• Aucun résultat trouvé

THE INSTABILITY OF ON-DIMENSIONAL LANGMUIR WAVE. SOLITONS AND COLLAPSE

N/A
N/A
Protected

Academic year: 2021

Partager "THE INSTABILITY OF ON-DIMENSIONAL LANGMUIR WAVE. SOLITONS AND COLLAPSE"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219296

https://hal.archives-ouvertes.fr/jpa-00219296

Submitted on 1 Jan 1979

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE INSTABILITY OF ON-DIMENSIONAL LANGMUIR WAVE. SOLITONS AND COLLAPSE

N. Buchelnikova, E. Matochkin

To cite this version:

N. Buchelnikova, E. Matochkin. THE INSTABILITY OF ON-DIMENSIONAL LANGMUIR WAVE.

SOLITONS AND COLLAPSE. Journal de Physique Colloques, 1979, 40 (C7), pp.C7-631-C7-632.

�10.1051/jphyscol:19797306�. �jpa-00219296�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, suppZ6rnent au n07, Tome 40, JuiZZet 1979, page C7- 631

THE INSTABILITY OF M-DIMENSIONAL LANGMUIR WAVE. SOLITONS AND COLLAPSE

N.S. Buchelnikova and E.P. Matochkin.

I n s t i t u t e o f Nuclear Physics, Novosibirsk, U.S.S.R.

The numerical experiment was made t o i n v e s t i g a t e t h e i n s t a b i l i t y of onedimen

-

s i o n a l s t a n d i n g Langmuir waves w i t h amp-

E

2

l i t u d e s

w, = A

77

(KO rd)

and phase 8 ~ n T

v e l o c i t i e s vp~/vT771 i n t h e c a s e s when plasma e l e c t r o n n o n l i n e a r i t y i s n e g l i g i b - l y small.

Case 1. W. = 4*10-*; v ~ h / ~ ~ = 1 6 ;

/

= 100. I n t h i s c a s e t h e modulatio

-

rial i n s t a b i l i t y 1ead.s t o t h e f o r m a t i o n of two d e n s i t y c a v i t i e s and, t o t h e concen

-

t r a t i o n of t h e e l e c t r i c f i e l d . i n them.

A f t e r some time p r a c t i c a l l y a l l t h e f i e l d energy is c o n c e n t r a t e d J 1 t h e c a v i t i e s (Fig. 1-1, d o t t e d l i n e

-

t h e i n i t i a l d i s - t r i b u t i o n ) . T h i s s t r u c t u r e i s s t a b l e du- r i n g a l o n g time (Fig. 3,4). The change of e l e c t r i c f i e l d d i s t r i b u t i o n

t;)

du- r i n g plasma period Toe can be d e s c r i b e d by t h e formula f o r s t a n d i n g s o l i t o n s i m i - l a r t o t h a t f o r Langmuir s o l i t o n /I/:

-

= 0 , 5 Wh ;

bya=

27; = 0,27.

So t h e modulational i n s t a b i l i t y i n t h i s c a s e l e a d s t o t h e f o r m a t i o n of q u a s i s t a b - l e s t a n d i n g s o l i t o n s .

Case 2. h, = 1 , 6 ; V ~ h / ~ - , = 1 6 ;

Xolrd

= 100. I n t h i s c a s e w i t h h i g h e r i n i t i a l amplitude t h e modulational i n s t a - b i l i t y a l s o l e a d s t o e l e c t r i c f i e l d con- c e n t r a t i o n i n t h e c a v i t i e s (Fig. 2 ) and t o t h e f o r m a t i o n of s o l i t o n l i k e s t r u c t u r e (Fig. 1-2).

E L x , ~ )

d u r i n g plasma period changes l i k e t h a t of a s t a n d i n g s o l i t o n , but t h e parameters a r e nonequilibrium:

%

km i s h i g h e r and h/ho is l e s s t h a n t h o s e of a s o l i t o n . So t h e ponderomotive f o r c e must l e a d t o t h e f u r t h e r deepening of t h e c a v i t y . R e a l l y t h i s s t r u c t u r e i s u n s t a b l e and c o n t i n u e s t o c o n t r a c t up t o t h e beginning of t h e damping (Fig. 3). A t

f / ~ O e

-

1 2 t h e maximum energy d e n s i t y +

w m = 3,9; %Lo = 0 , 3 ; = 18;

L S X / A ~ = 0,18. The damping i s due t o t h e t r a p p i n g and a c c e l e r a t i o n of plasma e l e c - t r o n s by t h e s h o r t wavelength modes w i t h

- EL,

h /

- - - =

0 . 5 h 4 m low phase v e l o c i t i e s , It l e a d s t o t h e 8 7 h 7- J. t7c f u l l a b s o r p t i o n of t h e f i e l d energy. Af- Both c u r v e s a r e shown on Fig. 2 ( d o t t e d

t e r t h e f i e l d a b s o r p t i o n t h e c a v i t y d e p t h l i n e

-

formula). The w i d t h AX a t t h e

c o n t i n u e t o i n c r e a s e due t o i o n i n e r t i a

,

t h e d e n s i t y p e r t u r b a t i o n

, l e v e l

.,.

, (Fig. 4). A f t e r 1-2 i o n plasma p e r i o d s

i n t h e c a v i t y &/be a r e e q u a l t o t h o s e of

a t h e shock waves forme on t h e c a v i t y edgee

a s o l i t o n : W h c 6.10'~;

n/h.,

=

3*10'~

=

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797306

(3)

and t h e c a v i t y c o l l a p s e s ,

So i n t h i s c a s e we observe t h e pro- c e s s of c o l l a p s e /2,3/.

Case 3. Wo = I ,6; vph

/vT

= 48;

X o l r d = 300. I n t h i i c a s e

A,

and V P ~

a r e h i g h e r t h a n t h o s e i n t h e c a s e 2 and

0 we can e x p e c t t h a t t h e damping must begin iii

na

much l a t e r . R e a l l y t h e c o n t r a c t i o n of t h e s o l i t o n l i k e s t r u c t u r e i n t h i s c a s e c o n t i -

"'3Ha1B:H

0 50 I 100

o

50 2 ~ O O

o

ISO 3 300%

nues f o r a l o n g e r time up t o

t/rOe.v

41

(Fig. 3 ) and l e a d s t o t h e h i g h e r energy

Fig. 1.

c o n c e n t r a t i o n and l o k a l i z a t i o n t h a n i n t h e

R,.--L-+

c a s e 2 (Pig. 1-3). I n t h i s c a s e t h e maxi-

*

mum energy d e n s i t y

w,

= 8,8; 0,3;

/

6 A x / A ~ = 0,055. The damping

SO SO 50 50 10Oy~

l i k e t h e c a s e 2 l e a d s t o t h e a b s o r p t i o n of

t h e f i e l d energy. Fig. 2,

So t h e m o d u l a t i o n a l i n s t a b i l i t y of

onedimensional Langmuir wave l e a d s t o t h e 5

-

W m G o 3 f o r m a t i o n of s o l i t o n s i f wave amplitude

4 .

i s low enough WO ,( 3.10". I n o t h e r c a s e

c o l l a p s e p r o c e s s t a k e s p l a c e

-

t h e l o k a

-

3 .

l i z a t i o n of e l e c t r i c f i e l d energy i n t h e

d e n s i t y c a v i t i e s , t h e c o n t r a c t i o n of t h e f c a v i t i e s and i n c r e a s e o f t h e energy den-

s i t y up t o t h e beginning o f t h e damping, 0 20

40 6 0 8 0

to0

qGe

l e a d i n g t o t h e f u l l a b s o r p t i o n of e l e c t - r i c f i e l d energy by plasma e l e c t r o n s .

Fig. 3.

1.

L.

1,Rudakov Sov. Phys. Doklady

207,

821, 1972.

3

2. V.E.Zakharov Sov. Phys. JETP

62,

1745, 19720

3,

V.E.Zakharov, A.N.Rubenchik Sov, Phys.

JETP

65,

997. 1973.

f

0 20

40 60 80

f O O h o e Fig. 4.

Références

Documents relatifs

To test whether the vesicular pool of Atat1 promotes the acetyl- ation of -tubulin in MTs, we isolated subcellular fractions from newborn mouse cortices and then assessed

Néanmoins, la dualité des acides (Lewis et Bronsted) est un système dispendieux, dont le recyclage est une opération complexe et par conséquent difficilement applicable à

Cette mutation familiale du gène MME est une substitution d’une base guanine par une base adenine sur le chromosome 3q25.2, ce qui induit un remplacement d’un acide aminé cystéine

En ouvrant cette page avec Netscape composer, vous verrez que le cadre prévu pour accueillir le panoramique a une taille déterminée, choisie par les concepteurs des hyperpaysages

Chaque séance durera deux heures, mais dans la seconde, seule la première heure sera consacrée à l'expérimentation décrite ici ; durant la seconde, les élèves travailleront sur

A time-varying respiratory elastance model is developed with a negative elastic component (E demand ), to describe the driving pressure generated during a patient initiated

The aim of this study was to assess, in three experimental fields representative of the various topoclimatological zones of Luxembourg, the impact of timing of fungicide

Attention to a relation ontology [...] refocuses security discourses to better reflect and appreciate three forms of interconnection that are not sufficiently attended to