n k s t o P r o f . T. Jo, P r o f . A. Bianconi, Dr. J.C Parlebas, Dr. A. M a r c e l l i , Dr. K. Okada, Dr. T. Nakano, and Mr. M. Okada f o r v a l u a b l e d i s c u s s i o n and f r u i t f u l c o l l a b o r a t i o n . T h i s work i s p a r t l y s u p p o r t e d b y The K u r a t a Research Grant, t h e France-Japan C o l l a b o r a t i o n P r o j e c t on Magnetism, and a G r a n t - i n - A i d f o r S c i e n t i f i c Research f r o m t h e M i n i s t r y o f Education, Science and C u l t u r e i n Japan.

REFERENCES

1 A. K o t a n i , i n Handbook on S y n c h r o t r o n R a d i a t i o n , Vol. 2, ed. by G.V. Marr, t o be pub1 i s h e d f r o m N o r t h x o l land, Amsterdam.

2 P.W. Anderson, Phys. Rev. l e t t . 18, 1049 (1967).

3 P. ~ o z i s r e s and C.T. DeDominicisTPhys. Rev.

178,

1097 (1969).

4 I . Nagakura, T. I s h i i and T. Sagawa, J. Phys. Soc. Jpn. 33, 754 (1972).

5 J.C. Fuggle, F.U. H i l l e b r e c h t , Z. ZoYnierek, R. Lasser,

m.

F r e i b e r g , 0. Gunnarsson and K. SchGnhammer, Phys. Rev. B27, 7330 (1983).

6 A. K o t a n i and Y. Toyozawa, J. Phys. Soc. Jpn.

35,

1073 (1973).

7 A. K o t a n i and Y. Toyozawa, J. Phys. Soc. Jpn. %, 1082 (1973).

8 A. K o t a n i and Y. Toyozawa, J. Phys. Soc. Jpn.

7,

912 (1974).

9 R. Lxsser, J.C. Fuggle, M. Beyss, M, CamEgna, F. S t e g l i c h and F. H u l l i n g e r , Physica, 102B, 360 (1980).

10 0. G u n n a r K n and K. Schonhammer, Phys. Rev. B27, 7330 (1983).

11 A. K o t a n i and T. Jo, J. Physique C8, - 915 ( 1 9 8 6 r

12 P. Burroughs, A. Hamnett, A.F. Orchard and G. Thornton, J. Chem. Soc., D a l t o n Trans. 17, 1686 (1976).

13 E. Beaurepaire, Thesis, I n s t i t u t Polytechnique, Nancy (1983).

1 4 E. Wuilloud, B. D e l l e y , W.-D. Schneider and Y. Baer, Phys. Rev. L e t t .

53,

202 (1984).

15 A. F u j i m o r i , Phys. Rev. 828, 2281 (1983).

16 A. K o t a n i and J.C. P a r l e b z , J. Physique, 46, 77 (1985).

17 A. K o t a n i , H. M i z u t a , T. Jo and J.C. P a r l e G s , S o l i d S t a t e Commun. 53, 805 (1985).

18 G. K a i n d l , G.K. Wertheim, G. Schmiester and E.V. Sampathkumaran, P h E . Rev. L e t t .

(10)

19 A, K o t a n i , K. Okada and M. Okada, t o be p u b l i s h e d i n S o l i d S t a t e Commun.

20 K.R. Bauchspiess, W. Boksch, E. H o l l a n d - M o r i t z , H. Launois, R. P o t t and D. Wohlleben, i n Valence F l u c t u a t i o n i n S o l i d s ed. b y L.M. F a l i c o v , W. Hanke and M.B. Maple (North-Hblland, A m s t e r % m m p. 417.

21 G. K r i l l , J.P. Kappler, A. Meyer, 1. A b a d l i and M.F. Ravet, J. Phys. F E , 1713 (1981).

22 A. B i a n c o n i , A. M a r c e l l i , H. Dexpert, R. Karnatak, A. K o t a n i , T. Jo and J. P e t i a u , Phys. Rev. B E , 806 (1987).

23 T. Jo and A. K o t a n i , S o l i d S t a t e Commun.

54,

451 (1985).

24 A. Kotani, M. Okada, T. 30, A. B i a n c o n i , A. M a r c e l l i and J.C. Parlebas, J. Phys.

Soc. Jpn. 56, 798 (1987).

25 J.F. H e r b s t a n d J.W. W i l k i n s , Phys. Rev. 626, 1689 (1982).

26 G. K a i n d l , G. Kalkowski, W.D. Brewer, E.V.'Sampathkumaran, F. H o l t z b e r g and A. Schach v. Wittenau, J. Magn. Magn. Mater. 47-48, 181 (1985).

27 A. Bianconi, T. Miyahara, A. K o t a n i , Y. K i r a j K T . Yokoyama, H. Kuroda, H. A r a i and 1. Ohta, Europhysics Conference A b s t r a c t s

3,

8137 (1987).

28 A. K o t a n i , T. 30, K. Okada, T. Nakano, M. Okada, A. Bianconi, A. M a r c e l l i and J.C. Parlebas, Proceedings o f I n t e r n a t i o n a l Symposium on Magnetism o f I n t e r - m e t a l l i c Compounds, 1987, Kyoto, Japan.

29 T. Nakano, A. K o t a n i and J.C. Parlebas, J. Phys. Soc. Jpn. 56, 2201 (1987).

30 A. B i a n c o n i , I. D a v o l i , S. D e l l a Longa, J. Garcia, K.B. Gar= A. K o t a n i and A. M a r c e l l i , Proceedings o f t h e 5 t h I n t e r n a t i o n a l Conference on Valence F l u c t u a t i o n s , 1987, Bangalore, I n d i a .

31 see, f o r i n s t a n c e , J. Zaanen, C. Westra and G.A. Sawatzky, Phys. Rev. 633, 8060

( 1 986). -

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to